51
|
Advani VM, Ivanov P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 2020; 77:4827-4845. [PMID: 32500266 PMCID: PMC7668291 DOI: 10.1007/s00018-020-03565-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
Collapse
Affiliation(s)
- Vivek M Advani
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
52
|
Guo P, Lam SL. Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10. Nucleic Acids Res 2020; 48:7557-7568. [PMID: 32520333 PMCID: PMC7367182 DOI: 10.1093/nar/gkaa495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.
Collapse
Affiliation(s)
- Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
53
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
54
|
Angelbello AJ, Chen JL, Disney MD. Small molecule targeting of RNA structures in neurological disorders. Ann N Y Acad Sci 2020; 1471:57-71. [PMID: 30964958 PMCID: PMC6785366 DOI: 10.1111/nyas.14051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Aberrant RNA structure and function operate in neurological disease progression and severity. As RNA contributes to disease pathology in a complex fashion, that is, via various mechanisms, it has become an attractive therapeutic target for small molecules and oligonucleotides. In this review, we discuss the identification of RNA structures that cause or contribute to neurological diseases as well as recent progress toward the development of small molecules that target them, including small molecule modulators of pre-mRNA splicing and RNA repeat expansions that cause microsatellite disorders such as Huntington's disease and amyotrophic lateral sclerosis. The use of oligonucleotide-based modalities is also discussed. There are key differences between small molecule and oligonucleotide targeting of RNA. The former targets RNA structure, while the latter prefers unstructured regions. Thus, some targets will be preferentially targeted by oligonucleotides and others by small molecules.
Collapse
Affiliation(s)
| | - Jonathan L Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
55
|
Schultz DB, Nascimento FA, Camargo CHF, Ashizawa T, Teive HAG. Cancer frequency in patients with spinocerebellar ataxia type 10. Parkinsonism Relat Disord 2020; 76:1-2. [PMID: 32497992 DOI: 10.1016/j.parkreldis.2020.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Débora B Schultz
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Carlos Henrique F Camargo
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
56
|
Rodríguez-Labrada R, Martins AC, Magaña JJ, Vazquez-Mojena Y, Medrano-Montero J, Fernandez-Ruíz J, Cisneros B, Teive H, McFarland KN, Saraiva-Pereira ML, Cerecedo-Zapata CM, Gomez CM, Ashizawa T, Velázquez-Pérez L, Jardim LB. Founder Effects of Spinocerebellar Ataxias in the American Continents and the Caribbean. CEREBELLUM (LONDON, ENGLAND) 2020; 19:446-458. [PMID: 32086717 PMCID: PMC11578058 DOI: 10.1007/s12311-020-01109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxias (SCAs) comprise a heterogeneous group of autosomal dominant disorders. The relative frequency of the different SCA subtypes varies broadly among different geographical and ethnic groups as result of genetic drifts. This review aims to provide an update regarding SCA founders in the American continents and the Caribbean as well as to discuss characteristics of these populations. Clusters of SCAs were detected in Eastern regions of Cuba for SCA2, in South Brazil for SCA3/MJD, and in Southeast regions of Mexico for SCA7. Prevalence rates were obtained and reached 154 (municipality of Báguano, Cuba), 166 (General Câmara, Brazil), and 423 (Tlaltetela, Mexico) patients/100,000 for SCA2, SCA3/MJD, and SCA7, respectively. In contrast, the scattered families with spinocerebellar ataxia type 10 (SCA10) reported all over North and South Americas have been associated to a common Native American ancestry that may have risen in East Asia and migrated to Americas 10,000 to 20,000 years ago. The comprehensive review showed that for each of these SCAs corresponded at least the development of one study group with a large production of scientific evidence often generalizable to all carriers of these conditions. Clusters of SCA populations in the American continents and the Caribbean provide unusual opportunity to gain insights into clinical and genetic characteristics of these disorders. Furthermore, the presence of large populations of patients living close to study centers can favor the development of meaningful clinical trials, which will impact on therapies and on quality of life of SCA carriers worldwide.
Collapse
Affiliation(s)
| | - Ana Carolina Martins
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91540-070, Brazil
| | - Jonathan J Magaña
- Department of Genetics, Laboratory of Genomic Medicine, National Rehabilitation Institute (INR-LGII), 14389, Mexico City, Mexico
| | - Yaimeé Vazquez-Mojena
- Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100, Holguín, Cuba
| | | | - Juan Fernandez-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Helio Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas Federal University of Paraná, Curitiba, PR, 80240-440, Brazil
| | | | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91540-070, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-903, Brazil
| | - César M Cerecedo-Zapata
- Department of Genetics, Laboratory of Genomic Medicine, National Rehabilitation Institute (INR-LGII), 14389, Mexico City, Mexico
- Rehabilitation and Social Inclusion Center of Veracruz (CRIS-DIF), Xalapa, 91070, Veracruz, Mexico
| | | | - Tetsuo Ashizawa
- Program of Neuroscience, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100, Holguín, Cuba.
- Cuban Academy of Sciences, 10100, La Havana, Cuba.
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91540-070, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
57
|
Sturchio A, Marsili L, Mahajan A, Grimberg MB, Kauffman MA, Espay AJ. How have advances in genetic technology modified movement disorder nosology? Eur J Neurol 2020; 27:1461-1470. [PMID: 32356310 DOI: 10.1111/ene.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
The role of genetics and its technological development have been fundamental in advancing the field of movement disorders, opening the door to precision medicine. Starting from the revolutionary discovery of the locus of the Huntington's disease gene, we review the milestones of genetic discoveries in movement disorders and their impact on clinical practice and research efforts. Before the 1980s, early techniques did not allow the identification of genetic alteration in complex diseases. Further advances increasingly defined a large number of pathogenic genetic alterations. Moreover, these techniques allowed epigenomic, transcriptomic and microbiome analyses. In the 2020s, these new technologies are poised to displace phenotype-based classifications towards a nosology based on genetic/biological data. Advances in genetic technologies are engineering a reversal of the phenotype-to-genotype order of nosology development, replacing convergent clinicopathological disease models with the genotypic divergence required for future precision medicine applications.
Collapse
Affiliation(s)
- A Sturchio
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - L Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - A Mahajan
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - M B Grimberg
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - M A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología 'José María Ramos Mejía' y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA and Programa de Medicina de Precision y Genomica Clinica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Pilar, Argentina
| | - A J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
58
|
Pourhaghighi R, Ash PEA, Phanse S, Goebels F, Hu LZM, Chen S, Zhang Y, Wierbowski SD, Boudeau S, Moutaoufik MT, Malty RH, Malolepsza E, Tsafou K, Nathan A, Cromar G, Guo H, Abdullatif AA, Apicco DJ, Becker LA, Gitler AD, Pulst SM, Youssef A, Hekman R, Havugimana PC, White CA, Blum BC, Ratti A, Bryant CD, Parkinson J, Lage K, Babu M, Yu H, Bader GD, Wolozin B, Emili A. BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst 2020; 10:333-350.e14. [PMID: 32325033 PMCID: PMC7938770 DOI: 10.1016/j.cels.2020.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
Collapse
Affiliation(s)
- Reza Pourhaghighi
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Regina, Regina, SK, Canada; Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Florian Goebels
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lucas Z M Hu
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Siwei Chen
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yingying Zhang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Shayne D Wierbowski
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | - Ramy H Malty
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Edyta Malolepsza
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Kalliopi Tsafou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Aparna Nathan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Graham Cromar
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Hongbo Guo
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ali Al Abdullatif
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Daniel J Apicco
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Ahmed Youssef
- Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA
| | - Carl A White
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS, Milan, Italy
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Gary D Bader
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Program in Neuroscience, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
59
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
60
|
Hashem V, Tiwari A, Bewick B, Teive HAG, Moscovich M, Schüele B, Bushara K, Bower M, Rasmussen A, Tsai YC, Clark T, McFarland K, Ashizawa T. Pulse-Field capillary electrophoresis of repeat-primed PCR amplicons for analysis of large repeats in Spinocerebellar Ataxia Type 10. PLoS One 2020; 15:e0228789. [PMID: 32160188 PMCID: PMC7065784 DOI: 10.1371/journal.pone.0228789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Large expansions of microsatellite DNA cause several neurological diseases. In Spinocerebellar ataxia type 10 (SCA10), the repeat interruptions change disease phenotype; an (ATTCC)n or a (ATCCT)n/(ATCCC)n interruption within the (ATTCT)n repeat is associated with the robust phenotype of ataxia and epilepsy while mostly pure (ATTCT)n may have reduced penetrance. Large repeat expansions of SCA10, and many other microsatellite expansions, can exceed 10,000 base pairs (bp) in size. Conventional next generation sequencing (NGS) technologies are ineffective in determining internal sequence contents or size of these expanded repeats. Using repeat primed PCR (RP-PCR) in conjunction with a high-sensitivity pulsed-field capillary electrophoresis fragment analyzer (FEMTO-Pulse, Agilent, Santa Clara, CA) (RP-FEMTO hereafter), we successfully determined sequence content of large expansion repeats in genomic DNA of SCA10 patients and transformed yeast artificial chromosomes containing SCA10 repeats. This RP-FEMTO is a simple and economical methodology which could complement emerging NGS for very long sequence reads such as Single Molecule, Real-Time (SMRT) and nanopore sequencing technologies.
Collapse
Affiliation(s)
- Vera Hashem
- Department of Neurology, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Anjana Tiwari
- Department of Neurology, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Brittani Bewick
- Department of Neurology, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Helio A. G. Teive
- Movement Disorders Unit, Neurology Service, Department of Internal Medicine, Hospital de Clinicas, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mariana Moscovich
- Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Birgitt Schüele
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical Center, Minneapolis, Minnesota, United States of America
| | - Matt Bower
- Institute of Human Genetics, University of Minnesota Medical Center, Minneapolis, Minnesota, United States of America
| | - Astrid Rasmussen
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, CDMX, Mexico
| | - Yu-Chih Tsai
- Pacific Biosciences of California, Inc, Menlo Park, California, United States of America
| | - Tyson Clark
- Pacific Biosciences of California, Inc, Menlo Park, California, United States of America
| | - Karen McFarland
- Department of Neurology and The McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, Texas, United States of America
| |
Collapse
|
61
|
Qi WH, Lu T, Zheng CL, Jiang XM, Jie H, Zhang XY, Yue BS, Zhao GJ. Distribution patterns of microsatellites and development of its marker in different genomic regions of forest musk deer genome based on high throughput sequencing. Aging (Albany NY) 2020; 12:4445-4462. [PMID: 32155132 PMCID: PMC7093171 DOI: 10.18632/aging.102895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/25/2020] [Indexed: 01/21/2023]
Abstract
Forest musk deer (Moschus berezovskii, FMD) is an endangered artiodactyl species, male FMD produce musk. We have sequenced the whole genome of FMD, completed the genomic assembly and annotation, and performed bioinformatic analyses. Our results showed that microsatellites (SSRs) displayed nonrandomly distribution in genomic regions, and SSR abundances were much higher in the intronic and intergenic regions compared to other genomic regions. Tri- and hexanucleotide perfect (P) SSRs predominated in coding regions (CDSs), whereas, tetra- and pentanucleotide P-SSRs were less abundant. Trifold P-SSRs had more GC-contents in the 5′-untranslated regions (5'UTRs) and CDSs than other genomic regions, whereas mononucleotide P-SSRs had the least GC-contents. The repeat copy numbers (RCN) of the same mono- to hexanucleotide P-SSRs had different distributions in different genomic regions. The RCN of trinucleotide P-SSRs had increased significantly in the CDSs compared to the transposable elements (TEs), intronic and intergenic regions. The analysis of coefficient of variability (CV) of P-SSRs showed that the RCN of mononucleotide P-SSRs had relative higher variation in different genomic regions, followed by the CV pattern of RCN: dinucleotide P-SSRs > trinucleotide P-SSRs > tetranucleotide P-SSRs > pentanucleotide P-SSRs > hexanucleotide P-SSRs. The CV variations of RCN of the same mono- to hexanucleotide P-SSRs were relative higher in the intron and intergenic regions, followed by that in the TEs, and the relative lower was in the 5'UTR, CDSs and 3'UTRs. 58 novel polymorphic SSR loci were detected based on genotyping DNA from 36 captive FMD and 22 SSR markers finally showed polymorphism, stability, and repetition.
Collapse
Affiliation(s)
- Wen-Hua Qi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Three Gorges Reservoir Famous-region Drug, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, P. R. China.,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Ting Lu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Cheng-Li Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611830, P. R. China
| | - Xue-Mei Jiang
- College of Environmental and Chemistry Engineering, Chongqing Three Gorges University, Chongqing 404120, P. R. China
| | - Hang Jie
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, P. R. China
| | - Xiu-Yue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Gui-Jun Zhao
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, P. R. China
| |
Collapse
|
62
|
Rosini F, Pretegiani E, Battisti C, Dotti MT, Federico A, Rufa A. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci 2020; 41:1719-1734. [PMID: 32130555 DOI: 10.1007/s10072-020-04318-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Oculomotor abnormalities are common findings in spinocerebellar ataxias (SCAs), a clinically heterogeneous group of neurodegenerative disorders with an autosomal dominant pattern of inheritance. Usually, cerebellar impairment accounts for most of the eye movement changes encountered; as the disease progresses, the involvement of extracerebellar structures typically seen in later stages may modify the oculomotor progression. However, ocular movement changes are rarely specific. In this regard, some important exceptions include the prominent slowing of horizontal eye movements in SCA2 and, to a lesser extent, in SCA3, SCA4, and SCA28, or the executive deficit in SCA2 and SCA17. Here, we report the eye movement abnormalities and neurological pictures of SCAs through a review of the literature. Genetic and neuropathological/neuroimaging aspects are also briefly discussed. Overall, the findings reported indicate that oculomotor analysis could be of help in differential diagnosis among SCAs and contribute to clarify the role of brain structures, particularly the cerebellum, in oculomotor control.
Collapse
Affiliation(s)
- Francesca Rosini
- Department of Medicine Surgery and Neuroscience, Eye Tracking& Visual Application Lab EVALAB, Neurology and Neurometabolic Unit, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Elena Pretegiani
- Department of Medicine Surgery and Neuroscience, Eye Tracking& Visual Application Lab EVALAB, Neurology and Neurometabolic Unit, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine Surgery and Neuroscience, Eye Tracking& Visual Application Lab EVALAB, Neurology and Neurometabolic Unit, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy.
| |
Collapse
|
63
|
Clinical and Genetic Evaluation of Spinocerebellar Ataxia Type 10 in 16 Brazilian Families. THE CEREBELLUM 2020; 18:849-854. [PMID: 31377949 DOI: 10.1007/s12311-019-01064-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant disorder in which patients have a slowly progressive cerebellar ataxia, with dysarthria, dysphagia, and epilepsy. The aims of this study were to characterize the phenotypic expression of SCA10 and to examine its genotype-phenotype relationships. Ninety-one Brazilian patients with SCA10 from 16 families were selected. Clinical and epidemiological data were assessed by a standardized protocol, and severity of disease was measured by the Scale for the Assessment and Rating of Ataxia (SARA). The mean age of onset of symptoms was 34.8 ± 9.4 years. Sixty-two (68.2%) patients presented exclusively with pure cerebellar ataxia. Only 6 (6.6%) of the patients presented with epilepsy. Patients with epilepsy had a mean age of onset of symptoms lower than that of patients without epilepsy (23.5 ± 15.5 years vs 35.4 ± 8.7 years, p = 0.021, respectively). All cases of intention tremor were in women from one family. This family also had the lowest mean age of onset of symptoms, and a higher percentage of SCA10 cases in women. There was a positive correlation between duration of disease and severity of ataxia (rho = 0.272, p = 0.016), as quantified by SARA. We did not find a statistically significant correlation between age of onset of symptoms and expansion size (r = - 0.163, p = 0.185). The most common clinical presentation of SCA10 was pure cerebellar ataxia. Our data suggest that patients with epilepsy may have a lower age of onset of symptoms than those who do not have epilepsy. These findings and the description of a family with intention tremor in women with earlier onset of symptoms draw further attention to the phenotypic variability of SCA10.
Collapse
|
64
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
65
|
Chiara M, Zambelli F, Picardi E, Horner DS, Pesole G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief Bioinform 2019; 21:1971-1986. [DOI: 10.1093/bib/bbz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023] Open
Abstract
Abstract
A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
66
|
Goel D, Suroliya V, Shamim U, Mathur A, Faruq M. Spinocerebellar ataxia type 10 (SCA10): Mutation analysis and common haplotype based inference suggest its rarity in Indian population. eNeurologicalSci 2019; 17:100211. [PMID: 31737797 PMCID: PMC6849144 DOI: 10.1016/j.ensci.2019.100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 12/02/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant cerebellar ataxia caused by nucleotide ATTCT expansion in ATXN10 gene. SCA10 has been reported in patients of cerebellar ataxia from Amerindian/Latin America and in East Asian ancestry. A common founder has been ascribed to the origin of ATTCT repeat expansion mutation in both the population. Here we present our investigation of the SCA10 pentanucleotide repeat expansion in 461 SCA patients of the Indian population. The analysis of multi-ethnic at-risk haplotype C-(ATTCT)n-GGC was performed using genotype data of various ethnic population included in the 1000 Genomes Project (KGP) to infer the prevalence of at-risk haplotype in the Indian populations. Unsurprisingly, none of the patient's DNA samples with (ATTCT)n expansion was observed in pathological range, however, the observed normal range of (ATTCT)n was 8-22 repeats, suggesting very rare or absence of the occurrence of SCA10 in Indian SCA patients. The at-risk haplotype, CGGC was found to be the most prevalent haplotype across different populations and no segregation of CGGC haplotype with large normal or small normal ATTCT repeats length was observed. However, on extended haplotype analysis, some lineage of CGGC with a flanking divergence at 5' end was observed specifically in the American or East Asian population but not in other population in KGP dataset. Together, these evidence points towards the absence of SCA10 in Indian population and haplotype-based analysis also suggests its occurrence to be rare in South Asian, European and African population. Further investigations are required to establish the present finding. SIGNIFICANCE The implications of the findings of this study are 1.) For the diagnostic work-up of SCAs in the Indian population and to decide upon inclusion of SCA10 in panel based genetic investigations even for Indians living abroad. 2.) The haplotype based inference of its presumptive prevalence through the estimation of at-risk haplotype using population genetics approach (South-Asians as the background) allowed us to estimate the possible absence of SCA10 in Indian population. SCA10 is a rare autosomal dominant cerebellar ataxia mostly reported among SCA patients from Latin America and recently described in East Asia population. The genetic study of SCA10 performed in the unrelated Indian spinocerebellar ataxia patients with heterogeneous ethnicity confirmed its absence from the Indian population and that conforms to population genetic based inference of its rarity or absence. 3.) This approach may be adopted for the screening of other subtypes of SCAs, i.e. other rare SCAs e.g. SCA31, SCA36, and SCA37.
Collapse
Affiliation(s)
- Divya Goel
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi, 110007, India
- National Institute of Pharmaceutical Education and Research, Guwahati, C/O NITES Institute of Technology and Science, NH-37, Shantipur, Mirza, Assam, 781125, India
| | - Varun Suroliya
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi, 110007, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi, 110007, India
| | - Aradhna Mathur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi, 110007, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi, 110007, India
| |
Collapse
|
67
|
Nascimento FA, Rodrigues VO, Pelloso FC, Camargo CHF, Moro A, Raskin S, Ashizawa T, Teive HAG. Spinocerebellar ataxias in Southern Brazil: Genotypic and phenotypic evaluation of 213 families. Clin Neurol Neurosurg 2019; 184:105427. [DOI: 10.1016/j.clineuro.2019.105427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/01/2022]
|
68
|
Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord 2019; 66:182-188. [DOI: 10.1016/j.parkreldis.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
|
69
|
Véliz-Otani D, Inca-Martinez M, Bampi GB, Ortega O, Jardim LB, Saraiva-Pereira ML, Mazzetti P, Cornejo-Olivas M. ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. THE CEREBELLUM 2019; 18:841-848. [DOI: 10.1007/s12311-019-01057-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
71
|
Sznajder ŁJ, Swanson MS. Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20133365. [PMID: 31323950 PMCID: PMC6651174 DOI: 10.3390/ijms20133365] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK (DM1) and CNBP (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUGexp, CCUGexp) RNAs, respectively. These CUGexp and CCUGexp RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.
Collapse
Affiliation(s)
- Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
72
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|
73
|
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative ataxic disorders with autosomal dominant inheritance. We aim to provide an update on the recent clinical and scientific progresses in SCA where numerous novel genes have been identified with next-generation sequencing techniques. The main disease mechanisms of these SCAs include toxic RNA gain-of-function, mitochondrial dysfunction, channelopathies, autophagy and transcription dysregulation. Recent studies have also demonstrated the importance of DNA repair pathways in modifying SCA with CAG expansions. In addition, we summarise the latest technological advances in detecting known and novel repeat expansion in SCA. Finally, we discuss the roles of antisense oligonucleotides and RNA-based therapy as potential treatments.
Collapse
|
74
|
Pilotto F, Saxena S. Epidemiology of inherited cerebellar ataxias and challenges in clinical research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18785258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Moro A, Munhoz RP, Moscovich M, Arruda WO, Raskin S, Silveira-Moriyama L, Ashizawa T, Teive HAG. Nonmotor Symptoms in Patients with Spinocerebellar Ataxia Type 10. THE CEREBELLUM 2018; 16:938-944. [PMID: 28589261 DOI: 10.1007/s12311-017-0869-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nonmotor symptoms (NMS) have been described in several neurodegenerative diseases but have not been systematically evaluated in spinocerebellar ataxia type 10 (SCA10). The objective of the study is to compare the frequency of NMS in patients with SCA10, Machado-Joseph disease (MJD), and healthy controls. Twenty-eight SCA10, 28 MJD, and 28 healthy subjects were prospectively assessed using validated screening tools for chronic pain, autonomic symptoms, fatigue, sleep disturbances, psychiatric disorders, and cognitive function. Chronic pain was present with similar prevalence among SCA10 patients and healthy controls but was more frequent in MJD. Similarly, autonomic symptoms were found in SCA10 in the same proportion of healthy individuals, while the MJD group had higher frequencies. Restless legs syndrome and REM sleep behavior disorder were uncommon in SCA10. The mean scores of excessive daytime sleepiness were worse in the SCA10 group. Scores of fatigue were higher in the SCA10 sample compared to healthy individuals, but better than in the MJD. Psychiatric disorders were generally more prevalent in both spinocerebellar ataxias than among healthy controls. The cognitive performance of healthy controls was better compared with SCA10 patients and MJD, which showed the worst scores. Although NMS were present among SCA10 patients in a higher proportion compared to healthy controls, they were more frequent and severe in MJD. In spite of these comparisons, we were able to identify NMS with significant functional impact in patients with SCA10, indicating the need for their systematic screening aiming at optimal treatment and improvement in quality of life.
Collapse
Affiliation(s)
- Adriana Moro
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, General Carneiro, 181, Curitiba, PR, 80060-900, Brazil.
| | - Renato P Munhoz
- Department of Medicine, Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Mariana Moscovich
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, General Carneiro, 181, Curitiba, PR, 80060-900, Brazil
| | - Walter O Arruda
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, General Carneiro, 181, Curitiba, PR, 80060-900, Brazil
| | - Salmo Raskin
- Advanced Molecular Research Center, Center for Biological and Health Sciences, PUC, Curitiba, PR, Brazil
| | | | | | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, General Carneiro, 181, Curitiba, PR, 80060-900, Brazil
| |
Collapse
|
76
|
London E, Camargo CHF, Zanatta A, Crippa AC, Raskin S, Munhoz RP, Ashizawa T, Teive HAG. Sleep disorders in spinocerebellar ataxia type 10. J Sleep Res 2018; 27:e12688. [PMID: 29624773 DOI: 10.1111/jsr.12688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/20/2018] [Indexed: 11/29/2022]
Abstract
As sleep disturbances have been reported in spinocerebellar ataxias (SCAs), including types SCA1, SCA2, SCA3, SCA6 and SCA13, identification and management of these disturbances can help minimise their impact on SCA patients' overall body functions and quality of life. To our knowledge, there are no studies that investigate sleep disturbances in SCA10. Therefore, the aim of this study was to assess sleep disturbances in patients with SCA10. Twenty-three SCA10 patients and 23 healthy controls were recruited. Patients were evaluated in terms of their demographic and clinical data, including disease severity (Scale for the Assessment and Rating of Ataxia, SARA) and excessive daytime sleepiness (Epworth Sleepiness Scale, ESS), and underwent polysomnography. SCA10 patients had longer rapid eye movement (REM) sleep (p = .04) and more REM arousals than controls (p< .0001). There was a correlation of REM sleep onset with the age of onset of symptoms (r = .459), and with disease duration (r = -.4305). There also was correlation between the respiratory disturbance index (RDI) and SARA (r = -.4013), and a strong indirect correlation between arousal index and age at onset of symptoms (r = -.5756). In conclusion, SCA10 patients had sleep abnormalities that included more REM arousals and higher RDI than controls. Our SCA10 patients had sleep disorders related to shorter disease duration and lower severity of ataxia, in a pattern similar to that of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ester London
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Carlos H F Camargo
- Neurology Service, Hospital Universitário, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Alessandra Zanatta
- Polysomnography Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Ana C Crippa
- Polysomnography Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Salmo Raskin
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, Toronto University, Toronto, ON, Canada
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Methodist Hospital Research Institute, Houston, TX, USA
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
77
|
Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 2018; 115:4234-4239. [PMID: 29610297 DOI: 10.1073/pnas.1716617115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.
Collapse
|
78
|
Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 2018; 50:581-590. [PMID: 29507423 DOI: 10.1038/s41588-018-0067-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.
Collapse
|
79
|
Zeitlberger A, Ging H, Nethisinghe S, Giunti P. Advances in the understanding of hereditary ataxia – implications for future patients. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1444477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anna Zeitlberger
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Heather Ging
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Suran Nethisinghe
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
80
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
81
|
Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett 2018; 688:49-57. [PMID: 29421540 DOI: 10.1016/j.neulet.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The genetically heterozygous spinocerebellar ataxias are all characterized by cerebellar atrophy and pervasive Purkinje Cell degeneration. Up to date, more than 35 functionally diverse spinocerebellar ataxia genes have been identified. The main question that remains yet unsolved is why do some many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? To address this question it is important to identify intrinsic pathways important for Purkinje Cell function and survival. In this review, we discuss the current consensus on shared mechanisms underlying the pervasive Purkinje Cell loss in spinocerebellar ataxia. Additionally, using recently published cell type specific expression data, we identified several Purkinje Cell-specific genes and discuss how the corresponding pathways might underlie the vulnerability of Purkinje Cells in response to the diverse genetic insults causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Miaozhen Huang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
82
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
83
|
|
84
|
Abstract
More than 40 diseases, most of which primarily affect the nervous system, are caused by expansions of simple sequence repeats dispersed throughout the human genome. Expanded trinucleotide repeat diseases were discovered first and remain the most frequent. More recently tetra-, penta-, hexa-, and even dodeca-nucleotide repeat expansions have been identified as the cause of human disease, including some of the most common genetic disorders seen by neurologists. Repeat expansion diseases include both causes of myotonic dystrophy (DM1 and DM2), the most common genetic cause of amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72), Huntington disease, and eight other polyglutamine disorders, including the most common forms of dominantly inherited ataxia, the most common recessive ataxia (Friedreich ataxia), and the most common heritable mental retardation (fragile X syndrome). Here I review distinctive features of this group of diseases that stem from the unusual, dynamic nature of the underlying mutations. These features include marked clinical heterogeneity and the phenomenon of clinical anticipation. I then discuss the diverse molecular mechanisms driving disease pathogenesis, which vary depending on the repeat sequence, size, and location within the disease gene, and whether the repeat is translated into protein. I conclude with a brief clinical and genetic description of individual repeat expansion diseases that are most relevant to neurologists.
Collapse
Affiliation(s)
- Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
85
|
Palumbo P, Accadia M, Leone MP, Palladino T, Stallone R, Carella M, Palumbo O. Clinical and molecular characterization of an emerging chromosome 22q13.31 microdeletion syndrome. Am J Med Genet A 2017; 176:391-398. [PMID: 29193617 DOI: 10.1002/ajmg.a.38559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/05/2022]
Abstract
Microdeletion of chromosome 22q13.31 is a very rare condition. Fourteen patients have been annotated in public databases but, to date, a clinical comparison has not been done and, consequently, a specific phenotype has not been delineated yet. We describe a patient showing neurodevelopmental disorders, dysmorphic features, and multiple congenital anomalies in which SNP array analysis revealed an interstitial 3.15 Mb de novo microdeletion in the 22q13.31 region encompassing 21 RefSeq genes and seven non-coding microRNAs. To perform an accurate phenotype characterization, clinical features observed in previously reported cases of 22q13.31 microdeletions were reviewed and compared to those observed in our patient. To the best of our knowledge, this is the first time that a comparison between patients carrying overlapping 22q13.31 deletions has been done. This comparison allowed us to identify a distinct spectrum of clinical manifestations suggesting that patients with a de novo interstitial microdeletion involving 22q13.31 have an emerging syndrome characterized by developmental delay/intellectual disability, speech delay/language disorders, behavioral problems, hypotonia, urogenital, and hands/feet anomalies. The microdeletion identified in our patient is the smallest reported so far and, for this reason, useful to perform a detailed genotype-phenotype correlation. In particular, we propose the CELSR1, ATXN10, FBLN1, and UPK3A as candidate genes in the onset of the main clinical features of this contiguous gene syndrome. Thus, the patient reported here broadens our knowledge of the phenotypic consequences of 22q13.31 microdeletions facilitating genotype-phenotype correlations. Additional cases are needed to corroborate our hypothesis and confirm genotype-phenotype correlations of this emerging syndrome.
Collapse
Affiliation(s)
- Pietro Palumbo
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy
| | - Maria Accadia
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy.,Medical Genetics Service, Hospital "Cardinale G. Panico," Via San Pio X n°4, Tricase, Italy
| | - Maria P Leone
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy.,Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro,", Bari, Italy
| | - Teresa Palladino
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy
| | - Raffaella Stallone
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy
| | - Massimo Carella
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy
| | - Orazio Palumbo
- Divisionof Medical Genetics, Poliambulatorio "Giovanni Paolo II," IRCCSCasa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo FG, Italy
| |
Collapse
|
86
|
Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:2027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
Affiliation(s)
- April L. Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
87
|
Tian J, Shi Y, Nai S, Geng Q, Zhang L, Wei GH, Xu X, Li J. Ataxin-10 is involved in Golgi membrane dynamics. J Genet Genomics 2017; 44:549-552. [PMID: 29169923 DOI: 10.1016/j.jgg.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Tian
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yingxin Shi
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shanshan Nai
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China; Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen 518060, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
88
|
Bampi GB, Bisso-Machado R, Hünemeier T, Gheno TC, Furtado GV, Veliz-Otani D, Cornejo-Olivas M, Mazzeti P, Bortolini MC, Jardim LB, Saraiva-Pereira ML. Haplotype Study in SCA10 Families Provides Further Evidence for a Common Ancestral Origin of the Mutation. Neuromolecular Med 2017; 19:501-509. [PMID: 28905220 DOI: 10.1007/s12017-017-8464-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder characterized by progressive cerebellar ataxia and epilepsy. The disease is caused by a pentanucleotide ATTCT expansion in intron 9 of the ATXN10 gene on chromosome 22q13.3. SCA10 has shown a geographical distribution throughout America with a likely degree of Amerindian ancestry from different countries so far. Currently available data suggest that SCA10 mutation might have spread out early during the peopling of the Americas. However, the ancestral origin of SCA10 mutation remains under speculation. Samples of SCA10 patients from two Latin American countries were analysed, being 16 families from Brazil (29 patients) and 21 families from Peru (27 patients) as well as 49 healthy individuals from Indigenous Quechua population and 51 healthy Brazilian individuals. Four polymorphic markers spanning a region of 5.2 cM harbouring the ATTCT expansion were used to define the haplotypes, which were genotyped by different approaches. Our data have shown that 19-CGGC-14 shared haplotype was found in 47% of Brazilian and in 63% of Peruvian families. Frequencies from both groups are not statistically different from Quechua controls (57%), but they are statistically different from Brazilian controls (12%) (p < 0.001). The most frequent expanded haplotype in Quechuas, 19-15-CGGC-14-10, is found in 50% of Brazilian and in 65% of Peruvian patients with SCA10. These findings bring valuable evidence that ATTCT expansion may have arisen in a Native American chromosome.
Collapse
Affiliation(s)
- Giovana B Bampi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Bisso-Machado
- Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Tailise C Gheno
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel V Furtado
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego Veliz-Otani
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Pillar Mazzeti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | | | - Laura B Jardim
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil. .,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | |
Collapse
|
89
|
Schüle B, McFarland KN, Lee K, Tsai YC, Nguyen KD, Sun C, Liu M, Byrne C, Gopi R, Huang N, Langston JW, Clark T, Gil FJJ, Ashizawa T. Parkinson's disease associated with pure ATXN10 repeat expansion. NPJ PARKINSONS DISEASE 2017; 3:27. [PMID: 28890930 PMCID: PMC5585403 DOI: 10.1038/s41531-017-0029-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022]
Abstract
Large, non-coding pentanucleotide repeat expansions of ATTCT in intron 9 of the ATXN10 gene typically cause progressive spinocerebellar ataxia with or without seizures and present neuropathologically with Purkinje cell loss resulting in symmetrical cerebellar atrophy. These ATXN10 repeat expansions can be interrupted by sequence motifs which have been attributed to seizures and are likely to act as genetic modifiers. We identified a Mexican kindred with multiple affected family members with ATXN10 expansions. Four affected family members showed clinical features of spinocerebellar ataxia type 10 (SCA10). However, one affected individual presented with early-onset levodopa-responsive parkinsonism, and one family member carried a large repeat ATXN10 expansion, but was clinically unaffected. To characterize the ATXN10 repeat, we used a novel technology of single-molecule real-time (SMRT) sequencing and CRISPR/Cas9-based capture. We sequenced the entire span of ~5.3-7.0 kb repeat expansions. The Parkinson's patient carried an ATXN10 expansion with no repeat interruption motifs as well as an unaffected sister. In the siblings with typical SCA10, we found a repeat pattern of ATTCC repeat motifs that have not been associated with seizures previously. Our data suggest that the absence of repeat interruptions is likely a genetic modifier for the clinical presentation of l-Dopa responsive parkinsonism, whereas repeat interruption motifs contribute clinically to epilepsy. Repeat interruptions are important genetic modifiers of the clinical phenotype in SCA10. Advanced sequencing techniques now allow to better characterize the underlying genetic architecture for determining accurate phenotype-genotype correlations.
Collapse
Affiliation(s)
- Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease and The McKnight Brain Institute, University of Florida, College of Medicine, Department of Neurology, Gainesville, FL 32610 USA
| | - Kelsey Lee
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | | | | | - Chao Sun
- Biogen Idec, Cambridge, MA 02142 USA
| | - Mei Liu
- Biogen Idec, Cambridge, MA 02142 USA
| | - Christie Byrne
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | - Ramesh Gopi
- Silicon Valley Diagnostic Imaging, El Camino Hospital, Mountain View, CA 94040 USA
| | - Neng Huang
- Valley Parkinson Clinic, Los Gatos, CA 95032 USA
| | | | - Tyson Clark
- Pacific Biosciences, Menlo Park, CA 94025 USA
| | | | | |
Collapse
|
90
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
91
|
Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H, Chaim IA, Thomas JD, Zhang N, Nguyen V, Aigner S, Markmiller S, Xia G, Corbett KD, Swanson MS, Yeo GW. Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9. Cell 2017; 170:899-912.e10. [PMID: 28803727 DOI: 10.1016/j.cell.2017.07.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - David A Nelles
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elaine Pirie
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ryan J Marina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Harrison Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Isaac A Chaim
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Nigel Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Vu Nguyen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Guangbin Xia
- Department of Neurology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Chemistry, University of California, San Diego, La Jolla, CA, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
92
|
Spina Tensini F, Sato MT, Shiokawa N, Ashizawa T, Teive HAG. A Comparative Optical Coherence Tomography Study of Spinocerebellar Ataxia Types 3 and 10. CEREBELLUM (LONDON, ENGLAND) 2017; 16:797-801. [PMID: 28401494 PMCID: PMC6996148 DOI: 10.1007/s12311-017-0856-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SCA3 presents with a CAG expansion at 14q24.3-q32 while SCA10 shows an ATTCT expansion at 22q13-qter. SCA10 seems to be less aggressive than SCA3. For an in vivo, noninvasive approach of the correlation between central nervous system and clinical evolution, we can use optic coherence tomography (OCT) to measure retinal nerve fiber (RNFL) and ganglion cell layer (GCL) thickness. To describe OCT findings in SCA10, correlate it with expansion size and disease severity and compare with those of SCA3. We analyzed ten individuals with SCA3 and nine with SCA10 recruited from the neurology service of Hospital de Clínicas of Paraná-Brazil. They were submitted to OCT and clinical evaluation using SARA score. Expansion size, demographic data, time from disease onset, and age of onset were collected. We found no correlation between size of expansion, SARA, and RNFL or GCL thickness in SCA10. RNFL seemed to be thicker in SCA10 (p > 0.05). GCL thickness, SARA, median age, and time from disease onset did not differ between groups. SCA10 individuals had an earlier disease onset. In SCA3, there was a negative correlation between SARA and RNFL thickness in nasal area. To the best of our knowledge, this is the first paper assessing retinal changes by OCT in individuals with SCA10. The lack of correlation between disease progression, age, and time since onset supports the anatomopathological findings which suggest SCA10 is less aggressive than other SCAs. The findings in SCA3 are in accordance with the literature.
Collapse
Affiliation(s)
- Fernando Spina Tensini
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua Treze de Maio, 200, apto 103, Centro, Curitiba, PR, CEP 80020-270, Brazil.
| | - Mario T Sato
- Neuro-Ophthalmology and Ocular Electrophysiology Sector, Vision Center, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Tetsuo Ashizawa
- Neuroscience Research Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua Treze de Maio, 200, apto 103, Centro, Curitiba, PR, CEP 80020-270, Brazil
| |
Collapse
|
93
|
Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, Loureiro JL, Dhingra A, Brandão E, Cruz VT, Timóteo A, Quintáns B, Rouleau GA, Rizzu P, Carracedo Á, Bessa J, Heutink P, Sequeiros J, Sobrido MJ, Coutinho P, Silveira I. A Pentanucleotide ATTTC Repeat Insertion in the Non-coding Region of DAB1, Mapping to SCA37, Causes Spinocerebellar Ataxia. Am J Hum Genet 2017; 101:87-103. [PMID: 28686858 DOI: 10.1016/j.ajhg.2017.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
Advances in human genetics in recent years have largely been driven by next-generation sequencing (NGS); however, the discovery of disease-related gene mutations has been biased toward the exome because the large and very repetitive regions that characterize the non-coding genome remain difficult to reach by that technology. For autosomal-dominant spinocerebellar ataxias (SCAs), 28 genes have been identified, but only five SCAs originate from non-coding mutations. Over half of SCA-affected families, however, remain without a genetic diagnosis. We used genome-wide linkage analysis, NGS, and repeat analysis to identify an (ATTTC)n insertion in a polymorphic ATTTT repeat in DAB1 in chromosomal region 1p32.2 as the cause of autosomal-dominant SCA; this region has been previously linked to SCA37. The non-pathogenic and pathogenic alleles have the configurations [(ATTTT)7-400] and [(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90], respectively. (ATTTC)n insertions are present on a distinct haplotype and show an inverse correlation between size and age of onset. In the DAB1-oriented strand, (ATTTC)n is located in 5' UTR introns of cerebellar-specific transcripts arising mostly during human fetal brain development from the usage of alternative promoters, but it is maintained in the adult cerebellum. Overexpression of the transfected (ATTTC)58 insertion, but not (ATTTT)n, leads to abnormal nuclear RNA accumulation. Zebrafish embryos injected with RNA of the (AUUUC)58 insertion, but not (AUUUU)n, showed lethal developmental malformations. Together, these results establish an unstable repeat insertion in DAB1 as a cause of cerebellar degeneration; on the basis of the genetic and phenotypic evidence, we propose this mutation as the molecular basis for SCA37.
Collapse
|
94
|
Gheno TC, Furtado GV, Saute JAM, Donis KC, Fontanari AMV, Emmel VE, Pedroso JL, Barsottini O, Godeiro-Junior C, van der Linden H, Ternes Pereira E, Cintra VP, Marques W, de Castilhos RM, Alonso I, Sequeiros J, Cornejo-Olivas M, Mazzetti P, Leotti VB, Jardim LB, Saraiva-Pereira ML. Spinocerebellar ataxia type 10: common haplotype and disease progression rate in Peru and Brazil. Eur J Neurol 2017; 24:892-e36. [DOI: 10.1111/ene.13281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 02/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- T. C. Gheno
- Laboratório de Identificação Genética; Centro de Pesquisa Experimental - HCPA; Porto Alegre Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular; UFRGS; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
| | - G. V. Furtado
- Laboratório de Identificação Genética; Centro de Pesquisa Experimental - HCPA; Porto Alegre Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular; UFRGS; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
- Instituto de Genética Médica Populacional; INAGEMP; Porto Alegre Brazil
| | | | - K. C. Donis
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
| | - A. M. V. Fontanari
- Laboratório de Identificação Genética; Centro de Pesquisa Experimental - HCPA; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
| | - V. E. Emmel
- Laboratório de Identificação Genética; Centro de Pesquisa Experimental - HCPA; Porto Alegre Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular; UFRGS; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
| | - J. L. Pedroso
- Departamento de Neurologia; Divisão de Neurologia Geral e Unidade de Ataxia; Universidade Federal de São Paulo; São Paulo Brazil
| | - O. Barsottini
- Departamento de Neurologia; Divisão de Neurologia Geral e Unidade de Ataxia; Universidade Federal de São Paulo; São Paulo Brazil
| | | | | | | | - V. P. Cintra
- Universidade de São Paulo; Ribeirão Preto Brazil
| | - W. Marques
- Universidade de São Paulo; Ribeirão Preto Brazil
| | - R. M. de Castilhos
- Programa de Pós-Graduação em Genética e Biologia Molecular; UFRGS; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
- Instituto de Genética Médica Populacional; INAGEMP; Porto Alegre Brazil
| | - I. Alonso
- UnIGENe; Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - J. Sequeiros
- UnIGENe; Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - M. Cornejo-Olivas
- Neurogenetics Research Center; Instituto Nacional de Ciencias Neurologicas; Lima Peru
| | - P. Mazzetti
- Neurogenetics Research Center; Instituto Nacional de Ciencias Neurologicas; Lima Peru
| | - V. B. Leotti
- Departamento de Estatística; UFRGS; Porto Alegre Brazil
| | - L. B. Jardim
- Laboratório de Identificação Genética; Centro de Pesquisa Experimental - HCPA; Porto Alegre Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular; UFRGS; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
- Instituto de Genética Médica Populacional; INAGEMP; Porto Alegre Brazil
- Departamento de Medicina Interna; UFRGS; Porto Alegre Brazil
| | - M. L. Saraiva-Pereira
- Laboratório de Identificação Genética; Centro de Pesquisa Experimental - HCPA; Porto Alegre Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular; UFRGS; Porto Alegre Brazil
- Serviço de Genética Médica; HCPA; Porto Alegre Brazil
- Instituto de Genética Médica Populacional; INAGEMP; Porto Alegre Brazil
- Departamento de Bioquímica; UFRGS; Porto Alegre Brazil
| | | |
Collapse
|
95
|
Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, Maruyama H, Kawakami H, Matsumoto M. First report of a Japanese family with spinocerebellar ataxia type 10: The second report from Asia after a report from China. PLoS One 2017; 12:e0177955. [PMID: 28542277 PMCID: PMC5438172 DOI: 10.1371/journal.pone.0177955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant cerebellar ataxia that is variably accompanied by epilepsy and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. Until now, SCA10 was almost exclusively found in the American continents, while no cases had been identified in Japan. Here, we report the first case of an SCA10 family from Japan. The clinical manifestations in our cases were cerebellar ataxia accompanied by epilepsy, hyperreflexia and cognitive impairment. Although the primary pathology in SCA10 in humans is reportedly the loss of Purkinje cells, brain MRI revealed frontal lobe atrophy with white matter lesions. This pathology might be associated with cognitive dysfunction, indicating that the pathological process is not limited to the cerebellum. Examination of the SNPs surrounding the SCA10 locus in the proband showed the “C-expansion-G-G-C” haplotype, which is consistent with previously reported SCA10-positive individuals. This result was consistent with the findings that the SCA10 mutation may have occurred before the migration of Amerindians from East Asia to North America and the subsequent spread of their descendants throughout North and South America.
Collapse
Affiliation(s)
- Hiroyuki Naito
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Kagawa University School of Medicine, Kagawa, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Japan Community Health care Organization, Hoshigaoka Medical Center, Osaka, Japan
| |
Collapse
|
96
|
Morriss GR, Cooper TA. Protein sequestration as a normal function of long noncoding RNAs and a pathogenic mechanism of RNAs containing nucleotide repeat expansions. Hum Genet 2017; 136:1247-1263. [PMID: 28484853 DOI: 10.1007/s00439-017-1807-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
An emerging class of long noncoding RNAs (lncRNAs) function as decoy molecules that bind and sequester proteins thereby inhibiting their normal functions. Titration of proteins by lncRNAs has wide-ranging effects affecting nearly all steps in gene expression. While decoy lncRNAs play a role in normal physiology, RNAs expressed from alleles containing nucleotide repeat expansions can be pathogenic due to protein sequestration resulting in disruption of normal functions. This review focuses on commonalities between decoy lncRNAs that regulate gene expression by competitive inhibition of protein function through sequestration and specific examples of nucleotide repeat expansion disorders mediated by toxic RNA that sequesters RNA-binding proteins and impedes their normal functions. Understanding how noncoding RNAs compete with various RNA and DNA molecules for binding of regulatory proteins will provide insight into how similar mechanisms contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Ginny R Morriss
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
97
|
Landrian I, McFarland KN, Liu J, Mulligan CJ, Rasmussen A, Ashizawa T. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions. PLoS One 2017; 12:e0175958. [PMID: 28423040 PMCID: PMC5397023 DOI: 10.1371/journal.pone.0175958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/03/2017] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5’-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3’-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5’-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5’-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.
Collapse
Affiliation(s)
- Ivette Landrian
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Karen N. McFarland
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Center for Translational Research in Neurodegenerative Disease, The University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Jilin Liu
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Connie J. Mulligan
- Department of Anthropology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
98
|
Gadaleta MC, Noguchi E. Regulation of DNA Replication through Natural Impediments in the Eukaryotic Genome. Genes (Basel) 2017; 8:genes8030098. [PMID: 28272375 PMCID: PMC5368702 DOI: 10.3390/genes8030098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
All living organisms need to duplicate their genetic information while protecting it from unwanted mutations, which can lead to genetic disorders and cancer development. Inaccuracies during DNA replication are the major cause of genomic instability, as replication forks are prone to stalling and collapse, resulting in DNA damage. The presence of exogenous DNA damaging agents as well as endogenous difficult-to-replicate DNA regions containing DNA–protein complexes, repetitive DNA, secondary DNA structures, or transcribing RNA polymerases, increases the risk of genomic instability and thus threatens cell survival. Therefore, understanding the cellular mechanisms required to preserve the genetic information during S phase is of paramount importance. In this review, we will discuss our current understanding of how cells cope with these natural impediments in order to prevent DNA damage and genomic instability during DNA replication.
Collapse
Affiliation(s)
- Mariana C Gadaleta
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
99
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
100
|
Abstract
Background Cognitive and psychiatric dysfunction has been described in several
neurodegenerative diseases but has not been systematically evaluated in
spinocerebellar ataxia type 10 (SCA10). Objective The aim of the present study was to investigate the core cognitive features
in a large cohort of Brazilian patients with SCA10, comparing the results
against a healthy control group. Methods Twenty-eight SCA10 and 28 healthy subjects were prospectively assessed
regarding cognitive function and psychiatric disorders at the Movement
Disorders Unit of the Federal University of Paraná between February
2012 and October 2014. Results The SCA10 group had worse depression scores, as well as cognitive
performance, when compared to healthy individuals. Conclusion Our study showed mild cognitive and mood dysfunctions in patients with SCA10,
consistent with the symptoms reported in the Cerebellar Cognitive Affective
Syndrome described by Schmahmann JD in 1998. The description of these
findings is an important clinical phenomenon that may guide physicians in
specific disease management and improve quality of life of these
patients.
Collapse
Affiliation(s)
- Adriana Moro
- PhD, Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Curitiba, PR, Brazil
| | | |
Collapse
|