51
|
Togliatto G, Dentelli P, Gili M, Gallo S, Deregibus C, Biglieri E, Iavello A, Santini E, Rossi C, Solini A, Camussi G, Brizzi MF. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2015; 40:102-11. [PMID: 26122028 PMCID: PMC4722244 DOI: 10.1038/ijo.2015.123] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Soluble factors and cell-derived extracellular vesicles (EVs) are crucial tissue repair mediators in cell-based therapy. In the present study, we investigate the therapeutic impact of EVs released by adipose tissue-derived stem cells (ASCs) recovered from obese subjects' visceral and subcutaneous tissues. METHODS ASCs were recovered from 10 obese (oASCs) and 6 non-obese (nASCs) participants and characterized. In selected experiments, nASCs and oASCs were cultured with palmitic acid (PA) or high glucose (HG), respectively. EVs from obese (oEVs) and non-obese (nEVs) subjects' visceral and subcutaneous ASCs were collected after ultracentrifugation and analyzed for their cargo: microRNA-126 (miR-126), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 2 (MMP-2), and for their biological effects on endothelial cells (ECs). Western blotting analysis and loss- and gain-of function experiments were performed. RESULTS oEVs show impaired angiogenic potential compared with nEVs. This effect depends on EV cargo: reduced content of VEGF, MMP-2 and, more importantly, miR-126. We demonstrate, using gain- and loss-of-function experiments, that this reduced miR-126 content leads to Spred1 upregulation and the inhibition of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway in ECs. We also show that PA treatment of nASCs translates into the release of EVs that recapitulate oEV cargo. Moreover, HG treatment of oASCs further reduces miR-126 EV content and EV-mediated in vitro angiogenesis. Finally, impaired pro-angiogenic potential is also detected in EVs released from obese subcutaneous adipose tissue-derived ASCs. CONCLUSIONS These results indicate that obesity impacts on EV pro-angiogenic potential and may raise concerns about the use of adipose tissue-derived EVs in cell-based therapy in the obese setting.
Collapse
Affiliation(s)
- G Togliatto
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - P Dentelli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - M Gili
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - S Gallo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - C Deregibus
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - E Biglieri
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - A Iavello
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - G Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - M F Brizzi
- Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
52
|
Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK. Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior. Stem Cells 2015; 33:2748-61. [PMID: 26031404 DOI: 10.1002/stem.2078] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
Microvesicles (MVs) are membrane-enclosed cytoplasmic fragments released by normal and activated cells that have been described as important mediators of cell-to-cell communication. Although the ability of human induced pluripotent stem cells (hiPSCs) to participate in tissue repair is being increasingly recognized, the use of hiPSC-derived MVs (hiPSC-MVs) in this regard remains unknown. Accordingly, we investigated the ability of hiPSC-MVs to transfer bioactive molecules including mRNA, microRNA (miRNA), and proteins to mature target cells such as cardiac mesenchymal stromal cells (cMSCs), and we next analyzed effects of hiPSC-MVs on fate and behavior of such target cells. The results show that hiPSC-MVs derived from integration-free hiPSCs cultured under serum-free and feeder-free conditions are rich in mRNA, miRNA, and proteins originated from parent cells; however, the levels of expression vary between donor cells and MVs. Importantly, we found that transfer of hiPSC components by hiPSC-MVs impacted on transcriptome and proteomic profiles of target cells as well as exerted proliferative and protective effects on cMSCs, and enhanced their cardiac and endothelial differentiation potential. hiPSC-MVs also transferred exogenous transcripts from genetically modified hiPSCs that opens new perspectives for future strategies to enhance MV content. We conclude that hiPSC-MVs are effective vehicles for transferring iPSC attributes to adult somatic cells, and hiPSC-MV-mediated horizontal transfer of RNAs and proteins to injured tissues may be used for therapeutic tissue repair. In this study, for the first time, we propose a new concept of use of hiPSCs as a source of safe acellular bioactive derivatives for tissue regeneration.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiotek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Sekula
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kamycka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Adamiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Chair of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | | | - Jacek Kolcz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, Kansas, USA
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|