51
|
Chromatin modifying gene mutations in follicular lymphoma. Blood 2017; 131:595-604. [PMID: 29158360 DOI: 10.1182/blood-2017-08-737361] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent malignancy of germinal center B cells. Although the overall survival of FL patients has recently improved with the introduction of novel therapies, there is significant heterogeneity in patient outcome and a need for rationally designed therapeutic strategies that target disease biology. Next-generation sequencing studies have identified chromatin modifying gene (CMG) mutations as a hallmark of FL, highlighting epigenetic modifiers as an attractive therapeutic target in this disease. Understanding the complex roles of these mutations will be central to identifying and adaptively targeting associated vulnerabilities. Recent studies have provided insight into the functional consequences of the most frequently mutated CMGs (KMT2D, CREBBP, and EZH2) and point to a role for these events in modifying normal B-cell differentiation programs and impeding germinal center exit. However, the majority of FL tumors serially acquire multiple CMG mutations, suggesting that there is a level of cross talk or cooperation between these events that has not yet been defined. Here, I review the current state of knowledge on CMG mutations in FL, discuss their potential as therapeutic targets, and offer my perspective on unexplored areas that should be considered in the future.
Collapse
|
52
|
Sorigue M, Sancho JM. Current prognostic and predictive factors in follicular lymphoma. Ann Hematol 2017; 97:209-227. [PMID: 29032510 DOI: 10.1007/s00277-017-3154-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/09/2017] [Indexed: 12/27/2022]
Abstract
Follicular lymphoma (FL) is generally considered an indolent disorder. With modern day treatments, long remissions are often achieved both in the front-line and relapsed setting. However, a subset of patients has a more aggressive course and a worse outcome. Their identification is the main purpose of modern day prognostic tools. In this review, we attempt to summarize the evidence concerning prognostic and predictive factors in FL, including (1) pre-treatment factors, from baseline clinical characteristics and imaging tests to histological grade, the microenvironment and genomic abnormalities; (2) post-treatment factors, i.e., depth of response, measured both by imaging tests and minimal residual disease; (3) factors at relapse and duration of response; and (4) prognostic factors in histological transformation. We conclude that, despite the existence of numerous tools, the availability of some of them is still limited; they generally suffer from notable downsides, and most have unproven predictive value, thus having scarce bearing on the choice of regimen at present. However, with the technological and scientific developments of the last few years, the potential for these prognostic factors is promising, particularly in combination, which will probably, in time, help guide therapeutic decisions.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Chromosomes, Human, Pair 14/chemistry
- Chromosomes, Human, Pair 18/chemistry
- Clinical Trials as Topic
- Disease-Free Survival
- Humans
- Lymphoma, Follicular/diagnostic imaging
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/mortality
- Mutation
- Neoplasm Grading
- Neoplasm, Residual/diagnostic imaging
- Neoplasm, Residual/drug therapy
- Neoplasm, Residual/genetics
- Neoplasm, Residual/mortality
- Positron-Emission Tomography
- Prognosis
- Recurrence
- Risk Factors
- Translocation, Genetic
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Marc Sorigue
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Ctra. Canyet, 08916, Badalona, Spain.
| | - Juan-Manuel Sancho
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Ctra. Canyet, 08916, Badalona, Spain
| |
Collapse
|
53
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
54
|
Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol 2017; 30:1338-1366. [PMID: 28664939 DOI: 10.1038/modpathol.2017.58] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll-like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
Collapse
|
55
|
Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, Jacobs K, Binos S, Skerrett-Byrne DA, Murray HC, Verrills NM, Van Vlierberghe P, Cools J, Dun MD. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 2017; 32:788-800. [PMID: 28852199 PMCID: PMC5843905 DOI: 10.1038/leu.2017.276] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens.
Collapse
Affiliation(s)
- S Degryse
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - C E de Bock
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Demeyer
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - I Govaerts
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Bornschein
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - D Verbeke
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - K Jacobs
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Binos
- Thermo Fisher Scientific, Scoresby, Victoria, Australia
| | - D A Skerrett-Byrne
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - H C Murray
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - N M Verrills
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - P Van Vlierberghe
- Department of Pediatrics and Genetics, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - J Cools
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - M D Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
56
|
EZH2 Inhibition by Tazemetostat Results in Altered Dependency on B-cell Activation Signaling in DLBCL. Mol Cancer Ther 2017; 16:2586-2597. [DOI: 10.1158/1535-7163.mct-16-0840] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/04/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022]
|
57
|
Jain P, Kanagal-Shamanna R, San Lucas FA, Nastoupil L, Romaguera J, Fayad L, Oki Y, Westin JR, Medeiros LJ, Wang M, Fowler N. Clinicopathological characteristics, outcomes and pattern of mutations in patients with follicular lymphoma who progressed on Bruton tyrosine kinase inhibitors. Br J Haematol 2017; 182:718-723. [PMID: 28771675 DOI: 10.1111/bjh.14857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Preetesh Jain
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Anthony San Lucas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Romaguera
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasuhiro Oki
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonard Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
58
|
Wang L, Yang M, Zhang X, Yang C, Huang X, Wang Z, Jin J. ARID1A mutation in blastic plasmacytoid dendritic cell neoplasm. Haematologica 2017; 102:e470-e472. [PMID: 28751556 DOI: 10.3324/haematol.2017.172742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chunmei Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xin Huang
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Zhaoming Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China .,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| |
Collapse
|
59
|
Tan W, Song Y, Mo C, Jiang S, Wang Z. Analysis of gene expression profile microarray data in complex regional pain syndrome. Mol Med Rep 2017; 16:3371-3378. [DOI: 10.3892/mmr.2017.6950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
|
60
|
Batlevi CL, Crump M, Andreadis C, Rizzieri D, Assouline SE, Fox S, van der Jagt RHC, Copeland A, Potvin D, Chao R, Younes A. A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br J Haematol 2017; 178:434-441. [PMID: 28440559 DOI: 10.1111/bjh.14698] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/14/2017] [Indexed: 01/07/2023]
Abstract
Deregulation of histone deacetylase (HDAC) is important in the pathogenesis of follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Mocetinostat, an isotype-selective HDAC inhibitor, induces accumulation of acetylated histones, cell cycle arrest and apoptosis in several cancers. This phase 2 study evaluated mocetinostat in patients with relapsed/refractory (R/R) DLBCL and FL. Seventy-two patients received mocetinostat (starting doses: 70-110 mg TIW, 4-week cycles). The best overall response rate (95% CI) was 18·9% (7·2, 32·2) for the DLBCL cohort (n = 41), and 11·5% (1·7, 20·7) for the FL cohort (n = 31). Responses were durable (≥90 days in 7 of 10 responses). Overall, 54·1% and 73·1% of patients derived clinical benefit (response or stable disease) from mocetinostat in the DLBCL and FL cohorts, respectively. Progression-free survival ranged from 1·8 to 22·8 months and 11·8 to 26·3 months in responders with DLBCL and FL, respectively. The most frequent treatment-related adverse events were fatigue (75·0%), nausea (69·4%) and diarrhoea (61·1%). Although mocetinostat had limited single-agent activity in R/R DLBCL and FL, patients with clinical benefit had long-term disease control. The safety profile was acceptable. This drug class warrants further investigation, including identifying patients more likely to respond to this agent, or in combination with other agents.
Collapse
Affiliation(s)
- Connie L Batlevi
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Michael Crump
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | | | - Susan Fox
- Charles LeMoyne Hospital, Greenfield Park, QC, Canada
| | | | - Amanda Copeland
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | - Anas Younes
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
61
|
Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood 2017; 129:2645-2656. [PMID: 28288979 DOI: 10.1182/blood-2016-08-733469] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/05/2017] [Indexed: 12/16/2022] Open
Abstract
CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes. However, B cells with Crebbp inactivation showed high expression of Myc and patterns of altered histone acetylation that were localized to intragenic regions, enriched for Myc DNA binding motifs, and showed Myc binding. Through the analysis of CREBBP mutations from a large cohort of primary human FL and DLBCL, we show a significant difference in the spectrum of CREBBP mutations in these 2 diseases, with higher frequencies of nonsense/frameshift mutations in DLBCL compared with FL. Together, our data therefore provide important links between Crebbp inactivation and Bcl2 dependence and show a role for Crebbp inactivation in the induction of Myc expression. We suggest this may parallel the role of CREBBP frameshift/nonsense mutations in DLBCL that result in loss of the protein, but may contrast the role of missense mutations in the lysine acetyltransferase domain that are more frequently observed in FL and yield an inactive protein.
Collapse
|
62
|
Kurmasheva RT, Sammons M, Favours E, Wu J, Kurmashev D, Cosmopoulos K, Keilhack H, Klaus CR, Houghton PJ, Smith MA. Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2017; 64:10.1002/pbc.26218. [PMID: 27555605 PMCID: PMC5584632 DOI: 10.1002/pbc.26218] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tazemetostat (EPZ-6438) is a selective inhibitor of the histone methyltransferase EZH2 and currently in clinical development for non-Hodgkin lymphoma and genetically defined tumors. PROCEDURES Tazemetostat was tested against the Pediatric Preclinical Testing Program (PPTP) solid tumor xenografts using a dose of 400 mg/kg administered twice daily by oral gavage for 28 days. H3K27me3:H3 ratios were determined in control and treated tumors. RESULTS Tazemetostat induced significant differences in event-free survival (EFS) distribution compared with control in nine of 30 (30%) of the xenografts studied. Significant differences in EFS distribution were observed in five of seven (71%) rhabdoid tumor xenograft lines compared with four of 23 (17%) nonrhabdoid xenograft lines (chi-square [χ2 ] test P = 0.006). Tazemetostat induced tumor growth inhibition meeting criteria for intermediate and high EFS treated-to-control (T/C) activity in two of 25 (8%) and one of 25 (4%) xenografts, respectively. Intermediate and high activity for the EFS T/C metric was observed exclusively among rhabdoid tumor xenografts (three of five rhabdoid tumor vs 0 of 22 nonrhabdoid tumors (χ² test P < 0.001). One rhabdoid tumor xenograft (G401) showed stable disease. For one rhabdoid tumor (G401), delayed tumor regression to tazemetostat was noted following 1 week of tumor growth. Tazemetostat induced significant reduction of H3K27me3 levels in the majority of tumors compared with controls. CONCLUSIONS Tazemetostat demonstrated significant antitumor activity in rhabdoid tumor models but showed no consistent activity against any other histology. Tazemetostat reduced H3K27me3 levels irrespective of tumor response. Further preclinical testing to evaluate tazemetostat in combination with other anticancer agents is warranted.
Collapse
Affiliation(s)
| | | | | | - Jianwrong Wu
- St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | | | | | | |
Collapse
|
63
|
Höpken UE. Targeting HDAC3 in CREBBP-Mutant Lymphomas Counterstrikes Unopposed Enhancer Deacetylation of B-cell Signaling and Immune Response Genes. Cancer Discov 2017; 7:14-16. [PMID: 28062671 DOI: 10.1158/2159-8290.cd-16-1285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellular phenotype of B-cell lymphomas arising from B cells undergoing germinal center reactions, such as follicular lymphoma and diffuse large B-cell lymphoma, is strongly shaped by mutations in chromatin-modifying genes. The work presented by Jiang and colleagues addresses how somatic mutations in CREBBP disable acetylation and cause unopposed deacetylation by BCL6/SMRT/HDAC3 complexes on enhancers of B-cell signaling and immune response genes. This opens a therapeutic avenue toward targeted inhibition of CREBBP-mutant lymphomas by HDAC inhibitors. Cancer Discov; 7(1); 14-6. ©2017 AACRSee related article by Jiang et al., p. 38.
Collapse
Affiliation(s)
- Uta E Höpken
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
64
|
The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2017; 9:cancers9010002. [PMID: 28054944 PMCID: PMC5295773 DOI: 10.3390/cancers9010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis.
Collapse
|
65
|
Jiang Y, Ortega-Molina A, Geng H, Ying HY, Hatzi K, Parsa S, McNally D, Wang L, Doane AS, Agirre X, Teater M, Meydan C, Li Z, Poloway D, Wang S, Ennishi D, Scott DW, Stengel KR, Kranz JE, Holson E, Sharma S, Young JW, Chu CS, Roeder RG, Shaknovich R, Hiebert SW, Gascoyne RD, Tam W, Elemento O, Wendel HG, Melnick AM. CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discov 2017; 7:38-53. [PMID: 27733359 PMCID: PMC5300005 DOI: 10.1158/2159-8290.cd-16-0975] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas. SIGNIFICANCE Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Yanwen Jiang
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Ana Ortega-Molina
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Hsia-Yuan Ying
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
| | - Katerina Hatzi
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara Parsa
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dylan McNally
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ling Wang
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ashley S Doane
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Xabier Agirre
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Matt Teater
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Zhuoning Li
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
| | - David Poloway
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York
| | - Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daisuke Ennishi
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Sneh Sharma
- Laboratory of Cellular Immunobiology, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James W Young
- Laboratory of Cellular Immunobiology, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine; The Rockefeller University, New York, New York
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York
| | | | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ari M Melnick
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
66
|
Manfroi B, McKee T, Mayol JF, Tabruyn S, Moret S, Villiers C, Righini C, Dyer M, Callanan M, Schneider P, Tzankov A, Matthes T, Sturm N, Huard B. CXCL-8/IL8 Produced by Diffuse Large B-cell Lymphomas Recruits Neutrophils Expressing a Proliferation-Inducing Ligand APRIL. Cancer Res 2016; 77:1097-1107. [PMID: 27923834 DOI: 10.1158/0008-5472.can-16-0786] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
Tumor-infiltrating neutrophils have been implicated in malignant development and progression, but mechanisms are ill defined. Neutrophils produce a proliferation-inducing ligand APRIL/TNFSF13, a factor that promotes development of tumors from diverse origins, including diffuse large B-cell lymphoma (DLBCL). High APRIL expression in DLBCL correlates with reduced patient survival, but the pathway(s) dictating APRIL expression are not known. Here, we show that all blood neutrophils constitutively secrete APRIL, and inflammation-associated stimuli, such as TNF, further upregulate APRIL. In a significant fraction of DLBCL patients, tumor cells constitutively produced the ELC-CXC chemokine CXCL-8 (IL8), enabling them to recruit APRIL-producing blood neutrophils. CXCL-8 production in DLBCL was unrelated to the cell of origin, as APRIL-producing neutrophils infiltrated CXCL-8+ DLBCL from both germinal center (GC) and non-GC subtypes. Rather, CXCL-8 production implied events affecting DNA methylation and acetylation. Overall, our results showed that chemokine-mediated recruitment of neutrophils secreting the tumor-promoting factor APRIL mediates DLBCL progression. Cancer Res; 77(5); 1097-107. ©2016 AACR.
Collapse
Affiliation(s)
- Benoit Manfroi
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France
| | - Thomas McKee
- Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | | | | | - Sebastien Moret
- Department of Pathology-Immunology, Geneva University Medical Centre, Geneva, Switzerland
| | - Christian Villiers
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France
| | - Christian Righini
- Head and Neck Department, Grenoble University Hospital, La Tronche, France
| | - Martin Dyer
- Ernest and Helen Scott Hematological Research Institute, University of Leicester, Leicester, United Kingdom
| | - Mary Callanan
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas Matthes
- Hematology, University Hospital of Geneva, Geneva, Switzerland
| | - Nathalie Sturm
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France.,Department of Anatomy and Cytopathology, University Hospital of Grenoble, La Tronche, France
| | - Bertrand Huard
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France.
| |
Collapse
|
67
|
Kao YC, Sung YS, Zhang L, Chen CL, Huang SC, Antonescu CR. Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1. Genes Chromosomes Cancer 2016; 56:42-50. [PMID: 27537276 DOI: 10.1002/gcc.22400] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Ossifying fibromyxoid tumor (OFMT) is an uncommon mesenchymal neoplasm of uncertain differentiation and intermediate malignant potential. Recurrent gene fusions involving either PHF1 or BCOR have been found in 85% of OFMT, including typical and malignant examples. As a subset of OFMT still lack known genetic abnormalities, we identified two OFMTs negative for PHF1 and BCOR rearrangements, which were subjected to transcriptome analysis for fusion discovery. The RNA sequencing found a novel CREBBP-BCORL1 fusion candidate in an axillary mass of a 51 year-old male and a KDM2A-WWTR1 in a thigh mass of a 36 year-old male. The gene fusions were validated by RT-PCR and FISH in the index cases and then screened by FISH on 4 additional OFMTs lacking known fusions. An identical CREBBP-BCORL1 fusion was found in an elbow tumor from a 30 year-old male. Both OFMTs with CREBBP-BCORL1 fusions had areas of typical OFMT morphology, exhibiting uniform round to epithelioid cells arranged in cords or nesting pattern in a fibromyxoid stroma. The OFMT with KDM2A-WWTR1 fusion involved dermis and superficial subcutis, being composed of ovoid cells in a fibromyxoid background with hyalinized giant rosettes. The S100 immunoreactivity ranged from very focal to absent. Similar to other known fusion genes in OFMT, BCORL1, CREBBP and KDM2A are also involved in histone modification. In summary, we expand the spectrum of molecular abnormalities in OFMT with 2 novel fusions, CREBBP-BCORL1 and KDM2A-WWTR1, further implicating the epigenetic deregulation as the leading pathogenetic mechanism in OFMT. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chien Kao
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chun-Liang Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shih-Chiang Huang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Anatomical Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | |
Collapse
|
68
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with considerable heterogeneity reflected in the 2008 World Health Organization classification. In recent years, genome-wide assessment of genetic and epigenetic alterations has shed light upon distinct molecular subsets linked to dysregulation of specific genes or pathways. Besides fostering our knowledge regarding the molecular complexity of DLBCL types, these studies have unraveled previously unappreciated genetic lesions, which may be exploited for prognostic and therapeutic purposes. Following the last World Health Organization classification, we have witnessed the emergence of new variants of specific DLBCL entities, such as CD30 DLBCL, human immunodeficiency virus-related and age-related variants of plasmablastic lymphoma, and EBV DLBCL arising in young patients. In this review, we will present an update on the clinical, pathologic, and molecular features of DLBCL incorporating recently gained information with respect to their pathobiology and prognosis. We will emphasize the distinctive features of newly described or emerging variants and highlight advances in our understanding of entities presenting a diagnostic challenge, such as T-cell/histiocyte-rich large B-cell lmphoma and unclassifiable large B-cell lymphomas. Furthermore, we will discuss recent advances in the genomic characterization of DLBCL, as they may relate to prognostication and tailored therapeutic intervention. The information presented in this review derives from English language publications appearing in PubMed throughout December 2015. For a complete outline of this paper, please visit: http://links.lww.com/PAP/A12.
Collapse
|
69
|
Duncan VE, Ping Z, Varambally S, Peker D. Loss of RUNX3 expression is an independent adverse prognostic factor in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 58:179-184. [DOI: 10.1080/10428194.2016.1180686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
Pandzic T, Larsson J, He L, Kundu S, Ban K, Akhtar-Ali M, Hellström AR, Schuh A, Clifford R, Blakemore SJ, Strefford JC, Baumann T, Lopez-Guillermo A, Campo E, Ljungström V, Mansouri L, Rosenquist R, Sjöblom T, Hellström M. Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 22:6217-6227. [PMID: 26957556 DOI: 10.1158/1078-0432.ccr-15-2903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. EXPERIMENTAL DESIGN We used piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. RESULTS In total, this screen identified 782 genes with transposon integrations in fludarabine-resistant pools of cells. One of the identified genes is a known resistance mediator DCK (deoxycytidine kinase), which encodes an enzyme that is essential for the phosphorylation of the prodrug to the active metabolite. BMP2K, a gene not previously linked to CLL, was also identified as a modulator of response to fludarabine. In addition, 10 of 782 transposon-targeted genes had previously been implicated in treatment resistance based on somatic mutations seen in patients refractory to fludarabine-based therapy. Functional characterization of these genes supported a significant role for ARID5B and BRAF in fludarabine sensitivity. Finally, pathway analysis of transposon-targeted genes and RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. CONCLUSIONS To our knowledge, this is the first forward genetic screen for chemotherapy resistance in CLL. The screen pinpointed novel genes and pathways involved in fludarabine resistance along with previously known resistance mechanisms. Transposon screens can therefore aid interpretation of cancer genome sequencing data in the identification of genes modifying sensitivity to chemotherapy. Clin Cancer Res; 22(24); 6217-27. ©2016 AACR.
Collapse
Affiliation(s)
- Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Kenneth Ban
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.,Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Muhammad Akhtar-Ali
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anders R Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Schuh
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Ruth Clifford
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Stuart J Blakemore
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tycho Baumann
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Elias Campo
- Unitat de Hematología, Hospital Clíınic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|