51
|
Yuan Y, Ye HQ, Ren QC. Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol Rep 2018; 40:621-634. [PMID: 29989647 PMCID: PMC6072290 DOI: 10.3892/or.2018.6515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/31/2018] [Indexed: 12/28/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known as one of the members of the neurotropin family. BDNF-induced activation of its receptor tyrosine kinase B (TrkB) is associated with anoikis tolerance, tumor progression and poor prognosis in many types of malignancy. However, to the best of our knowledge, there are no reports describing the contribution of the BDNF/TrkB axis to cervical cancer. BDNF and TrKB expression in cervical cancer (CC) tissues and adjacent normal tissues from 87 patients were analyzed by immunohistochemistry, western blot analysis and quantitative PCR assays and the results showed that they were significantly higher in cancer tissues than that in normal adjacent tissues, respectively. Higher expression rates of BDNF and TrKB were observed in stage IIB or higher and BDNF expression was positively associated with lymph node metastasis. Notably, a high expression of TrKB may be contributed to poor survival time, which confirmed by Kaplan-Meier analysis. Compared to the corresponding CC cell lines, HeLa, SiHa, CASKI, C4-1 and C-33a, BDNF and TrKB expression was enhanced in anoikis-like apoptotic tolerance (AAT), a cell model established from cervical cancer cell lines. AAT cells showed a higher proliferation activity compared with CC cell lines, which was confirmed by a shorter G0/G1 phase, elevated cyclin A, cyclin D1 and c-myc, decreased caspase-3 and Bax, and increased Bcl-2. By contrast, the knockdown of TrKB expression reversed these changes in AAT cells, induced G0/G1 arrest and suppressed proliferation activity. The results of the present study show that PI3K/Akt signaling is involved in the BDNF/TrKB-induced proliferation of AAT cells in cervical cancer. These findings indicate that BDNF/TrKB pathway is a potential target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 644300, P.R. China
| | - Hai-Qiong Ye
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 644300, P.R. China
| | - Qian-Chuan Ren
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 644300, P.R. China
| |
Collapse
|
52
|
Okugawa Y, Toiyama Y, Ichikawa T, Kawamura M, Yasuda H, Fujikawa H, Saigusa S, Ohi M, Araki T, Tanaka K, Inoue Y, Tanaka M, Miki C, Kusunoki M. Colony-stimulating factor-1 and colony-stimulating factor-1 receptor co-expression is associated with disease progression in gastric cancer. Int J Oncol 2018; 53:737-749. [PMID: 29767252 DOI: 10.3892/ijo.2018.4406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Colony‑stimulating‑factor‑1 (CSF‑1) is a hematopoietic growth factor that exerts its effects through the c‑fms/CSF‑1 receptor (CSF‑1R). The CSF‑1/CSF‑1R axis is thought to be involved in the development of several types of cancer. This study aimed to clarify the clinical and biological significance of the CSF‑1/CSF‑1R axis in gastric cancer (GC). For this purpose, we evaluated CSF‑1 and CSF‑1R expression in GC tissues from 148 patients by RT‑qPCR and immunohistochemistry. The biological roles of the CSF‑1/CSF‑1R axis were investigated by measuring the cell proliferation and migration, and anoikis resistance in a human GC cell line following treatment with recombinant human CSF‑1 and/or CSF‑1R inhibitor. The results revealed that an elevated expression of CSF‑1 or CSF‑1R significantly correlated with disease progression and with a poor overall survival (OS, P=0.037 and 0.016, respectively) and disease‑free survival (DFS, P<0.001 and <0.001, respectively) of patients with GC. Furthermore, a high co‑expression of CSF‑1 and CSF‑1R was an independent prognostic factor for OS (HR, 1.38; 95% CI, 1.02‑1.88; P=0.038) and DFS (HR, 1.79; 95% CI, 1.21‑2.67; P=0.004), and an independent risk factor for lymph node and peritoneal metastasis. Immunohistochemical analysis revealed an intense CSF‑1/CSF‑1R expression in the cytoplasm of cancer cells in primary GC tissues. CSF‑1 or CSF‑1R expression positively correlated with vascular endothelial growth factor A (VEGFA) or Fms related tyrosine kinase 1 (FLT1) expression in GC tissues. Treatment with recombinant human CSF‑1 promoted proliferation, migration and anoikis resistance in a GC cell line. These effects were generally blocked by CSF‑1R inhibition. On the whole, the findings of this study indicate that the CSF‑1/CSF‑1R axis may be a clinically useful prognostic and predictive biomarker for lymph node and peritoneal metastasis and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takashi Ichikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiromi Yasuda
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motoyoshi Tanaka
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Chikao Miki
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
53
|
Kimura S, Harada T, Ijichi K, Tanaka K, Liu R, Shibahara D, Kawano Y, Otsubo K, Yoneshima Y, Iwama E, Nakanishi Y, Okamoto I. Expression of brain-derived neurotrophic factor and its receptor TrkB is associated with poor prognosis and a malignant phenotype in small cell lung cancer. Lung Cancer 2018; 120:98-107. [PMID: 29748024 DOI: 10.1016/j.lungcan.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES TrkB is a receptor for brain-derived neurotrophic factor (BDNF) and is highly expressed in various cancers, with BDNF-TrkB signaling having been implicated in tumor progression and metastasis. The role of the BDNF-TrkB system in small cell lung cancer (SCLC), a neuroendocrine cancer, has remained unclear, however. We examined BDNF and TrkB expression in SCLC patients as well as the function of BDNF-TrkB signaling in SCLC cell lines. MATERIALS AND METHODS BDNF and TrkB expression in tumor specimens of 58 SCLC patients and 20 non-small cell lung cancer (NSCLC) patients was examined by immunohistochemistry and was scored on the basis of the distribution and intensity of staining. TrkB-overexpressing SCLC (SBC5TrkB) cells were established by retrovirus transduction and were examined for the effects of BDNF on intracellular signaling, cell proliferation, and cell migration in vitro. RESULTS The staining score for TrkB in NSCLC and SCLC specimens was 2.80 ± 0.19 and 3.60 ± 0.15, respectively, whereas that for BDNF was 1.95 ± 0.32 and 2.76 ± 0.14, respectively. High levels of both TrkB and BDNF expression in SCLC tumors were significantly associated with poor overall survival in multivariate analysis (hazard ratio = 1.821, P = 0.036). BDNF activated AKT and ERK signaling pathways in and promoted the migration of SBC5TrkB cells, and these effects were attenuated by the pan-Trk inhibitor GNF-5837. GNF-5837 also inhibited the proliferation of SBC5TrkB cells in the presence of BDNF. CONCLUSION Coexpression of BDNF and TrkB was associated with poor prognosis in SCLC patients, and BDNF promoted the migration of TrkB-overexpressing SCLC cells. TrkB is thus a potential therapeutic target for SCLC.
Collapse
Affiliation(s)
- Shinichi Kimura
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taishi Harada
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Japan Community Healthcare Organization Kyushu Hospital, Kitakyushu, Japan.
| | - Kayo Ijichi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Renpeng Liu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Shibahara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Kawano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Otsubo
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
54
|
Perineural Invasion in Human Cutaneous Squamous Cell Carcinoma Is Linked to Neurotrophins, Epithelial-Mesenchymal Transition, and NCAM1. J Invest Dermatol 2018; 138:2063-2066. [PMID: 29601811 DOI: 10.1016/j.jid.2018.02.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 11/21/2022]
|
55
|
Kawamoto M, Onishi H, Ozono K, Yamasaki A, Imaizumi A, Kamakura S, Nakano K, Oda Y, Sumimoto H, Nakamura M. Tropomyosin-related kinase B mediated signaling contributes to the induction of malignant phenotype of gallbladder cancer. Oncotarget 2018; 8:36211-36224. [PMID: 28423707 PMCID: PMC5482650 DOI: 10.18632/oncotarget.16063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
This study aims to demonstrate the clinical and biological significance of Brain derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) signaling in gallbladder cancer (GBC) through a series of in vitro and in vivo experiments. TrkB expression was detected in 63 (91.3%) out of 69 surgically resected primary GBC specimens by immunohistochemistry. TrkB expression in the invasive front correlated with T factor (p=0.0391) and clinical staging (p=0.0391). Overall survival was lower in patients with high TrkB expression in the invasive front than in those with low TrkB expression (p=0.0363). In vitro experiment, we used five TrkB-expressing GBC cell lines with or without K-ras mutation. TrkB-mediated signaling increased proliferation and the invasiveness by inducing epithelial mesenchymal transition, and activating matrix metalloproteinases-2 (MMP-2) and MMP-9. Inhibition of TrkB-mediated signaling also decreased hypoxia-inducible factor-1α, vascular endothelial growth factor A (VEGF-A), VEGF-C, and VEGF-D expression. In vivo experiment, inhibition of TrkB-mediated signaling suppressed tumorigenicity and tumor growth in GBC. These findings demonstrate that TrkB-mediated signaling contributes to the induction of malignant phenotypes (proliferation, invasiveness, angiogenesis, lymphangiogenesis, and tumorigenesis) in GBC, and could be a promising therapeutic target regardless of K-ras mutation status.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keigo Ozono
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Shukoukai Inc., Tokyo, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
56
|
Yang J, Bo L, Han T, Ding D, Nie M, Yin K. Pathway- and clinical-factor-based risk model predicts the prognosis of patients with gastric cancer. Mol Med Rep 2018. [PMID: 29532879 PMCID: PMC5928624 DOI: 10.3892/mmr.2018.8722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gastric cancer (GC) has a high incidence and mortality rate. If discovered late, GC tends to have a poor prognosis. Improvements in the prognostic accuracy of GC through combined analysis of multiple relevant genes and clinical factors may solve this problem. In the present study, GSE62254 (including 300 GC tissues), obtained from the Gene Expression Omnibus database, was used as a training set, and the mRNA-sequencing data of GC (including 384 GC tissues) downloaded from the Cancer Genome Atlas database served as a validation set. Based on the t-test and Wilcoxon test, the significantly differentially expressed genes (DEGs) were obtained by screening the intersecting DEGs. The prognosis-associated genes and clinical factors were identified using Cox regression analysis in the R survival package. The optimal prognosis-associated pathways were examined using the Cox-proportional hazards (Cox-PH) model in the R penalized package. Finally, risk prediction models were constructed and validated using the Cox-PH model and the Kaplan-Meier method, respectively. There were a total of 382 significant DEGs, including 268 upregulated genes and 114 downregulated genes. A total of 50 prognosis-associated genes were identified, 16 optimal prognosis-associated pathways (including mitochondrial pathway and the tyrosine-protein kinase JAK-signal transducer and activator of transcription signaling pathway, which involve caspase 7, phosphoinositide-3-kinase regulatory subunit 3, peroxisome proliferator-activated receptor γ and collagen triple helix repeat containing 1) and four prognosis-associated clinical factors [including Pathologic_N, Pathologic_stage, mutL homolog 1 (MLH1) mutation and recurrence]. The pathway- and clinical-factor-based risk prediction model exhibited marked prognostic accuracy. The clinical-factor-based risk prediction model with improved P-values for prognosis prediction may be superior to the pathway-based risk prediction model in predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Junchi Yang
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Lumin Bo
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ting Han
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Dan Ding
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
57
|
Saberi Anvar M, Minuchehr Z, Shahlaei M, Kheitan S. Gastric cancer biomarkers; A systems biology approach. Biochem Biophys Rep 2018; 13:141-146. [PMID: 29556568 PMCID: PMC5857180 DOI: 10.1016/j.bbrep.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer is one of the most fatal cancers in the world. Many efforts in recent years have attempted to find effective proteins in gastric cancer. By using a comprehensive list of proteins involved in gastric cancer, scientists were able to retrieve interaction information. The study of protein-protein interaction networks through systems biology based analysis provides appropriate strategies to discover candidate proteins and key biological pathways. In this study, we investigated dominant functional themes and centrality parameters including betweenness as well as the degree of each topological clusters and expressionally active sub-networks in the resulted network. The results of functional analysis on gene sets showed that neurotrophin signaling pathway, cell cycle and nucleotide excision possess the strongest enrichment signals. According to the computed centrality parameters, HNF4A, TAF1 and TP53 manifested as the most significant nodes in the interaction network of the engaged proteins in gastric cancer. This study also demonstrates pathways and proteins that are applicable as diagnostic markers and therapeutic targets for future attempts to overcome gastric cancer. A systematic study of protein-protein interaction networks through comprehensive extracted list of proteins involved in gastric cancer. Dominant functional theme and pathways of each topological clusters and expressionally active subnetworks were reported. The most effective proteins in gastric cancer formation were proposed according to the computed centrality parameters. HNF4A, TAF1and TP53 were mentioned as the key proteins in gastric cancer.
Collapse
Affiliation(s)
- Mohammad Saberi Anvar
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Kheitan
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
58
|
Choi B, Lee EJ, Shin MK, Park YS, Ryu MH, Kim SM, Kim EY, Lee HK, Chang EJ. Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget 2018; 7:55506-55517. [PMID: 27458153 PMCID: PMC5342432 DOI: 10.18632/oncotarget.10747] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) activates its receptor, tropomyosin receptor kinase B (TrkB; also called NTRK2) that has been shown to promote the malignant progression of several cancers. In this study, we investigated the clinical and biological significance of the BDNF/TrkB axis in the progression of human gastric cancer. The increased co-expression of the BDNF/TrkB axis was significantly correlated with bone metastatic properties in advanced gastric cancers. BDNF acting via TrkB receptors increased the levels of long pentraxin 3 (PTX3) that was related to bone metastatic status of gastric cancer by enhancing gastric cancer–osteoblastic niche interactions. In bone metastatic gastric cancer, PTX3 knockdown using small interfering RNA significantly inhibited BDNF-induced interactions of cancer cells with osteoblasts. Moreover, BDNF-derived PTX3 induction supported subsequent osteoclastogenesis, and this effect was significantly reversed by PTX3 silencing. These findings suggest that a functional interaction between BDNF/TrkB and PTX3 enhances the osteolysis of bone metastatic gastric cancer, thereby providing potential prognostic factors for the development of bone metastasis of gastric cancer.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Jin Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Kyung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung Keun Lee
- Department of Ophthalmology and Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
59
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:5. [PMID: 29334991 PMCID: PMC5769535 DOI: 10.1186/s13046-018-0674-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/30/2017] [Indexed: 12/20/2022]
Abstract
Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Although most studies have focused on the genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent years the role of the nervous system has been recognized as a major contributor to cancer development and metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine, Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, AIMSS, Melbourne, Australia.
| |
Collapse
|
60
|
Yuan Y, Ye HQ, Ren QC. Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int J Oncol 2017; 52:461-472. [PMID: 29345295 DOI: 10.3892/ijo.2017.4230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been demonstrated to be associated with several types of cancer. In addition, its receptor, tropomyosin related kinase B (TrkB) is involved in tumor invasion and metastasis. Epithelial-mesenchymal transition (EMT) is associated with metastasis in cancers. Thus, The aim of the present study was to examine whether BDNF/TrKB expression is linked to a poor survival and the acquisition of the EMT phenotype in cervical cancer. We found that a high positive expression of BDNF/TrKB was associated with poor survival in cervical cancer. Our results revealed that high expression levels of BDNF/TrKB were observed in cervical cancer compared to normal cells. Importantly, we demonstrated that the silencing of TrKB suppressed the activation of EMT via the downregulation of N-cadherin, vimentin, matrix metalloproteinase (MMP)2 and MMP9, and the upregulation of E-cadherin and tissue inhibitor of metalloproteinases (TIMP)2, which resulted in suppressed cell proliferation, migration and invasion. Furthermore, high phosphorylation levels of ERK and Akt were observed in the cervical cancer cells, while these levels were decreased in the cells in which TrKB was knocked down. On the whole, these findings suggest that the BDNF/TrKB pathway is a promising target for the prevention of tumor proliferation, invasion, metastasis and EMT in cervical cancer cells.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hai-Qiong Ye
- Department of Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qian-Chuan Ren
- Department of Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
61
|
Ding D, Hou R, Gao Y, Feng Y. miR-613 inhibits gastric cancer progression through repressing brain derived neurotrophic factor. Exp Ther Med 2017; 15:1735-1741. [PMID: 29434759 DOI: 10.3892/etm.2017.5546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-613 has been reported to function as a tumor suppressor in several types of cancer. However, the biological function and underlying mechanism in gastric cancer (GC) has remained elusive. Therefore, the aim of the present study was to assess the expression and biological role of miR-613 in GC tissues and cell lines. miR-613 expression was found to be downregulated in 38 GC tissue samples compared to that in their adjacent non-cancerous tissues, and low expression of miR-613 was associated with lymph node metastasis and advanced tumor-nodes-metastasis stage. A gain-of-function assay demonstrated that miR-613 overexpression reduced tumor cell proliferation, migration and invasion of SGC-7901 cells, as determined by MTT and Transwell assays. Furthermore, brain-derived neutrophic factor (BDNF) was identified as a direct target of miR-613 in GC cells by a luciferase reporter assay. BDNF expression was upregulated and inversely correlated with miR-613 levels in GC tissues. In addition, knockdown of BDNF expression mimicked the tumor suppressive effect of miR-613 in GC cells. In conclusion, these findings demonstrated that miR-613 functions as a tumor suppressor in GC by targeting BDNF. Thus, miR-613 is a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Dayong Ding
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ruizhi Hou
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
62
|
Brain-derived neurotrophic factor/tropomyosin-related kinase B signaling pathway contributes to the aggressive behavior of lung squamous cell carcinoma. J Transl Med 2017; 97:1332-1342. [PMID: 28604655 DOI: 10.1038/labinvest.2017.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
The tropomyosin-related kinase (Trk) family consists of TrkA, TrkB, and TrkC, which play essential roles in tumor progression and/or suppression in various cancers. Little is known about the biological significance of the Trk family in human lung squamous cell carcinoma (SCC). Here we investigated the clinical significance of the protein expression of Trk family members in samples from 99 SCC patients, and we explored the relationship between invasion/proliferation activities and Trk expression using lung SCC cell lines to clarify the biological significance of the Trk family in lung SCC. Immunohistochemical high expression of TrkB was significantly correlated with vascular invasion (P=0.004), lymph node metastasis (P<0.001), and advanced stage (P=0.0015). The overall survival of the patients with TrkB-high expression was significantly shorter than those with TrkB-low expression (P=0.0110). TrkA/TrkC expressions were not predictors of poor prognosis. An in vitro assay demonstrated that the inhibition of brain-derived neurotrophic factor (BDNF) (a TrkB ligand) and TrkB by K252a (a Trk inhibitor) or siRNA (BDNF-siRNA, TrkB-siRNA) suppressed the invasion, migration, and proliferative activities of lung SCC cells. The administration of recombinant human BDNF (rhBDNF) enhanced the invasion, migration, and proliferation activities, which were abrogated by K252a. TrkB-siRNA transfection increased the protein expression of E-cadherin and decreased vimentin expressions in lung SCC cells. Matrix metalloproteinase-2 (MMP-2)-mediated gelatin degradations were decreased in lung SCC cells transfected with TrkB-siRNA. Thus, TrkB-high expression is an indicator of poor prognosis in lung SCC, probably due to invasion/proliferation activities promoted by the BDNF/TrkB signaling pathway, which could become a therapeutic target for lung SCC.
Collapse
|
63
|
Sun F, Feng M, Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett 2017; 14:6991-6998. [PMID: 29344127 DOI: 10.3892/ol.2017.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of gastric cancer, but the mechanisms underlying peritoneal dissemination are yet to be elucidated. Paget's 'seed and soil' hypothesis is recognized as the fundamental theory of metastasis. The 'seeding' theory proposes that the formation of peritoneal dissemination is a multistep process, including detachment from the primary tumour, transmigration and attachment to the distant peritoneum, invasion into subperitoneal tissue and proliferation with blood vascular neogenesis. In the present review, the progress of each step is discussed. Milky spots, as a lymphatic apparatus, are indicative of lymphatic orifices on the surface of the peritoneum. These stomata are open gates for peritoneal-free cancer cells to migrate into the submesothelial space. Therefore, milky spots provide suitable 'soil' for cancer cells to implant. Other theories have also been proposed to clarify the peritoneal dissemination process, including the transvessel metastasis theory, which suggests that the peritoneal metastasis of gastric cancer develops via a vascular network mediated by hypoxia inducible factor-1α.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
64
|
Xu AJ, Fu LN, Wu HX, Yao XL, Meng R. MicroRNA-744 inhibits tumor cell proliferation and invasion of gastric cancer via targeting brain-derived neurotrophic factor. Mol Med Rep 2017; 16:5055-5061. [DOI: 10.3892/mmr.2017.7167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
|
65
|
Zhang C, Li X, Gao D, Ruan H, Lin Z, Li X, Liu G, Ma Z, Li X. The prognostic value of over-expressed TrkB in solid tumors: a systematic review and meta-analysis. Oncotarget 2017; 8:99394-99401. [PMID: 29245910 PMCID: PMC5725101 DOI: 10.18632/oncotarget.19561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/11/2017] [Indexed: 01/17/2023] Open
Abstract
It is reported recently Tropomyosin-related receptor Kinase B (TrkB) plays key roles in the anoikis resistance during the processes of tumorigenesis and metastasis. However, its prognostic significance for clinical patients remains inconclusive. In order to establish a correct and practicable link between increased TrkB and prognostication of human solid tumors, a meta-analysis was performed in this article. A systematic literature research in the electronic databases PubMed, Embase and Web of Science was performed to identify eligible studies. A fixed-effects meta-analytical model was employed to correlate TrkB expression with OS, DFS and clinicopathological features. A total of 11 studies covering 1516 patients with various solid tumors were recruited in this meta-analysis. TrkB over-expression was associated with poorer OS and poorer DFS in multivariate analysis. Additionally, the pooled odds ratios (ORs) indicated that TrkB over-expression was associated with large tumor size, lymph node metastasis, distant metastasis and a higher clinical stage. Overall, these results indicated that TrkB over-expression in patients with solid tumors might be related to poor prognosis and serve as a potential predictive marker of poor clinicopathological prognosis factor.
Collapse
Affiliation(s)
- Chunze Zhang
- Department of Immunology, Tianjin Medical University, Tianjin, China.,Tianjin Union Medical Center, Tianjin, China
| | - Xiaoting Li
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Dan Gao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Zhenzhen Lin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Xiaobo Li
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Guang Liu
- Tianjin Union Medical Center, Tianjin, China
| | - Zhicheng Ma
- Department of Gastrointestinal Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Xichuan Li
- Department of Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
66
|
de Moraes JK, Wagner VP, Fonseca FP, Vargas PA, de Farias CB, Roesler R, Martins MD. Uncovering the role of brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in head and neck malignancies. J Oral Pathol Med 2017. [PMID: 28650560 DOI: 10.1111/jop.12611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that was first known as responsible for sustain the growth, function, and plasticity of neural cells. BDNF exerts its effects by binding to the tyrosine kinase receptor B (TrkB). The BDNF/TrkB axis has been reported to be overexpressed in several neurogenic and non-neurogenic tumors. Its higher expression was associated with a poor prognosis to patients affected by different human malignancies, tumor growth, invasion, and metastasis; epithelial-mesenchymal transition and resistance to chemotherapy. BDNF/TrkB represent promising targets to the development of novel anticancer therapies. Some clinical trials are currently evaluating the efficacy of Trk protein-target drugs in different types of solid tumors. To date, few groups have evaluated the DNF/TrkB pathway in head and neck malignancies. The aims of this study were to review the literature concerning the role of BDNF/TrkB activation in head and neck squamous cell carcinoma and malignant salivary gland tumors and to discuss future perspectives of BDNF/TrkB-target therapy.
Collapse
Affiliation(s)
- Juliana Kern de Moraes
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Vivian Petersen Wagner
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.,Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Experimental Pathology Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
67
|
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A. Therapeutic Potentials of BDNF/TrkB in Breast Cancer; Current Status and Perspectives. J Cell Biochem 2017; 118:2502-2515. [PMID: 28230291 DOI: 10.1002/jcb.25943] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to stimulate breast cancer cell growth and metastasis via tyrosine kinase receptors TrkA, TrkB, and the p75NTR death receptor. The aberrant activation of BDNF/TrkB pathways can modulate several signaling pathways, including Akt/PI3K, Jak/STAT, NF-kB, UPAR/UPA, Wnt/β-catenin, and VEGF pathways as well as the ER receptor. Several microRNAs have been identified that are involved in the modulation of BDNF/TrkB pathways. These include miR-206, miR-204, MiR-200a/c, MiR-210, MiR-134, and MiR-191; and these may be of value as prognostic and predictive biomarkers for detecting patients at high risk of developing breast cancer. It has been also been demonstrated that a high expression of genes involved in the BDNF pathway in breast cancer is associated with poor clinical outcome and reduced survival of patients. Several approaches have been developed for targeting this pathway, for example TKr inhibitors (AZD6918, CEP-701) and RNA interference. The aim of the current review was to provide an overview of the role of BDNF/TrkB pathways in the pathogenesis of breast cancer and its value as a potential therapeutic target. J. Cell. Biochem. 118: 2502-2515, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Centre and Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rivandi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
68
|
Spaw M, Anant S, Thomas SM. Stromal contributions to the carcinogenic process. Mol Carcinog 2017; 56:1199-1213. [PMID: 27787930 PMCID: PMC5354948 DOI: 10.1002/mc.22583] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Tumor-associated stromal cells are dynamic characters that endorse the carcinogenic process in a multitude of ways. The tumor microenvironment plays a crucial role throughout the tumor progression, which includes initiation, growth, invasion, and metastasis. The tumor microenvironment consists of cellular and non-cellular components. Tumor-associated stromal cell types include the microbiome, immune cells including macrophages, dendritic and T-cells, cells associated with blood and lymphatic vessels including pericytes and endothelial cells, fibroblasts, neuronal cells, and adipocytes. The non-cellular components of the microenvironment include matrix proteins and secreted factors. The development of therapies that target the mechanisms by which stromal cells contribute to successful tumorigenesis is major goal of upcoming cancer research. The purpose of this review is to present a comprehensive discussion of the role of each of the tumor-associated stromal cell types in the carcinogenic process with a special focus on target development and therapeutic intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark Spaw
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
69
|
Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve Dependence: From Regeneration to Cancer. Cancer Cell 2017; 31:342-354. [PMID: 28292437 DOI: 10.1016/j.ccell.2017.02.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Nerve dependence has long been described in animal regeneration, where the outgrowth of axons is necessary to the reconstitution of lost body parts and tissue remodeling in various species. Recent discoveries have demonstrated that denervation can suppress tumor growth and metastasis, pointing to nerve dependence in cancer. Regeneration and cancer share similarities in regard to the stimulatory role of nerves, and there are indications that the stem cell compartment is a preferred target of innervation. Thus, the neurobiology of cancer is an emerging discipline that opens new perspectives in oncology.
Collapse
Affiliation(s)
- Benoni Boilly
- UFR de Biologie, Université de Lille, 59655 Villeneuve d'Ascq, France
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
70
|
Okugawa Y, Toiyama Y, Toden S, Mitoma H, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 2017; 66:107-117. [PMID: 26475630 PMCID: PMC4860159 DOI: 10.1136/gutjnl-2015-309359] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/21/2015] [Accepted: 09/05/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Despite recent advances in colorectal cancer (CRC) treatment, the prognosis of patients suffering from this malignancy still remains substandard, and metastatic recurrence following curative surgery is the leading cause of mortality. Therefore, it is imperative to identify prognostic markers to predict the clinical outcome of CRC patients. Recent evidence revealed the new role of small nucleolar RNAs (snoRNAs) in oncogenesis. Herein, we systematically evaluated dysregulation of snoRNAs in CRC and clarified their biomarker potential and biological significance in CRC. EXPERIMENTAL DESIGN We analysed expression levels of 4 snoRNAs in 274 colorectal tissues from 3 independent cohorts and 6 colon cancer cell lines. The functional characterisation for the role of SNORA42 in CRC was investigated through a series of in vitro and in vivo experiments. RESULTS In the screening phase, expression levels of all four snoRNAs were significantly elevated in CRC tissues than in corresponding normal mucosa. In the clinical validation cohort, increased SNORA42 expression was an independent prognostic factor for overall survival and disease-free survival, and was a risk factor for distant metastasis. SNORA42 expression negatively correlated with overall survival in an additional independent cohort and identified the patients with high risk for recurrence and poor prognosis in stage II CRC. Furthermore, in vitro and in vivo analyses showed that SNORA42 overexpression resulted in enhanced cell proliferation, migration, invasion, anoikis resistance and tumorigenicity. CONCLUSIONS SNORA42 appears to be a novel oncogene and could serve as a promising predictive biomarker for recurrence and prognosis in patients with CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Center for Gastrointestinal Cancer Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Yuji Toiyama
- Center for Gastrointestinal Cancer Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Shusuke Toden
- Center for Gastrointestinal Cancer Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Hiroki Mitoma
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Health Care System, Dallas, TX, USA
| | - Takeshi Nagasaka
- Department of gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - C. Richard Boland
- Center for Gastrointestinal Cancer Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Cancer Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
71
|
Zhang C, Min L, Liu J, Tian W, Han Y, Qu L, Shou C. Integrated analysis identified an intestinal-like and a diffuse-like gene sets that predict gastric cancer outcome. Tumour Biol 2016; 37:10.1007/s13277-016-5454-7. [PMID: 27858295 DOI: 10.1007/s13277-016-5454-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022] Open
Abstract
The two major histological types of gastric cancer, intestinal and diffuse subtypes, have distinct epidemiological and pathophysiological features and were also suggested to be of diverse clinical outcomes. Although the gene expression spectrum of gastric cancer subtypes has been reported by previous studies, its linkage with gastric cancer clinical features and outcomes remains elusive. We investigated large-sample online gastric cancer datasets for seeking genes correlated with the clinical diversities between gastric cancer intestinal and diffuse subtypes. Genes differently expressed between the two subtypes were assessed by multiple statistical analysis and were testified on cellular level by quantitative RT-PCR. Related genes were combined to generate a risk signature, and their mutual linkages were also explored. Among genes overexpressed in intestinal subtype, ATPIF1, PRDX2, PRKAR2A, and SMC1A were correlated with positive prognosis. Among genes overexpressed in diffuse subtype, DTNA, GPR161, IDS, RHOQ, and TSHZ2 were correlated with negative prognosis. These nine genes were all novel independent prognostic factors. When used in combination as signatures, these two gene sets displayed strong efficacy for prediction of the prognosis and clinical variables in gastric and colorectal cancer. Hence, these two genes sets were respectively defined as the favorable intestinal-like and adverse diffuse-like gene sets. We identified nine novel genes correlated with the clinical diversity between the intestinal and diffuse subtypes of gastric cancer. The malignant changes from the intestinal to diffuse subtype might be due to the reduction of the four intestinal-like genes, as well as the elevation of the five diffuse-like genes.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Li Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Jiafei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yong Han
- Department of Pathology, Zhejiang Provincial People's Hospital, Zhejiang, 310014, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
72
|
Hua Z, Gu X, Dong Y, Tan F, Liu Z, Thiele CJ, Li Z. PI3K and MAPK pathways mediate the BDNF/TrkB-increased metastasis in neuroblastoma. Tumour Biol 2016; 37:10.1007/s13277-016-5433-z. [PMID: 27752996 PMCID: PMC5250655 DOI: 10.1007/s13277-016-5433-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB have been reported to be associated with poor prognosis in neuroblastoma (NB) patients. Our previous studies indicated that BDNF activation of TrkB induces chemo-resistance through activation of phosphoinositide-3-kinase (PI3K)/Akt pathway. In this study, we investigated the role of BDNF/TrkB on metastasis in NB. A tetracycline-regulated TrkB-expressing NB cell line (TB3) was used. Scratch wound healing assay, Boyden chamber migration, and invasion assays were performed to study the migration and invasion of TB3 cells. A tumor xenograft model using SCID-Beige mice was utilized to detect the metastasis of NB tumors in vivo. Inhibitors of PI3K, MAPK, Akt, and mTOR were used. Western blotting was performed to study the expressions of P-Akt, P-Erk, and P-mTOR. Our results showed that in TrkB-expressing NB cells, BDNF treatment significantly increased gap closing (P < 0.01) in scratch wound healing assay, also significantly enhanced the numbers of migrating cells (P < 0.01) and invading cells (P < 0.01) in the Boyden chamber migration and invasion assays. In vivo, NB distant metastases were significantly increased in mice with TrkB-expressing xenograft tumors compared to those with non-TrkB-expressing tumors (P < 0.05). Pre-treatment with any of the inhibitors for PI3K (LY294002), MAPK (PD98059), Akt (perifosine), or mTOR (rapamycin) blocked the BDNF/TrkB-induced increases of cell migration and invasion in TB3 cells, and also blocked the BDNF/TrkB-induced expressions of P-Akt, P-Erk, and P-mTOR. These data indicated that BDNF/TrkB increased metastasis in NB via PI3K/Akt/mTOR and MAPK pathways, and BDNF/TrkB and the downstream targets may be potential targets for the treatment of NB metastasis.
Collapse
Affiliation(s)
- Zhongyan Hua
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiao Gu
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yudi Dong
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Liu
- Cellular and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carol J Thiele
- Cellular and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijie Li
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
73
|
Okugawa Y, Mohri Y, Tanaka K, Kawamura M, Saigusa S, Toiyama Y, Ohi M, Inoue Y, Miki C, Kusunoki M. Metastasis-associated protein is a predictive biomarker for metastasis and recurrence in gastric cancer. Oncol Rep 2016; 36:1893-900. [PMID: 27574100 DOI: 10.3892/or.2016.5054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022] Open
Abstract
The metastasis-associated (MTA) gene family is a critical component of the nucleosome remodeling and histone deacetylase complex, and plays an important role in metastatic processes. We systematically evaluated dysregulation of the MTA family to clarify their clinical significance in gastric cancer (GC). One hundred and forty-five patients who underwent surgery for GC were evaluated. We analyzed the expression levels of the MTA family (MTA1, 2 and 3) by qPCR in GC tissue, and the MTA1 protein expression in primary cancer and matched normal mucosa (NM) was measured using immunohistochemical analysis. The expression of all the MTA family members was significantly increased in a stage-dependent manner, and elevated expression of all of the MTA family members was correlated with metastatic factors and prognosis in GC patients. Multivariate analysis revealed that MTA1 overexpression was an independent risk factor for survival. Especially, elevated expression of MTA1 was significantly correlated with recurrence, and was an independent risk factor for lymph node metastasis. Immunohistochemical analysis demonstrated that MTA1 was predominantly expressed in the nuclei of primary GC cells but was not expressed in NM and in the cancer stroma. In conclusion, quantification of MTA expression may support the accurate diagnosis of disease staging and may help predict clinical outcomes.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Innovative Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Chikao Miki
- Department of surgery and medical oncology, Iga Municipal Ueno General Citizen's Hospital, Mie 518-0823, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
74
|
Hu J, Huang Y, Wu Y, Liu F, Sun D, Wang K, Qu H. NTRK2 is an oncogene and associated with microRNA-22 regulation in human gastric cancer cell lines. Tumour Biol 2016; 37:15115-15123. [PMID: 27662840 DOI: 10.1007/s13277-016-5337-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we examined the roles of neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene in regulating in vitro proliferation and invasion in human gastric cancer. Gene expression of NTRK2 was compared between non-carcinoma gastric epithelial cells and gastric cancer (GC) cells by quantitative RT-PCR (qRT-PCR). NTRK2 was either downregulated or upregulated in MKN-28 and SNU-719 cells. The effect of NTRK2 downregulation or upregulation on GC in vitro development was analyzed by qRT-PCR, western blot, proliferation assay, and invasion assay, respectively. The upstream regulator of NTRK2, microRNA-22 (miR-22), was evaluated by dual-luciferase assay. MiR-22 was then upregulated in MKN-28 and SNU-719 cells to examine its regulation on NTRK2 and its encoded protein, tyrosine kinase receptor B (TrkB). In miR-22-upregulated MKN-28 and SNU-719 cells, NTRK2 was further overexpressed to evaluate functional interaction between miR-22 and NTRK2 in GC. NTRK2 was aberrantly upregulated in GC cell lines than in normal gastric cells. In MKN-28 and SNU-719 cells, NTRK2 downregulation inhibited whereas NTRK2 upregulation promoted GC proliferation and invasion in vitro. MiR-22 was verified to be an inverse upstream regulator of NTRK2. In miR-22-upregulated MKN-28 and SNU-719 cells, NTRK2 overexpression partially reversed the miR-22-induced inhibition on cancer proliferation and invasion. NTRK2 is an oncogene and reversely associated with miR-22 in regulating in vitro cancer development in GC.
Collapse
Affiliation(s)
- Jinhuai Hu
- Clinical laboratory, Linyi People's Hospital, Linyi, 276003, China
| | - Yong Huang
- The first Department of general surgery, Lanling People's Hospital, Linyi, 277700, China
| | - Yuanhua Wu
- The first Department of general surgery, Lanling People's Hospital, Linyi, 277700, China
| | - Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, JiNan, 250012, China.
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, JiNan, 250012, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, JiNan, 250012, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, JiNan, 250012, China
| |
Collapse
|
75
|
Chopin V, Lagadec C, Toillon RA, Le Bourhis X. Neurotrophin signaling in cancer stem cells. Cell Mol Life Sci 2016; 73:1859-70. [PMID: 26883804 PMCID: PMC11108437 DOI: 10.1007/s00018-016-2156-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.
Collapse
Affiliation(s)
- Valérie Chopin
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
- University of Picardie Jules Verne, 80000, Amiens, France
| | - Chann Lagadec
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
| | - Robert-Alain Toillon
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
| | - Xuefen Le Bourhis
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France.
| |
Collapse
|
76
|
Abstract
Perineural invasion (PNI) is the neoplastic invasion of nerves. PNI is widely recognized as an important adverse pathological feature of many malignancies, including pancreatic, prostate, and head and neck cancers and is associated with a poor prognosis. Despite widespread acknowledgment of the clinical significance of PNI, the mechanisms underlying its pathogenesis remain largely unknown. Recent theories of PNI pathogenesis have placed a significant emphasis on the active role of the nerve microenvironment, with PNI resulting from well-orchestrated reciprocal interactions between cancer and host. Elucidating the mechanisms involved in PNI may translate into targeted therapies for this ominous process.
Collapse
Affiliation(s)
- Richard L. Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, United States
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
77
|
Akil H, Perraud A, Jauberteau MO, Mathonnet M. Tropomyosin-related kinase B/brain derived-neurotrophic factor signaling pathway as a potential therapeutic target for colorectal cancer. World J Gastroenterol 2016; 22:490-500. [PMID: 26811602 PMCID: PMC4716054 DOI: 10.3748/wjg.v22.i2.490] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death in western countries. Approximately one-quarter of newly diagnosed patients for CRC have metastases, and a further 40%-50% experience disease recurrence or develop metastases after all standard therapies. Therefore, understanding the molecular mechanisms involved in the progression of CRC and subsequently developing novel therapeutic targets is crucial to improve management of CRC and patients’ long-term survival. Several tyrosine kinase receptors have been implicated in CRC development, progression and metastasis, including epidermal growth factor receptor (EGFR) and vascular EGFR. Recently, tropomyosin-related kinase B (TrkB), a tyrosine kinase receptor, has been reported in CRC and found to clearly exert several biological and clinical features, such as tumor cell growth and survival in vitro and in vivo, metastasis formation and poor prognosis. Here we review the significance of TrkB and its ligand brain derived-neurotrophic factor in CRC. We focus on their expression in CRC tumor samples, and their functional roles in CRC cell lines and in in vivo models. Finally we discuss therapeutic approaches that can lead to the development of novel therapeutic agents for treating TrkB-expressing CRC tumors.
Collapse
|
78
|
Kamiya A, Inokuchi M, Otsuki S, Sugita H, Kato K, Uetake H, Sugihara K, Takagi Y, Kojima K. Prognostic value of tropomyosin-related kinases A, B, and C in gastric cancer. Clin Transl Oncol 2015; 18:599-607. [PMID: 26459250 DOI: 10.1007/s12094-015-1407-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Tropomyosin-related kinase (Trk) receptors play critical roles in tumor development and are considered attractive targets for cancer therapy. We investigated correlations of the expression of TrkA, TrkB, and TrkC with clinicopathological features and outcomes in gastric cancer. METHODS Tumor samples were obtained from 221 patients with gastric cancer who underwent gastrectomy between 2003 and 2007. The expression of TrkA, TrkB, and TrkC was analyzed using immunohistochemical staining. The relationship of their expression to clinicopathological factors and outcomes was assessed. RESULTS High expression of TrkA, TrkB, or TrkC was significantly associated with histopathology (p = 0.022, p < 0.001, and p < 0.001). High expression of TrkA was significantly correlated with variables related to tumor progression, including lymph node metastasis (p = 0.024) and distant metastasis or recurrence (p < 0.001). Distant metastasis or recurrence was found in a significantly higher proportion of patients with high expression of TrkC than in those with low expression (p = 0.036). High expression of TrkA was significantly associated with poorer relapse-free survival (RFS) in univariate analysis (p = 0.001). High expression of TrkA or TrkC was significantly associated with poorer disease-specific survival (DSS) in univariate analysis (p < 0.001 and p = 0.008). In multivariate analysis, TrkA was an independent predictor of RFS [hazard ratio (HR), 2.294; 95 % confidence interval (CI), 1.309-4.032; p = 0.004] and DSS (HR, 2.146; 95 % CI, 1.195-3.861; p = 0.011). Expression of TrkB was not associated with RFS or DSS in univariate analysis. CONCLUSIONS Our results demonstrated that TrkA expression was associated with tumor progression and poor survival, and was an independent predictor of poor outcomes in gastric cancer patients.
Collapse
Affiliation(s)
- A Kamiya
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - M Inokuchi
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - S Otsuki
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - H Sugita
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - K Kato
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - H Uetake
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - K Sugihara
- Department of Surgical Oncology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Y Takagi
- Department of Translational Oncology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - K Kojima
- Center for Minimally Invasive Surgery, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
79
|
Dubanet L, Bentayeb H, Petit B, Olivrie A, Saada S, de la Cruz-Morcillo MA, Lalloué F, Gourin MP, Bordessoule D, Faumont N, Delage-Corre M, Fauchais AL, Jauberteau MO, Troutaud D. Anti-apoptotic role and clinical relevance of neurotrophins in diffuse large B-cell lymphomas. Br J Cancer 2015; 113:934-44. [PMID: 26284337 PMCID: PMC4578080 DOI: 10.1038/bjc.2015.274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a fatal malignancy that needs to identify new targets for additional therapeutic options. This study aimed to clarify the clinical and biological significance of endogenous neurotrophin (nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF)) in DLBCL biopsy samples and cell lines. Methods: We analysed expression of NGF, BDNF, and their receptors (Trk, p75NTR) in 51 biopsies and cell lines by immunohistochemistry, immunofluorescence, and western blotting. To investigate the biological role of BDNF/TrkB/p75NTR axis, effects of neurotrophin signalling inhibition were determined on tumour cell survival and vascular endothelial growth factor (VEGF) secretion. The pharmacological pan-Trk inhibitor K252a was used for in vitro and in vivo studies. Results: A BDNF/TrkB axis was expressed in all biopsies, which was independent of the germinal centre B-cell (GCB)/non-GCB profile. p75NTR, TrkB, and BDNF tumour scores were significantly correlated and high NGF expression was significantly associated with MUM1/IRF4, and the non-GCB subtype. Diffuse large B-cell lymphoma cell lines co-expressed neurotrophins and their receptors. The full-length TrkB receptor was found in all cell lines, which was also phosphorylated at Tyr-817. p75NTR was associated to Trk and not to its cell death co-receptor sortilin. In vitro, inhibition of neurotrophin signalling induced cell apoptosis. K252a caused cell apoptosis, decreased VEGF secretion, and potentiated rituximab effect, notably in less rituximab-sensitive cells. In vivo, K252a significantly reduced tumour growth and potentiated the effects of rituximab in a GCB-DLBCL xenograft model. Conclusions: This work argues for a pro-survival role of endogenous neurotrophins in DLBCLs and inhibition of Trk signalling might be a potential treatment strategy for rituximab resistant subgroups.
Collapse
Affiliation(s)
- Lydie Dubanet
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Hafidha Bentayeb
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Barbara Petit
- Laboratoire d'Anatomie-Pathologique, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France
| | - Agnès Olivrie
- Structure Régionale de Référence des Lymphomes du Limousin, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France.,Service d'Hématologie Clinique, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France
| | - Sofiane Saada
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Miguel A de la Cruz-Morcillo
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Fabrice Lalloué
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Marie-Pierre Gourin
- Structure Régionale de Référence des Lymphomes du Limousin, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France.,Service d'Hématologie Clinique, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France
| | - Dominique Bordessoule
- Structure Régionale de Référence des Lymphomes du Limousin, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France.,Service d'Hématologie Clinique, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France.,UMR CNRS 7276, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland 87025, Limoges Cedex, France
| | - Nathalie Faumont
- UMR CNRS 7276, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland 87025, Limoges Cedex, France
| | - Manuela Delage-Corre
- Laboratoire d'Anatomie-Pathologique, CHU de Limoges, 2 Avenue Martin Luther King, 87000 Limoges Cedex, France
| | - Anne-Laure Fauchais
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Marie-Odile Jauberteau
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Danielle Troutaud
- EA3842, Facultés de Médecine et de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| |
Collapse
|
80
|
|
81
|
Jobling P, Pundavela J, Oliveira SMR, Roselli S, Walker MM, Hondermarck H. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Res 2015; 75:1777-81. [PMID: 25795709 DOI: 10.1158/0008-5472.can-14-3180] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022]
Abstract
Recent studies have revealed the essential role played by nerves in tumor progression. Nerves have been shown to infiltrate the tumor microenvironment and actively stimulate cancer cell growth and dissemination. This mechanism involves the release of neurotransmitters, such as catecholamines and acetylcholine, directly into the vicinity of cancer and stromal cells to activate corresponding membrane receptors. Conversely, the secretion of neurotrophic growth factors by cancer cells drives the outgrowth of nerves in solid tumors. This reciprocal interaction between nerves and cancer cells provides new insights into the cellular and molecular bases of tumorigenesis and points to the potential utility of antineurogenic therapies. This review will discuss our evolving understanding of the cross-talk between nerves and cancer cells.
Collapse
Affiliation(s)
- Phillip Jobling
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan New South Wales, Australia. Hunter Medical Research Institute, University of Newcastle, Callaghan New South Wales, Australia
| | - Jay Pundavela
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan New South Wales, Australia. Hunter Medical Research Institute, University of Newcastle, Callaghan New South Wales, Australia
| | - Sonia M R Oliveira
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan New South Wales, Australia. Hunter Medical Research Institute, University of Newcastle, Callaghan New South Wales, Australia
| | - Séverine Roselli
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan New South Wales, Australia. Hunter Medical Research Institute, University of Newcastle, Callaghan New South Wales, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, University of Newcastle, Callaghan New South Wales, Australia. School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan New South Wales, Australia. Hunter Medical Research Institute, University of Newcastle, Callaghan New South Wales, Australia.
| |
Collapse
|
82
|
Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T, Liu B, Brodeur GM. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 2014; 75:131-41. [PMID: 25394774 DOI: 10.1007/s00280-014-2627-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC₅₀ around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.
Collapse
Affiliation(s)
- Jamie L Croucher
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Fan M, Sun J, Wang W, Fan J, Wang L, Zhang X, Yang A, Wang W, Zhang R, Li J. Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis. Apoptosis 2014; 19:860-70. [PMID: 24549576 DOI: 10.1007/s10495-014-0968-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An increasing amount of evidence demonstrated that the neurotrophic receptor tropomyosin-related kinase B (TrkB) plays a critical role in the development and progression of multiple types of cancer. However, its underlying mechanism in distant metastasis through the circulatory and lymphatic systems in colorectal cancer (CRC) is still unclear. Here we showed that downregulation of TrkB using short hairpin RNA obviously increased anoikis (detachment-induced apoptosis resulting from loss of cell-matrix interactions) sensitivity of CRC cells in vitro. Furthermore, using tail vein injection model, we confirmed that silencing TrkB significantly inhibited metastasis of CRC cells in vivo. Conversely, overexpression of TrkB obviously protected CRC cells from anoikis in vitro. Both loss- and gain-of-functional experiments indicated that TrkB could be a functional molecule in anti-anoikis of CRC cells. Mechanistically, we found that protein kinase B (PKB, also known as Akt) signaling pathway was a functional link in TrkB-induced anoikis suppression in CRC cells. Phosphorylation levels of Akt are closely related with the expression pattern of TrkB in CRC cells and inhibition of Akt activation robustly induces anoikis of CRC cells in vitro. In addition, our clinical investigation showed that high TrkB expression levels in CRC patients were associated with lymph node metastasis, distant metastasis and unfavourable prognosis. Thus, based on our results, this study suggests that an important function of TrkB is to protect CRC cells from anoikis in the circulatory and lymphatic systems, and that TrkB could be a promising candidate in CRC therapy, especially in the inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Meng Fan
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Perineural growth in head and neck squamous cell carcinoma: a review. Oral Oncol 2014; 51:16-23. [PMID: 25456006 DOI: 10.1016/j.oraloncology.2014.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Perineural growth is a unique route of tumor metastasis that is associated with poor prognosis in several solid malignancies. It is diagnosed by the presence of tumor cells inside the neural space seen on histological or imaging evaluations. Little is known about molecular mechanisms involved in the growth and spread of tumor cells in neural spaces. The poor prognosis associated with perineural growth and lack of targeted approaches necessitates the study of molecular factors involved in communication between tumor and neural cells. Perineural growth rates, shown to be as high as 63% in head and neck squamous cell carcinoma (HNSCC), correlate with increased local recurrence and decreased disease-free survival. Here we describe the literature on perineural growth in HNSCC. In addition, we discuss factors implicated in perineural growth of cancer. These factors include brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 and -4, glial cell-line derived neurotrophic factor (GDNF), the neural cell adhesion molecule (NCAM), substance P (SP), and chemokines. We also explore the literature on membrane receptors, including the Trk family and the low-affinity nerve growth factor receptor. This review highlights areas for further study of the mechanisms of perineural invasion which may facilitate the identification of therapeutic targets in HNSCC.
Collapse
|
85
|
Jia S, Wang W, Hu Z, Shan C, Wang L, Wu B, Yang Z, Yang X, Lei D. BDNF mediated TrkB activation contributes to the EMT progression and the poor prognosis in human salivary adenoid cystic carcinoma. Oral Oncol 2014; 51:64-70. [PMID: 25456007 DOI: 10.1016/j.oraloncology.2014.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND The aim of the present study was to investigate whether the expression of Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tropomyosin-related kinase B (TrkB) is correlated with the clinical progression of salivary adenoid cystic carcinoma (SACC) and whether the BDNF/TrkB axis is associated with the induction of epithelial-mesenchymal transition (EMT) in SACC cells. METHOD The expression of BDNF, TrkB, and E-cadherin (an EMT biomarker) in 76 primary SACC specimens and 20 normal salivary gland tissues was analyzed by immunohistochemistry. Additionally, the expression of BDNF, TrkB, and E-cadherin in SACC cell lines (SACC-83 and SACC-LM) was analyzed by RT-PCR and Western blotting. The biological role of the BDNF/TrkB axis in the EMT progression of SACC was evaluated after treatment with increased levels of BDNF and by inhibiting TrkB activity in SACC-83 cell line. The progression of SACC cells through EMT was assessed by RT-PCR, Western blotting, photography, migration and invasion assays. RESULTS Elevated expression of TrkB (92.1%) and BDNF (89.5%), and downregulated expression of E-cadherin (47.4%) was found in SACC specimens, which was significantly correlated with the invasion and metastasis in SACC (P<0.05). The high expression of TrkB and the low expression of E-cadherin was significantly correlated with the poor prognosis of SACC patients (P<0.05). The expression of TrkB was inversely correlated with the expression of E-cadherin in both SACC cases and cell lines (P<0.05). Increasing BDNF levels after treatment with exogenous recombinant human BDNF (rhBDNF) at 100 ng/ml significantly promoted the activation of TrKB and the progression of EMT in SACC cells. While obstruction of TrkB by its inhibitor, k252a (100 nM), significantly inhibited the EMT progression of SACC cells. CONCLUSIONS These results suggest that BDNF-mediated TrkB activation contributes to the EMT progression and the poor prognosis in SACC. The present study demonstrated that the BDNF/TrkB axis promotes the migration and invasion of SACC cells via EMT in vitro. Targeting the inactivation of the BDNF/TrkB axis may be a potential strategy for the treatment of SACC.
Collapse
Affiliation(s)
- Sen Jia
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Weixi Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; No. 150 Hospital of PLA, Luoyang 471031, China
| | - Zhiqiang Hu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Chun Shan
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Baolei Wu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zihui Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Delin Lei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
86
|
Okugawa Y, Toiyama Y, Hur K, Toden S, Saigusa S, Tanaka K, Inoue Y, Mohri Y, Kusunoki M, Boland CR, Goel A. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis 2014; 35:2731-9. [PMID: 25280565 DOI: 10.1093/carcin/bgu200] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prognosis of gastric cancer (GC) patients with peritoneal dissemination remains poor, and a better understanding of the underlying mechanisms is critical for the development of new treatments that will improve survival in these patients. This study aimed to clarify the clinical and biological role of two key metastasis-associated long non-coding RNAs (lncRNAs) in GC. We analyzed the expression levels of two lncRNAs-Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) and HOX-Antisense Intergenic RNA (HOTAIR)-by real-time reverse transcription PCR in 300 gastric tissues (150 GC and 150 adjacent normal mucosa), and in seven GC cell lines. Functional characterization for the role of HOTAIR in GC was performed by small interfering RNA (siRNA) knockdown, followed by series of in-vitro and in-vivo experiments. Expression of both lncRNAs was significantly higher in cancerous tissues than in corresponding normal mucosa, and higher expression of these lncRNAs significantly correlated with peritoneal metastasis in GC patients. In addition, elevated HOTAIR expression emerged both as an independent prognostic and risk factor for peritoneal dissemination. SiRNA knockdown of HOTAIR in GC cells significantly inhibited cell proliferation, migration and invasion, but concurrently enhanced the anoikis rate in transfected cells. In an in vivo assay, HOTAIR siRNA-transfected MKN45 cells injected into nude mice inhibited the growth of xenograft tumors and peritoneal metastasis compared with controls. Our data provide novel evidence for the biological and clinical significance of HOTAIR expression as a potential biomarker for identifying patients with peritoneal metastasis, and as a novel therapeutic target in patients with gastric neoplasia.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246, USA and
| | - Yuji Toiyama
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246, USA and Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Keun Hur
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246, USA and
| | - Shusuke Toden
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246, USA and
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - C Richard Boland
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246, USA and
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246, USA and
| |
Collapse
|
87
|
Alonso-Alconada L, Eritja N, Muinelo-Romay L, Barbazan J, Lopez-Lopez R, Matias-Guiu X, Gil-Moreno A, Dolcet X, Abal M. ETV5 transcription program links BDNF and promotion of EMT at invasive front of endometrial carcinomas. Carcinogenesis 2014; 35:2679-86. [DOI: 10.1093/carcin/bgu198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
88
|
Tanaka K, Shimura T, Kitajima T, Kondo S, Ide S, Okugawa Y, Saigusa S, Toiyama Y, Inoue Y, Araki T, Uchida K, Mohri Y, Kusunoki M. Tropomyosin-related receptor kinase B at the invasive front and tumour cell dedifferentiation in gastric cancer. Br J Cancer 2014; 110:2923-34. [PMID: 24853179 PMCID: PMC4056051 DOI: 10.1038/bjc.2014.228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/21/2014] [Accepted: 04/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Tropomyosin-related receptor kinase B (TrkB) promotes proliferation and invasion, relating to poor prognosis of various malignancies. We examined the role of TrkB at the invasive front of gastric cancer (GC) and its association with tumour cell dedifferentiation and tumour budding. Methods: Immunoreactive TrkB was evaluated at the tumour centre and margin using whole-tissue sections of 320 GC patients. Tumour cell dedifferentiation was defined as higher histologic grade at the tumour margin than the surface or tumour centre. Tumour budding was also scored on cytokeratin-stained sections. Results: Sixty-five patients (20%) showed higher TrkB expression at the invasive front (TrkB expression was higher at the tumour margin than tumour centre). It was significantly associated with several aggressive phenotypes in the full cohort (n=320). It showed a prognostic significance in test subgroup (n=98) and was identified as an independent prognostic factor (HR=2.09; 95% CI: 1.26–3.53) by multivariate analysis in validation subgroup (n=222). Twenty-one patients showed tumour cell dedifferentiation. In predominantly differentiated tumour, higher TrkB at the invasive front was significantly associated with tumour budding rather than tumour cell dedifferentiation. Conclusions: Assessment of immunoreactive TrkB at the invasive front by whole-tissue sections provides prognostic information for GC patients.
Collapse
Affiliation(s)
- K Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - T Shimura
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - T Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - S Kondo
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - S Ide
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Y Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - S Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Y Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Y Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - T Araki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - K Uchida
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Y Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - M Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
89
|
Tanaka K, Okugawa Y, Toiyama Y, Inoue Y, Saigusa S, Kawamura M, Araki T, Uchida K, Mohri Y, Kusunoki M. Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One 2014; 9:e96410. [PMID: 24801982 PMCID: PMC4011754 DOI: 10.1371/journal.pone.0096410] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/07/2014] [Indexed: 01/05/2023] Open
Abstract
Tropomyosin-related receptor kinase B (TrkB) signaling, stimulated by brain-derived neurotrophic factor (BDNF) ligand, promotes tumor progression, and is related to the poor prognosis of various malignancies. We sought to examine the clinical relevance of BDNF/TrkB expression in colorectal cancer (CRC) tissues, its prognostic value for CRC patients, and its therapeutic potential in vitro and in vivo. Two hundred and twenty-three CRC patient specimens were used to determine both BDNF and TrkB mRNA levels. The expression of these proteins in their primary and metastatic tumors was investigated by immunohistochemistry. CRC cell lines and recombinant BDNF and K252a (a selective pharmacological pan-Trk inhibitor) were used for in vitro cell viability, migration, invasion, anoikis resistance and in vivo peritoneal metastasis assays. Tissue BDNF mRNA was associated with liver and peritoneal metastasis. Tissue TrkB mRNA was also associated with lymph node metastasis. The co-expression of BDNF and TrkB was associated with liver and peritoneal metastasis. Patients with higher BDNF, TrkB, and co-expression of BDNF and TrkB had a significantly poor prognosis. BDNF increased tumor cell viability, migration, invasion and inhibited anoikis in the TrkB-expressing CRC cell lines. These effects were suppressed by K252a. In mice injected with DLD1 co-expressing BDNF and TrkB, and subsequently treated with K252a, peritoneal metastatic nodules was found to be reduced, as compared with control mice. BDNF/TrkB signaling may thus be a potential target for treating peritoneal carcinomatosis arising from colorectal cancer.
Collapse
Affiliation(s)
- Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail:
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
90
|
Ren J, Huang HJ, Gong Y, Yue S, Tang LM, Cheng SY. MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci 2014; 4:26. [PMID: 24855559 PMCID: PMC4030529 DOI: 10.1186/2045-3701-4-26] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/15/2014] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer death world-wide and carries a high rate of metastatic risk. In addition to other protein-coding oncogenes and tumor suppressor genes, microRNAs play an important role in gastric cancer tumorigenic progression. Here, we show that miR-206 is expressed at markedly low levels in a cohort of gastric tumors compared to their matching normal tissues, and in a number of gastric cancer cell lines. Down-regulation of miR-206 was particularly significant in tumors with lymphatic metastasis, local invasion, and advanced TNM staging. We find that forced expression of miR-206 suppressed the proliferation, colony-formation, and xenograft tumorigenesis of SCG-7901 cells, a line of gastric cancer cells. Forced expression of miR-206 also suppressed SCG-7901 cell migration and invasion, as well as metastasis in cell culture or tail-vein injected mouse models, respectively. The anti-metastatic effect of miR-206 is likely mediated by targeting metastasis regulatory genes STC2, HDAC4, KLF4, IGF1R, FRS2, SFRP1, BCL2, BDNF, and K-ras, which were drastically down-regulated by stable expression of exogenous miR-206 in SCG-7901 cells. Taken together, our results indicate that miR-206 is a tumor suppressor of gastric cancer acting at steps that regulate metastasis.
Collapse
Affiliation(s)
- Jun Ren
- Department of General Surgery, Nanjing Medical University affiliated Changzhou No. 2 Hospital, 213000 Changzhou, Jiangsu, PR. China.,Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| | - Hui-Jie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| | - Yu Gong
- Department of General Surgery, Nanjing Medical University affiliated Changzhou No. 2 Hospital, 213000 Changzhou, Jiangsu, PR. China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| | - Li-Ming Tang
- Department of General Surgery, Nanjing Medical University affiliated Changzhou No. 2 Hospital, 213000 Changzhou, Jiangsu, PR. China
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 210029 Nanjing, Jiangsu, PR. China
| |
Collapse
|
91
|
Kawamura K, Kawamura N, Okamoto N, Manabe M. Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling. Cancer Med 2013; 2:849-61. [PMID: 24403258 PMCID: PMC3892389 DOI: 10.1002/cam4.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) acts through its cognate receptor tyrosine kinase-B (TrkB) to regulate diverse physiological functions in reproductive and other tissues. In normal and malignant trophoblastic cells, the BDNF/TrkB signaling promotes cell growth. Due to the highly malignant nature of choriocarcinoma, we investigated possible involvement of this system in choriocarcinoma cell invasion and metastasis. We demonstrated that treatment of cultured choriocarcinoma cells, known to express both BDNF and TrkB, with a soluble TrkB ectodomain or a Trk receptor inhibitor K252a suppressed cell invasion accompanied with decreased expression of matrix metalloproteinase-2, a cell invasion marker. In vivo studies using a tumor xenograft model in athymic nude mice further showed inhibition of cell invasion from tumors to surrounding tissues following the suppression of endogenous TrkB signaling. For an in vivo model of choriocarcinoma metastasis, we performed intravenous injections of JAR cells expressing firefly luciferase into severe combined immunodeficiency (SCID) mice. Treatment with K252a inhibited metastasis of tumors to distant organs. In vivo K252a treatment also suppressed metastatic tumor growth as reflected by decreased cell proliferation and increased apoptosis and caspases-3/7 activities, together with reduced tissue levels of a tumor marker, human chorionic gonadotropin-β. In vivo suppression of TrkB signaling also led to decreased expression of angiogenic markers in metastatic tumor, including cluster of differentiation 31 and vascular endothelial growth factor A. Our findings suggested essential autocrine/paracrine roles of the BDNF/TrkB signaling system in choriocarcinoma invasion and metastasis. Inhibition of this signaling could serve as the basis to develop a novel therapy for patients with choriocarcinoma.
Collapse
Affiliation(s)
- Kazuhiro Kawamura
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, 216-8511, Japan; Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | | | | | | |
Collapse
|
92
|
Role of brain-derived neurotrophic factor in bone marrow angiogenesis in multiple myeloma. ACTA ACUST UNITED AC 2013; 33:485-490. [DOI: 10.1007/s11596-013-1146-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/26/2013] [Indexed: 12/20/2022]
|
93
|
Lin CY, Chen HJ, Li TM, Fong YC, Liu SC, Chen PC, Tang CH. β5 integrin up-regulation in brain-derived neurotrophic factor promotes cell motility in human chondrosarcoma. PLoS One 2013; 8:e67990. [PMID: 23874483 PMCID: PMC3706611 DOI: 10.1371/journal.pone.0067990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/24/2013] [Indexed: 01/22/2023] Open
Abstract
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopaedics, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Po-Chun Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|