51
|
Kasiri S, Chen B, Wilson AN, Reczek A, Mazambani S, Gadhvi J, Noel E, Marriam U, Mino B, Lu W, Girard L, Solis LM, Luby-Phelps K, Bishop J, Kim JW, Kim J. Stromal Hedgehog pathway activation by IHH suppresses lung adenocarcinoma growth and metastasis by limiting reactive oxygen species. Oncogene 2020; 39:3258-3275. [PMID: 32108165 PMCID: PMC7160060 DOI: 10.1038/s41388-020-1224-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma to drive its tumor suppressive effects-a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity. Treatment of KrasG12D/+;Trp53fl/fl mice with 5E1 and N-acetylcysteine, as a ROS scavenger, decreased tumor DNA damage, inhibited tumor growth and prolonged mouse survival. Thus, IHH induces stromal activation of the canonical Hh signaling pathway to suppress tumor growth and metastases, in part, by limiting ROS activity.
Collapse
Affiliation(s)
- Sahba Kasiri
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Baozhi Chen
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Alexandra N Wilson
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Annika Reczek
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jashkaran Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Evan Noel
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Ummay Marriam
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luc Girard
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - James Kim
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
52
|
Di Maggio F, El-Shakankery KH. Desmoplasia and Biophysics in Pancreatic Ductal Adenocarcinoma: Can We Learn From Breast Cancer? Pancreas 2020; 49:313-325. [PMID: 32168249 DOI: 10.1097/mpa.0000000000001504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) treatments have historically focused on targeting tumor cells directly. However, in pancreatic masses, the stroma encasing the malignant epithelial cells constitutes up to 80% to 90% of the tumor bulk. This extracellular matrix, which was previously neglected when designing cancer therapies, is now considered fundamental for tumor progression and drug delivery. Desmoplastic tissue is extensively cross-linked, resulting in tremendous tensile strength. This key pathological feature is procarcinogenic, linking PDAC and breast cancer (BC). Physical forces exerted onto cellular surfaces are detected intracellularly and transduced via biochemical messengers in a process called mechanotransduction. Mechanotransduction and tensional homeostasis are linked, with an integral role in influencing tumor growth, metastasis, and interactions with the immune system. It is essential to enhance our knowledge of these integral elements of parenchymal tumors. We aim to review the topic, with a special emphasis on desmoplastic processes and their importance in pancreatic and BC development and treatments, mindful that innovative diagnostic and therapeutic strategies cannot focus on biochemical pathways alone. We then focus on common therapeutic targets identified in both PDAC and BC models and/or patients, aiming to understand these treatments and draw similarities between the two tumors.
Collapse
|
53
|
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments. Int J Mol Sci 2020; 21:ijms21030758. [PMID: 31979397 PMCID: PMC7037908 DOI: 10.3390/ijms21030758] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
During mammalian embryonic development, primary cilia transduce and regulate several signaling pathways. Among the various pathways, Sonic hedgehog (SHH) is one of the most significant. SHH signaling remains quiescent in adult mammalian tissues. However, in multiple adult tissues, it becomes active during differentiation, proliferation, and maintenance. Moreover, aberrant activation of SHH signaling occurs in cancers of the skin, brain, liver, gallbladder, pancreas, stomach, colon, breast, lung, prostate, and hematological malignancies. Recent studies have shown that the tumor microenvironment or stroma could affect tumor development and metastasis. One hypothesis has been proposed, claiming that the pancreatic epithelia secretes SHH that is essential in establishing and regulating the pancreatic tumor microenvironment in promoting cancer progression. The SHH signaling pathway is also activated in the cancer stem cells (CSC) of several neoplasms. The self-renewal of CSC is regulated by the SHH/Smoothened receptor (SMO)/Glioma-associated oncogene homolog I (GLI) signaling pathway. Combined use of SHH signaling inhibitors and chemotherapy/radiation therapy/immunotherapy is therefore key in targeting CSCs.
Collapse
|
54
|
Yin QQ, Xu LH, Zhang M, Xu C. Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling. Asian J Androl 2019; 20:608-614. [PMID: 30027929 PMCID: PMC6219293 DOI: 10.4103/aja.aja_55_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The autonomic nervous system contributes to prostate cancer proliferation and metastasis. However, the exact molecular mechanism remains unclear. In this study, muscarinic acetylcholine receptor M1 (CHRM1) expression was measured via immunohistochemical analysis in human prostate cancer tissue array slides. PC-3, LNCaP, and A549 cells were treated with pirenzepine or carbachol, and the cell migration and invasion abilities were evaluated. Western blotting and quantitative real-time PCR were performed to measure GLI family zinc finger 1 (GLI1), patched 1 (PTCH1), and sonic hedgehog (SHH) expression levels. High expression of CHRM1 was found in early-stage human prostate cancer tissues. In addition, the selective CHRM1 antagonist pirenzepine inhibited PC-3, LNCaP, and A549 cell migration and invasion, but the agonist carbachol promoted the migration and invasion of these three cell lines. Muscarinic signaling can be relayed by hedgehog signaling. These data show that CHRM1 is involved in the regulation of prostate cancer migration and invasion through the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Qing-Qing Yin
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lin-Hui Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chen Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
55
|
Reyes-Ramos AM, Ramos-Cruz KP, Rodríguez-Merced NJ, Martínez-Montemayor MM, Franqui-Ríos ND, Ríos-Grant JP, Flores A, Maldonado-Martínez G, Torres-García W, Domenech M. Mesenchymal Cells Support the Oncogenicity and Therapeutic Response of the Hedgehog Pathway in Triple-Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11101522. [PMID: 31658643 PMCID: PMC6826628 DOI: 10.3390/cancers11101522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
The paracrine interaction between tumor cells and adjacent stroma has been associated with the oncogenic activity of the Hedgehog (Hh) pathway in triple-negative breast tumors. The present study developed a model of paracrine Hh signaling and examined the impact of mesenchymal cell sources and culture modalities in the oncogenicity of the Hh pathway in breast tumor cells. Studies consisted of tumor cell monocultures and co-cultures with cancer-associated and normal fibroblasts, tumor cells that undergo epithelial–mesenchymal transition (EMT), or adipose-derived mesenchymal stem cells (ADMSCs). Hh ligand and pathway inhibitors, GANT61 and NVP-LDE225 (NVP), were evaluated in both cell cultures and a mouse xenograft model. Results in monocultures show that tumor cell viability and Hh transcriptional activity were not affected by Hh inhibitors. In co-cultures, down-regulation of GLI1, SMO, and PTCH1 in the stroma correlated with reduced tumor growth rates in xenografted tumors and cell cultures, confirming a paracrine interaction. Fibroblasts and EMT cells supported Hh transcriptional activity and enhanced tumor cell growth. Mixed and adjacent culture modalities indicate that tumor growth is supported via fibroblast-secreted soluble factors, whereas enriched tumor stemness requires close proximity between tumor and fibroblasts. Overall this study provides a tumor–mesenchymal model of Hh signaling and highlights the therapeutic value of mesenchymal cells in the oncogenic activity of the Hh pathway.
Collapse
Affiliation(s)
- Ana M Reyes-Ramos
- Department of Chemical Engineering, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| | - Karla P Ramos-Cruz
- Department of Chemical Engineering, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| | | | | | - Nelson D Franqui-Ríos
- Industrial Biotechnology Program, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| | - Jan P Ríos-Grant
- Industrial Biotechnology Program, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| | - Andrea Flores
- Industrial Biotechnology Program, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| | - Gerónimo Maldonado-Martínez
- Data Management and Statistical Research Support Unit, Universidad Central del Caribe, School of Medicine-Bayamón, Bayamón, PR 00956, USA.
- School of Chiropractic, Universidad Central del Caribe, School of Medicine-Bayamón, Bayamón, PR 00956, USA.
| | - Wandaliz Torres-García
- Department of Industrial Engineering, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| | - Maribella Domenech
- Department of Chemical Engineering, Universidad de Puerto Rico-Mayagüez, Mayagüez, PR 00680, USA.
| |
Collapse
|
56
|
Sirkisoon SR, Carpenter RL, Rimkus T, Doheny D, Zhu D, Aguayo NR, Xing F, Chan M, Ruiz J, Metheny-Barlow LJ, Strowd R, Lin J, Regua AT, Arrigo A, Anguelov M, Pasche B, Debinski W, Watabe K, Lo HW. TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment. Oncogene 2019; 39:64-78. [PMID: 31462709 PMCID: PMC6938539 DOI: 10.1038/s41388-019-0959-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Mechanisms for breast cancer metastasis remain unclear. Whether truncated glioma-associated oncogene homolog 1 (TGLI1), a transcription factor known to promote angiogenesis, migration and invasion, plays any role in metastasis of any tumor type has never been investigated. In this study, results of two mouse models of breast cancer metastasis showed that ectopic expression of TGLI1, but not GLI1, promoted preferential metastasis to the brain. Conversely, selective TGLI1 knockdown using antisense oligonucleotides led to decreased breast cancer brain metastasis (BCBM) in vivo. Immunohistochemical staining showed that TGLI1, but not GLI1, was increased in lymph node metastases compared to matched primary tumors, and that TGLI1 was expressed at higher levels in BCBM specimens compared to primary tumors. TGLI1 activation is associated with a shortened time to develop BCBM and enriched in HER2-enriched and triple-negative breast cancers. Radioresistant BCBM cell lines and specimens expressed higher levels of TGLI1, but not GLI1, than radiosensitive counterparts. Since cancer stem cells (CSCs) are radioresistant and metastasis-initiating cells, we examined TGLI1 for its involvement in breast CSCs and found TGLI1 to transcriptionally activate stemness genes CD44, Nanog, Sox2, and OCT4 leading to CSC renewal, and TGLI1 outcompetes with GLI1 for binding to target promoters. We next examined whether astrocyte-priming underlies TGLI1-mediated brain tropism and found that TGLI1-positive CSCs strongly activated and interacted with astrocytes in vitro and in vivo. These findings demonstrate, for the first time, that TGLI1 mediates breast cancer metastasis to the brain, in part, through promoting metastasis-initiating CSCs and activating astrocytes in BCBM microenvironment.
Collapse
Affiliation(s)
- Sherona R Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Tadas Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Noah R Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael Chan
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jimmy Ruiz
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Linda J Metheny-Barlow
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Roy Strowd
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marlyn Anguelov
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA. .,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
57
|
Li K, Fang D, Xiong Z, Luo R. Inhibition of the hedgehog pathway for the treatment of cancer using Itraconazole. Onco Targets Ther 2019; 12:6875-6886. [PMID: 31692536 PMCID: PMC6711563 DOI: 10.2147/ott.s223119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/07/2019] [Indexed: 01/16/2023] Open
Abstract
Itraconazole (ITZ) is an anti-fungal drug that has been used in clinical practice for nearly 35 years. Recently, numerous experiments have shown that ITZ possesses anti-cancer properties. The Hedgehog (Hh) pathway plays a pivotal role in fundamental processes, including embryogenesis, structure, morphology and proliferation in various species. This pathway is typically silent in adult cells, and inappropriate activity is linked to various tumor types. The most important mechanism of ITZ in the treatment of cancer is inhibition of the Hh pathway through the inhibition of smoothened receptors (SMO), glioma-associated oncogene homologs (GLI), and their downstream targets. In this review, we discuss the mechanisms of ITZ in the treatment of cancer through inhibition of the Hh pathway, which includes anti-inflammation, prevention of tumor growth, induction of cell cycle arrest, induction of apoptosis and autophagy, prevention of angiogenesis, and drug resistance. We also discuss the clinical use of ITZ in many types of cancers. We hope this review will provide more information to support future studies on ITZ in the treatment of various cancers.
Collapse
Affiliation(s)
- Ke Li
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Zuming Xiong
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| |
Collapse
|
58
|
Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019; 8:E957. [PMID: 31443516 PMCID: PMC6770896 DOI: 10.3390/cells8090957] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC's high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
59
|
Bhateja P, Cherian M, Majumder S, Ramaswamy B. The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer? Cancers (Basel) 2019; 11:cancers11081126. [PMID: 31394751 PMCID: PMC6721501 DOI: 10.3390/cancers11081126] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
The hedgehog (Hh) pathway plays a key role in embryonic development and stem cell programs. Deregulation of the Hh pathway is a key driver of basal cell carcinoma, and therapeutic targeting led to approval of Hh inhibitor, vismodegib, in the management of this cancer. The Hh pathway is implicated in other malignancies including hormone receptor (HR+) positive and triple negative breast cancer (TNBC). Hh signaling, which is activated in human mammary stem cells, results in activation of glioma-associated oncogene (GLI) transcription factors. High GLI1 expression correlates with worse outcomes in breast cancer. Non-canonical GLI1 activation is one mechanism by which estrogen exposure promotes breast cancer stem cell proliferation and epithelial–mesenchymal transition. Tamoxifen resistant cell lines show aberrant activation of Hh signaling, and knockdown of Hh pathway inhibited growth of tamoxifen resistant cells. As in other cancers Hh signaling is activated by the PI3K/AKT pathway in these endocrine resistant cell lines. Hh pathway activation has also been reported to mediate chemotherapy resistance in TNBC via various mechanisms including paracrine signaling to tumor micro-environment and selective proliferation of cancer stem cells. Co-activation of Hh and Wnt signaling pathways is a poor prognostic marker in TNBC. Early phase clinical trials are evaluating the combination of smoothened (SMO) inhibitors and chemotherapy in TNBC. In addition to SMO inhibitors like vismodegib and sonidegib, which are in clinical use for basal cell carcinoma, GLI1 inhibitors like GANT58 and GANT61 are in preclinical drug development and might be an effective mechanism to overcome drug resistance in breast cancer. Gene signatures predictive of Hh pathway activation could enrich for patients likely to respond to these agents.
Collapse
Affiliation(s)
- Priyanka Bhateja
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mathew Cherian
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
60
|
Role of Hedgehog Signaling in Vasculature Development, Differentiation, and Maintenance. Int J Mol Sci 2019; 20:ijms20123076. [PMID: 31238510 PMCID: PMC6627637 DOI: 10.3390/ijms20123076] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
The role of Hedgehog (Hh) signaling in vascular biology has first been highlighted in embryos by Pepicelli et al. in 1998 and Rowitch et al. in 1999. Since then, the proangiogenic role of the Hh ligands has been confirmed in adults, especially under pathologic conditions. More recently, the Hh signaling has been proposed to improve vascular integrity especially at the blood–brain barrier (BBB). However, molecular and cellular mechanisms underlying the role of the Hh signaling in vascular biology remain poorly understood and conflicting results have been reported. As a matter of fact, in several settings, it is currently not clear whether Hh ligands promote vessel integrity and quiescence or destabilize vessels to promote angiogenesis. The present review relates the current knowledge regarding the role of the Hh signaling in vasculature development, maturation and maintenance, discusses the underlying proposed mechanisms and highlights controversial data which may serve as a guideline for future research. Most importantly, fully understanding such mechanisms is critical for the development of safe and efficient therapies to target the Hh signaling in both cancer and cardiovascular/cerebrovascular diseases.
Collapse
|
61
|
Jiang X, Zhang QL, Liu TG, Zhao WP, Yang M, Wang LN, Sun WL, Pan L, Luo AP, Huang JC, Gu XH. Evaluation of Local Injection of Bevacizumab against Triple-Negative Breast Cancer Xenograft Tumors. Curr Pharm Des 2019; 25:862-870. [PMID: 30848190 DOI: 10.2174/1381612825666190306164157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022]
Abstract
Background and objective:Bevacizumab (BVZ) is a recombinant humanized antibody that inhibits the vascular endothelial growth factor A (VEGFA) and is used for the treatment of various types of cancer. BVZ is primarily given by the intravenous drip (I.V.), which often leads to low efficacy and various side effects. Therefore, the present study was to evaluate the effect of local delivery of BVZ against triple-negative breast cancer (TNBC) xenograft tumors.Methods:Mice 4T1 TNBC cells were engrafted in female BALB/c mice. After the tumors reached about 5 mm (diameter), animals were treated with BVZ through the local injection from four directions around the tumors. The tumor growth, survival and potential mechanisms of action were evaluated.Results:The growth and microvessel density of engrafted tumors were dramatically reduced with the tumor inhibition rate of 32.8 ± 3%. No obvious side effects were observed. The expression of VEGFA, VEGF receptor (VEGFR), matrix metalloproteinase (MMP)-2, MMP-9, Delta-like ligand 4 (DLL4) and Integrin-5 was significantly reduced in TNBC tumor tissues. In contrast, tissue inhibitor of matrix metalloproteinase (TIMP)-2 was significantly upregulated in xenograft tumors. Additionally, local delivery of BVZ led to the reduction of VEGFA and tumor necrosis factor (TNF)-alpha in the serum. Protein-protein interaction (PPI) analysis revealed that the proteins altered by the local delivery of BVZ were associated with angiogenesis and regulation of cell migration.Conclusion:This study provided evidence associated with local delivery of BVZ against TNBC tumors supporting the use of BVZ local injections to overcome some of the disadvantages associated with I.V. therapy with BVZ.
Collapse
Affiliation(s)
- Xin Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiao-Li Zhang
- Department of Acupuncture and Minimally Invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Tie-Gang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei-Peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Ming Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li-Na Wang
- Department of Acupuncture and Minimally Invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Wei-Liang Sun
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lin Pan
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ai-Ping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jin-Chang Huang
- Department of Acupuncture and Minimally Invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Xiao-Hong Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
62
|
Lan L, Xu B, Chen Q, Jiang J, Shen Y. Weighted correlation network analysis of triple-negative breast cancer progression: Identifying specific modules and hub genes based on the GEO and TCGA database. Oncol Lett 2019; 18:1207-1217. [PMID: 31423181 PMCID: PMC6607224 DOI: 10.3892/ol.2019.10407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive malignancy of frequent high histologic grade with no effective specific targeted therapies. The present study aimed to identify specific modules and hub genes that may influence the progression of TNBC. The key words ‘breast cancer’ were used to search microarray datasets in the Gene Expression Omnibus and The Cancer Genome Atlas databases that included 5 datasets. A total of 11 co-expression modules were constructed based on the expression levels of 5,782 genes obtained from 456 patients with TNBC using the weighted correlation network analysis (WGCNA). The results demonstrated that the red module was significantly associated with relapse-free survival (RFS) in patients with TNBC [hazard ratio (HR)=0.381, 95% confidence interval (CI), 0.183–0.793; P=0.010]. The functional enrichment analysis revealed that the biological processes corresponding to the red module were ‘mRNA processing’, ‘histone lysine methylation’ and ‘regulation of TOR signaling’. In addition, Hedgehog signaling pathways were considered to serve a critical role in the development of this disease (P<0.001). A total of 12 hub genes were identified, of which α-thalassemia/mental retardation syndrome X-linked (ATRX) was significantly associated with RFS in patients with TNBC (HR=0.601; 95%CI, 0.376–0.960; P=0.033). The receiver operating characteristic curve indicated that ATRX could distinguish relapse from non-relapse in patients with TNBC (area under the curve=0.570; P=0.023). In conclusion, the present study demonstrated that ATRX was associated with TNBC progression, which suggested that ATRX may be involved in a recombination-mediated telomere maintenance mechanism.
Collapse
Affiliation(s)
- Lei Lan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Qu Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yueping Shen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
63
|
Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 2019; 133:953-970. [PMID: 31036756 DOI: 10.1042/cs20180845] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI-DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.
Collapse
|
64
|
Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells 2019; 8:cells8040375. [PMID: 31027259 PMCID: PMC6523618 DOI: 10.3390/cells8040375] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials. The contribution of the Hh pathway in BC tumorigenesis and progression, its prognostic role, and its value as a therapeutic target vary according to the molecular, clinical, and histopathological characteristics of the BC patients. The evidence presented here highlights the relevance of the Hh signaling in BC, and suggest that this pathway is key for BC progression and metastasis.
Collapse
|
65
|
GPCR Modulation in Breast Cancer. Int J Mol Sci 2018; 19:ijms19123840. [PMID: 30513833 PMCID: PMC6321247 DOI: 10.3390/ijms19123840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most prevalent cancer found in women living in developed countries. Endocrine therapy is the mainstay of treatment for hormone-responsive breast tumors (about 70% of all breast cancers) and implies the use of selective estrogen receptor modulators and aromatase inhibitors. In contrast, triple-negative breast cancer (TNBC), a highly heterogeneous disease that may account for up to 24% of all newly diagnosed cases, is hormone-independent and characterized by a poor prognosis. As drug resistance is common in all breast cancer subtypes despite the different treatment modalities, novel therapies targeting signaling transduction pathways involved in the processes of breast carcinogenesis, tumor promotion and metastasis have been subject to accurate consideration. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in the development and progression of many tumors including breast cancer. Here we discuss data regarding GPCR-mediated signaling, pharmacological properties and biological outputs toward breast cancer tumorigenesis and metastasis. Furthermore, we address several drugs that have shown an unexpected opportunity to interfere with GPCR-based breast tumorigenic signals.
Collapse
|
66
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
67
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
68
|
Abstract
Although tumours initiate from oncogenic changes in a cancer cell, subsequent tumour progression and therapeutic response depend on interactions between the cancer cells and the tumour microenvironment (TME). The primary monocilium, or cilium, provides a spatially localized platform for signalling by Hedgehog, Notch, WNT and some receptor tyrosine kinase pathways and mechanosensation. Changes in ciliation of cancer cells and/or cells of the TME during tumour development enforce asymmetric intercellular signalling in the TME. Growing evidence indicates that some oncogenic signalling pathways as well as some targeted anticancer therapies induce ciliation, while others repress it. The links between the genomic profile of cancer cells, drug treatment and ciliary signalling in the TME likely affect tumour growth and therapeutic response.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Jiangsu, China
| | - Anna A Kiseleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Rimkus TK, Carpenter RL, Sirkisoon S, Zhu D, Pasche BC, Chan MD, Lesser GJ, Tatter SB, Watabe K, Debinski W, Lo HW. Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal Glioblastoma via Transcriptional Activation of CD44. Cancer Res 2018; 78:2589-2600. [PMID: 29463580 PMCID: PMC5955849 DOI: 10.1158/0008-5472.can-17-2933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023]
Abstract
The molecular pathways driving mesenchymal glioblastoma (GBM) are still not well understood. We report here that truncated glioma-associated oncogene homolog 1 (tGLI1) is a tumor-specific transcription factor that facilitates GBM growth, is enriched in the mesenchymal subtype of GBM and glioma stem cells (GSC), and promotes mesenchymal GSC by upregulating transcription of CD44. In an orthotopic GBM xenograft mouse model, tGLI1-overexpressing tumors grew more aggressively with increased proliferation and angiogenesis compared with control and GLI1-overexpressing xenografts. tGLI1 was highly expressed in GBM clinical specimens but undetectable in normal brains, whereas GLI1 was expressed in both tissues. A tGLI1 activation signature (tGAS) correlated with glioma grade, tumor angiogenesis, and poor overall survival, and GBMs with high tGAS were enriched with mesenchymal GBM/GSC gene signatures. Neurospheres contained increased levels of tGLI1, but not GLI1, compared with the monolayer culture; mesenchymal GSC expressed more tGLI1 than proneural GSC. Ectopic tGLI1 expression enhanced the ability of mesenchymal GSC to yield neurospheres in vitro and to form tumors in mouse brains. Selective tGLI1 knockdown reduced neurosphere formation of GBM cells. tGLI1 bound to and transactivated the promoter of the CD44 gene, a marker and mediator for mesenchymal GSC, leading to its expression. Collectively, these findings advance our understanding of GBM biology by establishing tGLI1 as a novel transcriptional activator of CD44 and a novel mediator of mesenchymal GBM and GSC.Significance: These findings highlight the role of a tumor-specific gain-of-function transcription factor tGLI1 in mesenchymal glioma stem cell maintenance and mesenchymal GBM growth. Cancer Res; 78(10); 2589-600. ©2018 AACR.
Collapse
Affiliation(s)
- Tadas K Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael D Chan
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Glenn J Lesser
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Stephen B Tatter
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
70
|
Bao C, Kramata P, Lee HJ, Suh N. Regulation of Hedgehog Signaling in Cancer by Natural and Dietary Compounds. Mol Nutr Food Res 2017; 62. [PMID: 29164817 DOI: 10.1002/mnfr.201700621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/14/2017] [Indexed: 12/12/2022]
Abstract
The aberrant Hedgehog (Hh) signaling induced by mutations or overexpression of the signaling mediators has been implicated in cancer, associated with processes including inflammation, tumor cell growth, invasion, and metastasis, as well as cancer stemness. Small molecules targeting the regulatory components of the Hh signaling pathway, especially Smoothened (Smo), have been developed for the treatment of cancer. However, acquired resistance to a Smo inhibitor vismodegib observed in clinical trials suggests that other Hh signaling components need to be explored as potential anticancer targets. Natural and dietary compounds provide a resource for the development of potent agents affecting intracellular signaling cascades, and numerous studies have been conducted to evaluate the efficacy of natural products in targeting the Hh signaling pathway. In this review, we summarize the role of Hh signaling in tumorigenesis, discuss results from recent studies investigating the effect of natural products and dietary components on Hh signaling in cancer, and provide insight on novel small molecules as potential Hh signaling inhibitors.
Collapse
Affiliation(s)
- Cheng Bao
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Pavel Kramata
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
71
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
72
|
Microarray analyses reveal genes related to progression and prognosis of esophageal squamous cell carcinoma. Oncotarget 2017; 8:78838-78850. [PMID: 29108269 PMCID: PMC5668002 DOI: 10.18632/oncotarget.20232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023] Open
Abstract
Esophageal squamous cell carcinoma is a high morbidity and mortality cancer in China. Here are few biomarkers and therapeutic targets. Our study was aimed to identify candidate genes correlated to ESCC. Oncomine, The Cancer Genome Atlas, Gene Expression Omnibus were retrieved for eligible ESCC data. Deregulated genes were identified by meta-analysis and validated by an independent dataset. Survival analyses and bioinformatics analyses were used to explore potential mechanisms. Copy number variant analyses identified upstream mechanisms of candidate genes. In our study, top 200 up/down-regulated genes were identified across two microarrays. A total of 139 different expression genes were validated in GSE53625. Survival analysis found that nine genes were closely related to prognosis. Furthermore, Gene Ontology analyses and Kyoto Encyclopedia of Genes and Genomes analyses showed that different expression genes were mainly enriched in cell division, cell cycle and cell-cell adhesion pathways. Copy number variant analyses indicated that overexpression of ECT2 and other five genes were correlated with copy number amplification. The current study demonstrated that ECT2 and other eight candidate genes were correlated to progression and prognosis of esophageal squamous cell carcinoma, which might provide novel insights to the mechanisms.
Collapse
|