51
|
Yeh LY, Liu CJ, Wong YK, Chang C, Lin SC, Chang KW. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget 2016; 6:6062-75. [PMID: 25714028 PMCID: PMC4467422 DOI: 10.18632/oncotarget.3340] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023] Open
Abstract
Here we showed that exogenous miR-372 expression and knockdown of p62 (sequestosome1 or SQSTM1), both increased migration of head and neck squamous cell carcinoma (HNSCC) cells. p62 induced phase II detoxification enzyme NADPH quinone oxidoreductase 1 (NQO1), which decreased ROS levels and cell migration. Also, miR-372 decreased p62 during hypoxia, thus increasing cell migration. Levels of miR-372 and p62 inversely correlated in human HNSCC tissues. Plasma levels of miR-372 was associated with advanced tumor stage and patient mortality. Both plasma and salivary miR-372 levels were decreased after tumor resection. We conclude that miR-372 decreases p62, thus increasing ROS and motility in HNSCC cells.
Collapse
Affiliation(s)
- Li-Yin Yeh
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Yong-Kie Wong
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Christine Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
52
|
Deynoux M, Sunter N, Hérault O, Mazurier F. Hypoxia and Hypoxia-Inducible Factors in Leukemias. Front Oncol 2016; 6:41. [PMID: 26955619 PMCID: PMC4767894 DOI: 10.3389/fonc.2016.00041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 01/10/2023] Open
Abstract
Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and development of leukemic cells. LSCs share specific niches with normal hematopoietic stem cells with the niche itself being composed of a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukemia is not considered a “solid” tumor, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumor suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukemic development and therapeutic resistance and to discuss the recent hypoxia-based strategies proposed to eradicate leukemias.
Collapse
Affiliation(s)
- Margaux Deynoux
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| | - Nicola Sunter
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| | - Olivier Hérault
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours, Tours, France; Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Frédéric Mazurier
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| |
Collapse
|
53
|
Han Y, Wang X, Wang B, Jiang G. The progress of angiogenic factors in the development of leukemias. Intractable Rare Dis Res 2016; 5:6-16. [PMID: 26989643 PMCID: PMC4761589 DOI: 10.5582/irdr.2015.01048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenic factors have been demonstrated to play important roles in modulating angiogenesis of solid tumors. Recently, accumulating studies extensively indicated that some angiogenic factors widely exist in malignant cells of hematologic malignancy, which regulated the expression of a number of genes that were involved in abnormal proliferation, differentiation and apoptosis of these cells. With deep research of angiogenic factors, its expression, function and regulatory mechanism were gradually elucidated, and some of them were related to the development and prognosis of leukemia, or provide more possible strategies for treatment of patients with leukemia. Herein, we summarize the progress in study of some important angiogenic factors and hematological malignancies.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, China
| | - Bingping Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Guosheng Jiang, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, NO.18877 of Jingshi Road, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|
54
|
Xie R, Lin X, Du T, Xu K, Shen H, Wei F, Hao W, Lin T, Lin X, Qin Y, Wang H, Chen L, Yang S, Yang J, Rong X, Yao K, Xiao D, Jia J, Sun Y. Targeted Disruption of miR-17-92 Impairs Mouse Spermatogenesis by Activating mTOR Signaling Pathway. Medicine (Baltimore) 2016; 95:e2713. [PMID: 26886608 PMCID: PMC4998608 DOI: 10.1097/md.0000000000002713] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The miR-17-92 cluster and its 6 different mature microRNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a, play important roles in embryo development, immune system, kidney and heart development, adipose differentiation, aging, and tumorigenicity. Currently, increasing evidence indicates that some members of miR-17-92 cluster may be critical players in spermatogenesis, including miR-17, miR-18a, and miR-20a. However, the roles and underlying mechanisms of miR-17-92 in spermatogenesis remain largely unknown. Our results showed that the targeted disruption of miR-17-92 in the testes of adult mice resulted in severe testicular atrophy, empty seminiferous tubules, and depressed sperm production. This phenotype is partly because of the reduced number of spermatogonia and spermatogonial stem cells, and the significantly increased germ cell apoptosis in the testes of miR-17-92-deficient mice. In addition, overactivation of the mammalian target of rapamycin signaling pathway and upregulation of the pro-apoptotic protein Bim, Stat3, c-Kit, and Socs3 were also observed in miR-17-92-deficient mouse testes, which might be, at least partially if not all, responsible for the aforementioned phenotypic changes in mutant testes. Taken together, these findings suggest that miR-17-92 is essential for normal spermatogenesis in mice.
Collapse
Affiliation(s)
- Raoying Xie
- From the Cancer Research Institute, Southern Medical University (RX, XL, HS, FW, WH, TL, XL, YQ, HW, LC, SY, JY, KY, DX, JJ); Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University (RX, DX); Zhongshan School of Medicine, Sun Yat-sen University (YS); Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University (TD); Department of General Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou (KX); Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou (RX); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University (KX); Department of Oncology, Nanfang Hospital, Southern Medical University (XR); and Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (FW)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Liu Z, Sun Y, Tan S, Liu L, Hu S, Huo H, Li M, Cui Q, Yu M. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells. Tumour Biol 2015; 37:6661-71. [PMID: 26646563 DOI: 10.1007/s13277-015-4479-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/19/2015] [Indexed: 12/01/2022] Open
Abstract
Although the Warburg effect is a dominant metabolic phenotype observed in cancers, the metabolic changes and adaptation occurring in tumors have been demonstrated to extend beyond the Warburg effect and thus considered a secondary effect to the transformation process of carcinogenesis, including nutritional deficiencies. However, the role of nutritional deficiencies in this metabolic reprogramming (e. g., oxidative phosphorylation (OXPHOS)/glycolysis interconversion) is not completely known yet. Here, we showed that under regular culture condition, the proliferation of U251 cells, but not other tumor cell lines, preferentially performed the Warburg effect and was remarkably inhibited by oxamic acid which can inhibit the activity of lactate dehydrogenase (LDH); whereas under serum starvation, glycolysis was depressed, tricarboxylic acid cycle (TCA) was enhanced, and the activity of OXPHOS was reinforced to maintain cellular ATP content in a high level, but interestingly, we observed a decreased expression of reactive oxygen species (ROS). Moreover, the upregulated activity of mitochondrial complex I was confirmed by Western blots and showed that the mitochondrial-related protein, NDUFA9, NDUFB8, ND1, and VDAC1 were remarkably increased after serum starved. Mechanistically, nutritional deficiencies could reduce hypoxia-inducible factor α (HIF-1α) protein expression to increase C-MYC protein level, which in turn increased nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) transcription to enhance the activity of OXPHOS, suggesting that metabolic reprogramming by the changes of microenvironment during the carcinogenesis can provide some novel therapeutic clues to traditional cancer treatments.
Collapse
Affiliation(s)
- Zhongjian Liu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yang Sun
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Shirui Tan
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Liang Liu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Suqiong Hu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Hongyu Huo
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, 650091, China. .,Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
56
|
Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 2015; 42:841-51. [PMID: 25689954 DOI: 10.1007/s11033-015-3858-x] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.
Collapse
Affiliation(s)
- Rupert Courtnay
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
57
|
Jiao Y, Zhu M, Mao X, Long M, Du X, Wu Y, Abudureyimu K, Zhang C, Wang Y, Tao Y, Luo X, Li L. MicroRNA-130a expression is decreased in Xinjiang Uygur patients with type 2 diabetes mellitus. Am J Transl Res 2015; 7:1984-1991. [PMID: 26692941 PMCID: PMC4656774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
AIMS MicroRNAs play important roles in energy metabolism, insulin synthesis, insulin transport and the development of diabetes. This study aims to investigate the expression and effect of microRNA-130a in Uygur patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Peripheral blood and omental adipose tissues were collected from individuals with normal glucose tolerance and patients with T2DM. The microRNA expression profile of peripheral blood was established by microarray analysis. The differentially expressed microRNAs and possible target genes were identified by bioinformatics analysis. MicroRNA-130a mimics and inhibitors were transfected into 3T3-L1 preadipocytes. RESULTS Our results showed that microRNA-130a expression level was significantly decreased in peripheral blood and omental adipose tissues of T2DM patients (P < 0.01). Peroxisome proliferator-activated receptors γ (PPARγ) were predicted as target genes of microRNA-130a. This prediction was verified by the results that PPARγ mRNA expression in omental adipose tissues of T2DM patients were significantly increased (P < 0.01). The glucose consumption level after microRNA-130a transfection was significantly decreased (P < 0.05). And, microRNA-130a mimics inhibited PPARγ expression at both mRNA and protein level, further suggesting that PPARγ is a target gene of microRNA-130a. Additionally, adiponectin, lipoprotein lipase, CCAAT enhancer binding protein α, and the downstream genes of PPARγ, were significantly decreased after microRNA-130a mimics transfection. CONCLUSIONS In conclusion, microRNA-130a is decreased in Uygur patients with T2DM and it may play a role in T2DM through targeting PPARγ.
Collapse
Affiliation(s)
- Yi Jiao
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical UniversityUrumqi 830011, P. R China
| | - Manli Zhu
- Central Laboratory of Xinjiang Medical University, Xinjiang Medical UniversityUrumqi 830011, P. R China
| | - Xinmin Mao
- Traditional Chinese Medical College, Xinjiang Medical UniversityUrumqi 830011, P. R China
| | - Mei Long
- Lab Center of Mechanism, Preclinical School, Xinjiang Medical UniversityUrumqi 830011, P. R China
| | - Xian Du
- Department of Pharmacology, Preclinical Medicine College, Xinjiang Medical UniversityUrumqi, Xinjiang 830011, P. R China
| | - Yun Wu
- General Internal Medicine, First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830011, P. R China
| | - Kelimu Abudureyimu
- Endoscopic Branch, Xinjiang Uygur Autonomous Regional People’s HospitalUrumqi 830000, P. R China
| | - Cheng Zhang
- Endoscopic Branch, Xinjiang Uygur Autonomous Regional People’s HospitalUrumqi 830000, P. R China
| | - Ye Wang
- Department of Pharmacology, Preclinical Medicine College, Xinjiang Medical UniversityUrumqi, Xinjiang 830011, P. R China
| | - Yicun Tao
- Department of Pharmacology, Preclinical Medicine College, Xinjiang Medical UniversityUrumqi, Xinjiang 830011, P. R China
| | - Xin Luo
- Department of Pharmacology, Preclinical Medicine College, Xinjiang Medical UniversityUrumqi, Xinjiang 830011, P. R China
| | - Linlin Li
- Department of Pharmacology, Preclinical Medicine College, Xinjiang Medical UniversityUrumqi, Xinjiang 830011, P. R China
| |
Collapse
|
58
|
Wang IK, Sun KT, Tsai TH, Chen CW, Chang SS, Yu TM, Yen TH, Lin FY, Huang CC, Li CY. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci 2015; 136:133-141. [PMID: 26165754 DOI: 10.1016/j.lfs.2015.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/14/2022]
Abstract
AIMS Autophagy is a cellular homeostatic mechanism activated under stress conditions and might act as protective response for cell survival in ischemic kidney injury. The micro RNA (miRNA) network may be critically involved in the regulation of autophagy. The aim of this study was to evaluate whether miRNA regulates autophagy in ischemic kidney injury and renal proximal tubular cells under hypoxic conditions. MATERIALS AND METHODS Ischemic kidney injury was performed by clamping bilateral renal pedicles for 60min in male mice. Human kidney proximal tubular (HK-2) cells were exposed to in vitro hypoxic conditions. ATG16L1 is essential for autophagosome formation. Bioinformatics analyses were used to select the candidate miRNA, miR-20a-5p, which potentially targets ATG16L1. Gain-of-function and loss-of-function methods were employed to evaluate the effects of miRNA on autophagy. Chromatin immunoprecipitation analysis and promoter luciferase reporter assays were used to evaluate the interaction of transcriptional factors with miRNA. KEY FINDINGS Increased expression of punctate LC3 and ATG16L1, autophagy-related proteins, and down-expression of miR-20a-5p were detected in kidneys after ischemic injury and in HK-2 cells under hypoxic conditions. 3'-untranslated region luciferase reporter assays indicated that miR-20a-5p targeted ATG16L1 messenger RNA. Over-expression of miR-20a-5p reduced the expression of LC3-II and ATG16L1 in HK-2 cells under hypoxic conditions, whereas antagomiR-20a reversed the inhibition. Using RNAi against hypoxia-inducible factor-1α (HIF-1α) in HK-2 cells, we confirmed the inhibitory binding of HIF-1α to miR-20a-5p. SIGNIFICANCE The signaling axis of HIF-1α, miR-20a-5p, and ATG16L1 in autophagic process might be a critical adapting mechanism for ischemic kidney injury.
Collapse
Affiliation(s)
- I-Kuan Wang
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Division of Nephrology, China Medical University Hospital, Taichung, Taiwan; Department of Internal Medicine, China Medical University College of Medicine, Taichung, Taiwan
| | - Kuo-Ting Sun
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Hsun Tsai
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chia-Wen Chen
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Chang
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Min Yu
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzung-Hai Yen
- Division of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiu-Ching Huang
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan; Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
59
|
Chakravarthi BVSK, Pathi SS, Goswami MT, Cieślik M, Zheng H, Nallasivam S, Arekapudi SR, Jing X, Siddiqui J, Athanikar J, Carskadon SL, Lonigro RJ, Kunju LP, Chinnaiyan AM, Palanisamy N, Varambally S. The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget 2015; 5:6654-69. [PMID: 25115393 PMCID: PMC4196154 DOI: 10.18632/oncotarget.2208] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Collagen prolyl hydroxylases (C-P4HAs) are a family of enzymes involved in collagen biogenesis. One of the isoforms of P4HA, Prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), catalyzes the formation of 4-hydroxyproline that is essential for the proper three-dimensional folding of newly synthesized procollagen chains. Here, we show the overexpression of P4HA1 in aggressive prostate cancer. Immunohistochemical analysis using tissue microarray demonstrated that P4HA1 expression was correlated with prostate cancer progression. Using in vitro studies, we showed that P4HA1 plays a critical role in prostate cancer cell growth and tumor progression. Expression profiling studies using P4HA1-modulated prostate cells suggested regulation of Matrix metalloprotease 1. The invasive properties of P4HA1 overexpressing cells were reversed by blocking MMP1. Our studies indicate P4HA1 copy number gain in a subset of metastatic prostate tumors and its expression is also regulated by microRNA-124. MiR-124 in turn is negatively regulated by transcriptional repressors EZH2 and CtBP1, both of which are overexpressed in aggressive prostate cancer. Chick chorioallantoic membrane (CAM) assay and mice xenograft investigations show that P4HA1 is required for tumor growth and metastasis in vivo. Our observations suggest that P4HA1 plays a critical role in prostate cancer progression and could serve as a viable therapeutic target.
Collapse
Affiliation(s)
| | - Satya Sreehari Pathi
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan; These authors contributted equally to this work
| | - Moloy T Goswami
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan; These authors contributted equally to this work
| | - Marcin Cieślik
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan
| | | | - Subramanyeswara R Arekapudi
- Michigan Center for Translational Pathology, University of Michigan; Present Address: Department of Hematology and Oncology, Providence Hospital and Medical Center, Southfiled, MI 48075, USA
| | - Xiaojun Jing
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Javed Siddiqui
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Jyoti Athanikar
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Shannon L Carskadon
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Robert J Lonigro
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan; Department of Urology, University of Michigan; Howard Hughes Medical Institute, University of Michigan Medical School; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nallasivam Palanisamy
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sooryanarayana Varambally
- Michigan Center for Translational Pathology; Department of Pathology, University of Michigan; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
60
|
Chen WY, Zhao XJ, Yu ZF, Hu FL, Liu YP, Cui BB, Dong XS, Zhao YS. The potential of plasma miRNAs for diagnosis and risk estimation of colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7092-7101. [PMID: 26261602 PMCID: PMC4525936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Circulating microRNAs (miRNAs) were recognized to be potential non-invasive biomarkers for colorectal cancer (CRC) detection and prediction. Meanwhile, the association of the expression of plasma miRNAs with the risk of CRC patients has rarely been analyzed. Therefore, we conducted this study to evaluate the value of plasma miRNAs for CRC diagnosis and risk estimation. Fasting blood samples from 100 CRC patients and 79 cancer-free controls were collected. Plasma miR-106a, miR-20a, miR-27b, miR-92a and miR-29a levels were detected by RT-qPCR. Sensitivity and specificity were employed to evaluate the diagnostic value of miRNAs for CRC. Univariate and multivariate logistic regression were employed to analyze the association between miRNAs expression and CRC risk. As results, miR-106a and miR-20a were elevated in the patients with CRC. The sensitivity of miR-106a was 74.00% and the specificity was 44.40%, while the cutoff value was 2.03. As for miR-20a, the sensitivity was 46.00% and specificity was 73.42% when employed 2.44 as cutoff value. High expression of plasma miR-106a increased CRC risk by 1.80 -fold. Plasma miR-106a and miR-20a may as noninvasive biomarkers for detecting the CRC. High expression of miR-106a associated with CRC risk.
Collapse
Affiliation(s)
- Wang-Yang Chen
- Department of Epidemiology, Public Health College, Harbin Medical UniversityHarbin, Heilongjiang 150081, P. R. China
| | - Xiao-Juan Zhao
- Department of Epidemiology, Public Health College, Harbin Medical UniversityHarbin, Heilongjiang 150081, P. R. China
| | - Zhi-Fu Yu
- Department of Epidemiology, Public Health College, Harbin Medical UniversityHarbin, Heilongjiang 150081, P. R. China
| | - Fu-Lan Hu
- Department of Epidemiology, Public Health College, Harbin Medical UniversityHarbin, Heilongjiang 150081, P. R. China
| | - Yu-Peng Liu
- Department of Epidemiology, Public Health College, Harbin Medical UniversityHarbin, Heilongjiang 150081, P. R. China
| | - Bin-Bin Cui
- Department of Abdominal Surgery, The Tumor Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, P. R. China
| | - Xin-Shu Dong
- Department of Tumor Surgery, The Forth Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, P. R. China
| | - Ya-Shuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical UniversityHarbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
61
|
Li Y, Wei Y, Guo J, Cheng Y, He W. Interactional role of microRNAs and bHLH-PAS proteins in cancer (Review). Int J Oncol 2015; 47:25-34. [PMID: 25997457 DOI: 10.3892/ijo.2015.3007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as an emerging class of master regulators that regulate human gene expression at the post-transcriptional level and are involved in many normal and pathological cellular processes. Mammalian basic HLH (helix-loop-helix)-PER-ARNT-SIM (bHLH-PAS) proteins are heterodimeric transcriptional regulators that sense and respond to environmental signals (such as chemical pollutants) or to physiological signals (for instance hypoxia). In the normal state, bHLH-PAS proteins are responsible for multiple critical aspects of physiology to ensure the cell accurate homeostasis, but dysregulation of these proteins has been shown to contribute to carcinogenic events such as tumor initiation, promotion, and progression. Increasing epidemiological and experimental studies have shown that bHLH-PAS proteins regulate a panel of miRNAs, whereas some miRNAs also target bHLH-PAS proteins. The interaction between miRNAs and certain bHLH-PAS proteins [hypoxia-inducible factor (HIF) and aryl hydrocarbon receptor (AHR)] is relevant to many vital events associated with tumorigenesis. This review will summarize recent findings on the interesting and complicated underlying mechanisms that miRNAs interact with HIFs or AHR in tumors, hopefully to benefit the discovery of novel drug-interfering targets for cancer therapy.
Collapse
Affiliation(s)
- Yumin Li
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yucai Wei
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jiwu Guo
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yusheng Cheng
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Wenting He
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
62
|
Huang H, Chen AY, Rojanasakul Y, Ye X, Rankin GO, Chen YC. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods 2015; 15:464-475. [PMID: 26113875 DOI: 10.1016/j.jff.2015.03.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.
Collapse
Affiliation(s)
- Haizhi Huang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, China ; College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Allen Y Chen
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, China
| | - Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Yi Charlie Chen
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
63
|
Sun KT, Chen MYC, Tu MG, Wang IK, Chang SS, Li CY. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 2015; 73:145-53. [PMID: 25485521 DOI: 10.1016/j.bone.2014.11.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022]
Abstract
Autophagy and autophagy-related proteins (ATGs) play decisive roles in osteoclast differentiation. Emerging lines of evidence show the deregulation of miRNA in autophagic responses. However, the role of hypoxia and involvement of miRNA in osteoclast differentiation are unclear. In the present study, we demonstrate that hypoxia caused induction of autophagy and osteoclast differentiation markers in RAW264.7 cells stimulated with M-CSF and RANKL. In addition, miR-20a was significantly repressed during hypoxia and identified as the prime candidate involved in hypoxia-induced osteoclast differentiation. The results from dual luciferase reporter assay revealed that miR-20a directly targets Atg16l1 by binding to its 3'UTR end. Further, miR-20a transfection studies showed significant down regulation of autophagic proteins (LC3-II and ATG16L1) and osteoclast differentiation markers (Nfatc1, Traf6, and Trap) thus confirming the functional role of miR-20a under hypoxic conditions. Results of chromatin immunoprecipitation assay showed that HIF-1α binds to miRNA-20a. From miRNA Q-PCR results, we confirmed that shRNA HIF-1α knockdown significantly downregulated both autophagy (LC3, p62, Atg5, Atg12, Atg16l1, Atg7, Becn1, Atg9a) and osteoclast markers (Traf6, Nfatc1, Ctsk, cFos, Mmp9, Trap) in RAW264.7 cells. Thus, our findings suggest that the regulatory axis of HIF-1α-miRNA-20a-Atg16l1 might be a critical mechanism for hypoxia-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Kuo-Ting Sun
- Graduate Institute of Clinical Medical Science, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan; Department of Pediatric Dentistry, China Medical University Hospital, No. 2 Yu-Der Rd., Taichung, Taiwan; School of Dentistry, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan
| | - Michael Y C Chen
- School of Dentistry, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan; Department of Oral & Maxillofacial Surgeon, China Medical University Hospital, No. 2 Yu-Der Rd., Taichung, Taiwan
| | - Ming-Gene Tu
- School of Dentistry, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Clinical Medical Science, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan; Division of Nephrology, Department of medicine, China Medical University Hospital, No. 2 Yu-Der Rd., Taichung, Taiwan
| | - Shih-Sheng Chang
- Graduate Institute of Clinical Medical Science, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan; Division of Cardiology, Department of medicine, China Medical University Hospital, No. 2 Yu-Der Rd., Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Science, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan; Department of Anesthesiology, China Medical University Hospital, No. 2 Yu-Der Rd., Taichung, Taiwan.
| |
Collapse
|
64
|
Karnati HK, Raghuwanshi S, Sarvothaman S, Gutti U, Saladi RGV, Komati JK, Tummala PR, Gutti RK. microRNAs: Key Players in Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:171-211. [DOI: 10.1007/978-3-319-22380-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
65
|
Lin HS, Gong JN, Su R, Chen MT, Song L, Shen C, Wang F, Ma YN, Zhao HL, Yu J, Li WW, Huang LX, Xu XH, Zhang JW. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression. J Leukoc Biol 2014; 96:1023-35. [PMID: 25258381 DOI: 10.1189/jlb.1a0514-240r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
miRNAs are short, noncoding RNAs that regulate expression of target genes at post-transcriptional levels and function in many important cellular processes, including differentiation, proliferation, etc. In this study, we observed down-regulation of miR-199a-5p during monocyte/macrophage differentiation of HL-60 and THP-1 cells, as well as human CD34(+) HSPCs. This down-regulation of miR-199a-5p resulted from the up-regulation of PU.1 that was demonstrated to regulate transcription of the miR-199a-2 gene negatively. Overexpression of miR-199a-5p by miR-199a-5p mimic transfection or lentivirus-mediated gene transfer significantly inhibited monocyte/macrophage differentiation of the cell lines or HSPCs. The mRNA encoding an ACVR1B was identified as a direct target of miR-199a-5p. Gradually increased ACVR1B expression level was detected during monocyte/macrophage differentiation of the leukemic cell lines and HSPCs, and knockdown of ACVR1B resulted in inhibition of monocyte/macrophage differentiation of HL-60 and THP-1 cells, which suggested that ACVR1B functions as a positive regulator of monocyte/macrophage differentiation. We demonstrated that miR-199a-5p overexpression or ACVR1B knockdown promoted proliferation of THP-1 cells through increasing phosphorylation of Rb. We also demonstrated that the down-regulation of ACVR1B reduced p-Smad2/3, which resulted in decreased expression of C/EBPα, a key regulator of monocyte/macrophage differentiation, and finally, inhibited monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Hai-Shuang Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Nan Gong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Su
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Shen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Wei Li
- Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li-Xia Huang
- First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China; and
| | - Xin-Hua Xu
- Taizhou Cancer Hospital, Zhejiang Province, China
| | - Jun-Wu Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;
| |
Collapse
|
66
|
Abstract
SIGNIFICANCE Hypoxia is a hallmark of the tumor microenvironment and represents a major source of failure in cancer therapy. RECENT ADVANCES Recent work has generated extensive evidence that microRNAs (miRNAs) are significant components of the adaptive response to low oxygen in tumors. Induction of specific miRNAs, collectively termed hypoxamiRs, has become an accepted feature of the hypoxic response in normal and transformed cells. CRITICAL ISSUES Overexpression of miR-210, the prototypical hypoxamiR, is detected in most solid tumors, and it has been linked to adverse prognosis in many tumor types. Several miR-210 target genes, including iron-sulfur (Fe-S) cluster scaffold protein (ISCU) and glycerol-3-phosphate dehydrogenase 1-like (GPD1L), have been correlated with prognosis in an inverse fashion to miR-210, suggesting that their down- regulation by miR-210 occurs in vivo and contributes to tumor growth. Additional miRNAs are modulated by decreased oxygen tension in a more tissue-specific fashion, adding another level of complexity over the classic hypoxia-regulated gene network. FUTURE DIRECTIONS From a biological standpoint, hypoxamiRs are emerging modifiers of cancer cell response to the adaptive challenges of the microenvironment. From a clinical perspective, assessing the status of these miRNAs may contribute to a detailed understanding of hypoxia-induced mechanisms of resistance and/or to the fine-tuning of future hypoxia-modifying therapies.
Collapse
Affiliation(s)
- Harriet E Gee
- 1 Department of Radiation Oncology, Sydney Cancer Centre, Royal Prince Alfred Hospital , Camperdown, Australia
| | | | | | | |
Collapse
|
67
|
Muz B, de la Puente P, Azab F, Luderer M, Azab AK. The role of hypoxia and exploitation of the hypoxic environment in hematologic malignancies. Mol Cancer Res 2014; 12:1347-54. [PMID: 25158954 DOI: 10.1158/1541-7786.mcr-14-0028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor hypoxia is a well-described phenomenon during the progression of solid tumors affecting cell signaling pathways and cell metabolism; however, its role in hematologic malignancies has not been given the same attention in the literature. Therefore, this review focuses on the comparative differences between solid and hematologic malignancies with emphasis on the role of hypoxia during tumorigenesis and progression. In addition, contribution of the bone marrow and angiogenic environment are also discussed. Insight is provided into the role of hypoxia in metastatic spread, stemness, and drug resistance in hematologic conditions. Finally, emerging therapeutic strategies such as small-molecule prodrugs and hypoxia-inducible factor (HIF) targeting approaches are outlined to combat hypoxic cells and/or adaptive mechanisms in the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Micah Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
68
|
Chen Y, Bian S, Zhang J, Zhang H, Tang B, Sun T. The Silencing Effect of microRNA miR-17 on p21 Maintains the Neural Progenitor Pool in the Developing Cerebral Cortex. Front Neurol 2014; 5:132. [PMID: 25101050 PMCID: PMC4103084 DOI: 10.3389/fneur.2014.00132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022] Open
Abstract
Expansion of the neural progenitor pool in the developing cerebral cortex is crucial for controlling brain size, since proliferation defects have been associated with the pathogenesis of microcephaly in humans. Cell cycle regulators play important roles in proliferation of neural progenitors. Here, we show that the cyclin-dependent kinase inhibitor p21 (also called Cdkn1a and Cip1) negatively regulates proliferation of radial glial cells (RGCs) and intermediate progenitors (IPs) in the embryonic mouse cortex. MicroRNA-17 (miR-17) displays reciprocal expressions with p21 in the developing cortex. Opposite to p21, miR-17 promotes expansion of RGCs and IPs, as demonstrated by overexpressing miR-17 precursors and miR-17 sponges that can knock down the endogenous miR-17. Moreover, p21 is a putative target normally silenced by miR-17. Co-expression of miR-17 with p21 is sufficient to rescue the negative regulation of p21 on progenitor proliferation. Our results indicate a mechanism of controlling the neural progenitor pool, which is to suppress p21 by miR-17 in the developing cortex.
Collapse
Affiliation(s)
- Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University , Changsha , China ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University , New York, NY , USA
| | - Shan Bian
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University , New York, NY , USA
| | - Jing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Haijun Zhang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University , New York, NY , USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University , Changsha , China
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University , New York, NY , USA
| |
Collapse
|
69
|
Loh WP, Loo B, Zhou L, Zhang P, Lee DY, Yang Y, Lam KP. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol J 2014; 9:1140-51. [DOI: 10.1002/biot.201400050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 05/09/2014] [Indexed: 12/27/2022]
|
70
|
Sumoylation of hypoxia inducible factor-1α and its significance in cancer. SCIENCE CHINA-LIFE SCIENCES 2014; 57:657-64. [DOI: 10.1007/s11427-014-4685-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 12/26/2022]
|
71
|
Gezer D, Vukovic M, Soga T, Pollard PJ, Kranc KR. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells 2014; 32:1390-7. [PMID: 24496882 DOI: 10.1002/stem.1657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/21/2013] [Indexed: 02/11/2024]
Abstract
Adult hematopoiesis depends on rare multipotent hematopoietic stem cells (HSCs) that self-renew and give rise to progenitor cells, which differentiate to all blood lineages. The strict regulation of the fine balance between self-renewal and differentiation is essential for normal hematopoiesis and suppression of leukemia development. HSCs and progenitor cells are commonly assumed to reside within the hypoxic BM microenvironment, however, there is no direct evidence supporting this notion. Nevertheless, HSCs and progenitors do exhibit a hypoxic profile and strongly express Hif-1α. Although hypoxia signaling pathways are thought to play important roles in adult HSC maintenance and leukemogenesis, the precise function of Hif-dependent signaling in HSCs remains to be uncovered. Here we discuss recent gain-of-function and loss-of-function studies that shed light on the complex roles of hypoxia-signaling pathways in HSCs and their niches in normal and malignant hematopoiesis. Importantly, we comment on the current and often contrasting interpretations of the role of Hif-dependent signaling in stem cell functions.
Collapse
Affiliation(s)
- Deniz Gezer
- MRC Centre for Regenerative Medicine. University of Edinburgh, Edinburgh, United Kingdom; Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom; 3Klinik fuer Haematologie, Onkologie und Stammzelltransplantation, Universitaetsklinikum Aachen, Aachen, Germany
| | | | | | | | | |
Collapse
|
72
|
Jajosky AN, Coad JE, Vos JA, Martin KH, Senft JR, Wenger SL, Gibson LF. RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression. Stem Cells Transl Med 2014; 3:836-48. [PMID: 24855276 DOI: 10.5966/sctm.2013-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite initial response to therapy, most acute myeloid leukemia (AML) patients relapse. To eliminate relapse-causing leukemic stem/progenitor cells (LPCs), patient-specific immune therapies may be required. In vitro cellular engineering may require increasing the "stemness" or immunogenicity of tumor cells and activating or restoring cancer-impaired immune-effector and antigen-presenting cells. Leukapheresis samples provide the cells needed to engineer therapies: LPCs to be targeted, normal hematopoietic stem cells to be spared, and cancer-impaired immune cells to be repaired and activated. This study sought to advance development of LPC-targeted therapies by exploring nongenetic ways to slow the decay and to increase the immunogenicity of primary CD34(+) AML cells. CD34(+) AML cells generally displayed more colony-forming and aldehyde dehydrogenase activity than CD34(-) AML cells. Along with exposure to bone marrow stromal cells and low (1%-5%) oxygen, culture with RepSox (a reprogramming tool and inhibitor of transforming growth factor-β receptor 1) consistently slowed decline of CD34(+) AML and myelodysplastic syndrome (MDS) cells. RepSox-treated AML cells displayed higher CD34, CXCL12, and MYC mRNA levels than dimethyl sulfoxide-treated controls. RepSox also accelerated loss of T cell immunoglobulin mucin-3 (Tim-3), an immune checkpoint receptor that impairs antitumor immunity, from the surface of AML and MDS cells. Our results suggest RepSox may reduce Tim-3 expression by inhibiting transforming growth factor-β signaling and slow decay of CD34(+) AML cells by increasing CXCL12 and MYC, two factors that inhibit AML cell differentiation. By prolonging survival of CD34(+) AML cells and reducing Tim-3, RepSox may promote in vitro immune cell activation and advance development of LPC-targeted therapies.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/metabolism
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Biomarkers, Tumor/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cellular Reprogramming/drug effects
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Coculture Techniques
- Dose-Response Relationship, Drug
- Feeder Cells
- Gene Expression Regulation, Leukemic/drug effects
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Leukapheresis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oxygen/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Time Factors
- Tumor Cells, Cultured
- Tumor Escape
Collapse
Affiliation(s)
- Audrey N Jajosky
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - James E Coad
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Jeffrey A Vos
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Karen H Martin
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Jamie R Senft
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Sharon L Wenger
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Laura F Gibson
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Cancer Cell Biology Program, and Departments of Pathology, Neurobiology and Anatomy, and Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
73
|
Jin H, Wang N, Wang C, Qin W. MicroRNAs in hypoxia and acidic tumor microenvironment. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0273-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis. Proc Natl Acad Sci U S A 2014; 111:5331-6. [PMID: 24706848 DOI: 10.1073/pnas.1317242111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-driven changes in the tumor microenvironment facilitate cancer metastasis. In the present study, we investigated the regulatory cross talk between endocytic pathway, hypoxia, and tumor metastasis. Dynamin 2 (DNM2), a GTPase, is a critical mediator of endocytosis. Hypoxia decreased the levels of DNM2. DNM2 promoter has multiple hypoxia-inducible factor (HIF)-binding sites and genetic deletion of them relieved hypoxia-induced transcriptional suppression. Interestingly, DNM2 reciprocally regulated HIF. Inhibition of DNM2 GTPase activity and dominant-negative mutant of DNM2 showed a functional role for DNM2 in regulating HIF. Furthermore, the opposite strand of DNM2 gene encodes miR-199a, which is similarly reduced in cancer cells under hypoxia. miR-199a targets the 3'-UTR of HIF-1α and HIF-2α. Decreased miR-199a expression in hypoxia increased HIF levels. Exogenous expression of miR-199a decreased HIF, cell migration, and metastasis of ovarian cancer cells. miR-199a-mediated changes in HIF levels affected expression of the matrix-remodeling enzyme, lysyloxidase (LOX). LOX levels negatively correlated with progression-free survival in ovarian cancer patients. These results demonstrate a regulatory relationship between DNM2, miR-199a, and HIF, with implications in cancer metastasis.
Collapse
|
75
|
Mao S, Li H, Sun Q, Zen K, Zhang CY, Li L. miR-17 regulates the proliferation and differentiation of the neural precursor cells during mouse corticogenesis. FEBS J 2014; 281:1144-58. [PMID: 24314167 DOI: 10.1111/febs.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 01/28/2023]
Abstract
MicroRNAs (miRNAs) are endogenously expressed small, non-coding nucleotides that repress gene expression at the post-transcriptional level. In mammals, the developing brain contains a large, diverse group of miRNAs, which suggests that they play crucial roles in neural development. In the present study, we analyzed the miRNA expression patterns in the mouse cortex at various developmental stages. We found that miR-17 family miRNAs were highly expressed in the cortex during early developmental stages, and that their expression levels gradually decreased as the cortex developed. Further investigation revealed that the change in miR-17-5p expression occurred in the ventricular zone/sub-ventricular zone. In addition to promoting cell proliferation, miR-17-5p also influences the differentiation fate of neural precursor cells exposed to bone morphogenetic protein 2. Moreover, we show that these effects of miR-17-5p were mainly the result of regulating the bone morphogenetic protein signaling pathway by repressing expression of the bone morphogenetic protein type II receptor. Taken together, these findings suggest that miR-17 family members play a pivotal role in regulating cell activity during early development of the mouse cortex.
Collapse
Affiliation(s)
- Susu Mao
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | | | | | | | | | | |
Collapse
|
76
|
MicroRNAs as Haematopoiesis Regulators. Adv Hematol 2013; 2013:695754. [PMID: 24454381 PMCID: PMC3884629 DOI: 10.1155/2013/695754] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 10/27/2013] [Indexed: 12/20/2022] Open
Abstract
The production of different types of blood cells including their formation, development, and differentiation is collectively known as haematopoiesis. Blood cells are divided into three lineages erythriod (erythrocytes), lymphoid (B and T cells), and myeloid (granulocytes, megakaryocytes, and macrophages). Haematopoiesis is a complex process regulated by several mechanisms including microRNAs (miRNAs). miRNAs are small RNAs which regulate the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells. Evidence shows that miRNAs play an important role in haematopoiesis; for example, myeloid and erythroid differentiation is blocked by the overexpression of miR-15a. miR-221, miR-222, and miR-24 inhibit the erythropoiesis, whereas miR-150 plays a role in B and T cell differentiation. miR-146 and miR-10a are downregulated in megakaryopoiesis. Aberrant expression of miRNAs was observed in hematological malignancies including chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myelomas, and B cell lymphomas. In this review we have focused on discussing the role of miRNA in haematopoiesis.
Collapse
|
77
|
Zhao M, Sun J, Zhao Z. Synergetic regulatory networks mediated by oncogene-driven microRNAs and transcription factors in serous ovarian cancer. MOLECULAR BIOSYSTEMS 2013; 9:3187-98. [PMID: 24129674 PMCID: PMC3855196 DOI: 10.1039/c3mb70172g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although high-grade serous ovarian cancer (OVC) is the most lethal gynecologic malignancy in women, little is known about the regulatory mechanisms in the cellular processes that lead to this cancer. Recently, accumulated lines of evidence have shown that the interplay between transcription factors (TFs) and microRNAs (miRNAs) is critical in cellular regulation during tumorigenesis. A comprehensive investigation of TFs and miRNAs, and their target genes, may provide a deeper understanding of the regulatory mechanisms in the pathology of OVC. In this study, we have integrated three complementary algorithms into a framework, aiming to infer the regulation by miRNAs and TFs in conjunction with gene expression profiles. We demonstrated the utility of our framework by inferring 67 OVC-specific regulatory feed-forward loops (FFL) initiated by miRNAs or TFs in high-grade serous OVC. By analyzing these regulatory behaviors, we found that all the 67 FFLs are consistent in their regulatory effects on genes that are jointly targeted by miRNAs and TFs. Remarkably, we unveiled an unbalanced distribution of FFLs with different oncogenic effects. In total, 31 of the 67 coherent FFLs were mainly initiated by oncogenes. On the contrary, only 4 of the FFLs were initiated by tumor suppressor genes. These overwhelmingly observed oncogenic genes were further detected in a sub-network with 32 FFLs centered by miRNA let-7b and TF TCF7L1 to regulate cell differentiation. Closer inspection of 32 FFLs revealed that 75% of the miRNAs reportedly play functional roles in cell differentiation, especially when enriched in epithelial-mesenchymal transitions. This study provides a comprehensive pathophysiological overview of recurring coherent circuits in OVC that are co-regulated by miRNAs and TFs. The prevalence of oncogenic coherent FFLs in serous OVC suggests that oncogene-driven regulatory motifs could cooperatively act upon critical cellular processes such as cell differentiation in a highly efficient and consistent manner.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | |
Collapse
|
78
|
Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, Akao Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem 2013; 24:1849-58. [DOI: 10.1016/j.jnutbio.2013.04.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/07/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
|
79
|
Mao S, Huang S. The signaling pathway of hypoxia inducible factor and its role in renal diseases. J Recept Signal Transduct Res 2013; 33:344-8. [PMID: 23971630 DOI: 10.3109/10799893.2013.830130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well-documented that hypoxia inducible factor (HIF) is a key mediator of tissue and cellular adaptation to hypoxia. HIF-target genes are also involved in cellular apoptosis and profibrotic mechanisms. The role of HIF in diseases is not consistent. It is a risk factor for tumor progression, whereas it plays a protective role against ischemic hypofusion. For renal diseases, it is not always a risk or protective factor. Many factors are involved in the pathogenesis of renal diseases. It is reported that HIF not only increases hypoxia tolerance, but also regulates a lot of signaling pathways. In the past decades, a number of studies were also conducted to explore the association between HIF and the risk of renal diseases. However, the role of HIF in the development of renal diseases was not entirely clear. In this study, the signal transduction pathways of HIF and its role in the pathogenesis of renal diseases were reviewed.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing, Jiangsu , China
| | | |
Collapse
|
80
|
Poitz DM, Augstein A, Gradehand C, Ende G, Schmeisser A, Strasser RH. Regulation of the Hif-system by micro-RNA 17 and 20a - role during monocyte-to-macrophage differentiation. Mol Immunol 2013; 56:442-51. [PMID: 23911400 DOI: 10.1016/j.molimm.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
MiRNAs are a class of endogenous tiny RNAs that act as inhibitors of translation or promote RNA degradation by duplex-formation within the 3'-UTR of target mRNAs. They play an important role during a wide range of cellular processes by fine-tuning of gene expression. The differentiation of monocytes to macrophages plays a pivotal role in physiological as well as pathophysiological processes such as atherosclerosis. Monocytes which can be found in well-oxygenated blood migrate into areas with a high inflammation, such as the atherosclerotic plaque. There, they differentiate into macrophages. Interestingly, macrophages were found mainly at hypoxic sites of the plaque. Key regulators for the adaptation to hypoxia are the hypoxia-inducible factors (Hif). Therefore the aim of the present study was to investigate the regulation of the Hif-system by miRNAs during the process of monocyte differentiation. The present study shows that during the differentiation of monocytes into macrophages a dramatically change in the expression pattern of Hif-1α and Hif-2α took place. This was associated with a downregulation of microRNAs encoded by the miR-17-92 cluster. An in silico analysis of the 3'-UTR of Hif-α subunits for binding sites of miRNAs was performed using different miRNA databases in concert with a secondary structure prediction algorithm. This analysis revealed that both 3'-UTRs contain binding sites for miRNAs of the miR-17-92 cluster. Transfection of HeLa cells with miR-17 and miR-20a led to an inhibition of Hif-1α and -2α mRNA and protein expression and a lowered Hif DNA binding activity. Using a Luciferase-Reporter assay, it could be shown, that both Hif-α subunits are targeted by miR-17 and miR-20a. Furthermore, miR-overexpression in primary human macrophages demonstrates the important role of this microRNA-mediated regulation of the Hif-system for adaption of macrophages to hypoxia. In conclusion, the present study shows that the Hif-system is activated during monocyte-to-macrophage differentiation. This activation is in part mediated by a miRNA-dependent mechanism, which seems to be crucial for the adaption of macrophages to hypoxia.
Collapse
Affiliation(s)
- David M Poitz
- Internal Medicine and Cardiology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
81
|
Yang Y, Ma W, Wu D, Huang Y, Li H, Zou J, Zhang Y, Feng M, Luo J. MiR-17 partly promotes hematopoietic cell expansion through augmenting HIF-1α in osteoblasts. PLoS One 2013; 8:e70232. [PMID: 23936170 PMCID: PMC3723828 DOI: 10.1371/journal.pone.0070232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment, of which osteogenic cells play a crucial role. While evidence is accumulating for an important role of intrinsic miR-17 in regulating HSCs and HPCs, whether miR-17 signaling pathways are also necessary in the cell-extrinsic control of hematopoiesis hereto remains poorly understood. Methodology/Principal Findings Using the immortalized clone with the characteristics of osteoblasts, FBMOB-hTERT, in vitro expansion, long-term culture initiating cell (LTC-IC) and non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice repopulating cell (SRC) assay revealed that the ectopic expression of miR-17 partly promoted the ability of FBMOB-hTERT to support human cord blood (CB) CD34+ cell expansion and maintain their multipotency. It also seemed that osteoblastic miR-17 was prone to cause a specific expansion of the erythroid lineage. Conversely, deficient expression of miR-17 partly inhibited the hematopoietic supporting ability of FBMOB-hTERT. We further identified that HIF-1α is responsible for, at least in part, the promoted hematopoietic supporting ability of FBMOB-hTERT caused by miR-17. HIF-1α expression is markedly enhanced in miR-17 overexpressed FBMOB-hTERT upon interaction with CB CD34+ cells compared to other niche associated factors. More interestingly, the specific erythroid lineage expansion of CB CD34+ cells caused by osteoblastic miR-17 was abrogated by HIF-1α knock down. Conclusion/Significance Our data demonstrated that CB CD34+ cell expansion can be partly promoted by osteoblastic miR-17, and in particular, ectopic miR-17 can cause a specific expansion of the erythroid lineage through augmenting HIF-1α in osteoblasts.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1. Biochem J 2013; 452:281-91. [PMID: 23485012 DOI: 10.1042/bj20120680] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Unbalanced apoptosis is a major cause of structural remodelling of vasculatures associated with PAH (pulmonary arterial hypertension), whereas the underlying mechanisms are still elusive. miRNAs (microRNAs) regulate the expression of several proteins that are important for cell fate, including differentiation, proliferation and apoptosis. It is possible that these regulatory RNA molecules play a role in the development of PAH. To test this hypothesis, we studied the effect of several miRNAs on the apoptosis of cultured PASMCs (pulmonary artery smooth muscle cells) and identified miR-138 to be an important player. miR-138 was expressed in PASMCs, and its expression was subjected to regulation by hypoxia. Expression of exogenous miR-138 suppressed PASMC apoptosis, prevented caspase activation and disrupted Bcl-2 signalling. The serine/threonine kinase Mst1, an amplifier of cell apoptosis, seemed to be a target of miR-138, and the activation of the Akt pathway was necessary for the anti-apoptotic effect of miR-138. Therefore the results of the present study suggest that miR-138 appears to be a negative regulator of PASMC apoptosis, and plays an important role in HPVR (hypoxic pulmonary vascular remodelling).
Collapse
|
83
|
Losman JA, Kaelin WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 2013; 27:836-52. [PMID: 23630074 DOI: 10.1101/gad.217406.113] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in metabolic enzymes, including isocitrate dehydrogenase 1 (IDH1) and IDH2, in cancer strongly implicate altered metabolism in tumorigenesis. IDH1 and IDH2 catalyze the interconversion of isocitrate and 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate and an essential cofactor for many enzymes, including JmjC domain-containing histone demethylases, TET 5-methylcytosine hydroxylases, and EglN prolyl-4-hydroxylases. Cancer-associated IDH mutations alter the enzymes such that they reduce 2OG to the structurally similar metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we review what is known about the molecular mechanisms of transformation by mutant IDH and discuss their implications for the development of targeted therapies to treat IDH mutant malignancies.
Collapse
Affiliation(s)
- Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
84
|
Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 2012; 19:102. [PMID: 23241400 PMCID: PMC3541338 DOI: 10.1186/1423-0127-19-102] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is an important microenvironmental factor that induces cancer metastasis. Hypoxia/hypoxia-inducible factor-1α (HIF-1α) regulates many important steps of the metastatic processes, especially epithelial-mesenchymal transition (EMT) that is one of the crucial mechanisms to cause early stage of tumor metastasis. To have a better understanding of the mechanism of hypoxia-regulated metastasis, various hypoxia/HIF-1α-regulated target genes are categorized into different classes including transcription factors, histone modifiers, enzymes, receptors, kinases, small GTPases, transporters, adhesion molecules, surface molecules, membrane proteins, and microRNAs. Different roles of these target genes are described with regards to their relationship to hypoxia-induced metastasis. We hope that this review will provide a framework for further exploration of hypoxia/HIF-1α-regulated target genes and a comprehensive view of the metastatic picture induced by hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, No.155, Li-Nong St., Sec.2, Peitou, Taipei 112, Taiwan
| | - Kou-Juey Wu
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, No.155, Li-Nong St., Sec.2, Peitou, Taipei 112, Taiwan
- Head and Neck Cancer Research Program, Cancer Research Center, National Yang-Ming University, No.155, Li-Nong St., Sec.2, Peitou, Taipei 112, Taiwan
- Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|