51
|
Wimmer F, Beisel CL. CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Front Microbiol 2020; 10:3078. [PMID: 32038537 PMCID: PMC6990116 DOI: 10.3389/fmicb.2019.03078] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas immune systems in bacteria and archaea record prior infections as spacers within each system’s CRISPR arrays. Spacers are normally derived from invasive genetic material and direct the immune system to complementary targets as part of future infections. However, not all spacers appear to be derived from foreign genetic material and instead can originate from the host genome. Their presence poses a paradox, as self-targeting spacers would be expected to induce an autoimmune response and cell death. In this review, we discuss the known frequency of self-targeting spacers in natural CRISPR-Cas systems, how these spacers can be incorporated into CRISPR arrays, and how the host can evade lethal attack. We also discuss how self-targeting spacers can become the basis for alternative functions performed by CRISPR-Cas systems that extend beyond adaptive immunity. Overall, the acquisition of genome-targeting spacers poses a substantial risk but can aid in the host’s evolution and potentially lead to or support new functionalities.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
52
|
Cui L, Wang X, Huang D, Zhao Y, Feng J, Lu Q, Pu Q, Wang Y, Cheng G, Wu M, Dai M. CRISPR- cas3 of Salmonella Upregulates Bacterial Biofilm Formation and Virulence to Host Cells by Targeting Quorum-Sensing Systems. Pathogens 2020; 9:pathogens9010053. [PMID: 31936769 PMCID: PMC7168661 DOI: 10.3390/pathogens9010053] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonella is recognized as one of the most common microbial pathogens worldwide. The bacterium contains the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems, providing adaptive immunity against invading foreign nucleic acids. Previous studies suggested that certain bacteria employ the Cas proteins of CRISPR-Cas systems to target their own genes, which also alters the virulence during invasion of mammals. However, whether CRISPR-Cas systems in Salmonella have similar functions during bacterial invasion of host cells remains unknown. Here, we systematically analyzed the genes that are regulated by Cas3 in a type I-E CRISPR-Cas system and the virulence changes due to the deletion of cas3 in Salmonella enterica serovar Enteritidis. Compared to the cas3 gene wild-type (cas3 WT) Salmonella strain, cas3 deletion upregulated the lsrFGBE genes in lsr (luxS regulated) operon related to quorum sensing (QS) and downregulated biofilm-forming-related genes and Salmonella pathogenicity island 1 (SPI-1) genes related to the type three secretion system (T3SS). Consistently, the biofilm formation ability was downregulated in the cas3 deletion mutant (Δcas3). The bacterial invasive and intracellular capacity of Δcas3 to host cells was also reduced, thereby increasing the survival of infected host cells and live chickens. By the transcriptome-wide screen (RNA-Seq), we found that the cas3 gene impacts a series of genes related to QS, the flagellum, and SPI-1-T3SS system, thereby altering the virulence phenotypes. As QS SPI-1-T3SS and CRISPR-Cas systems are widely distributed in the bacteria kingdom, our findings extend our understanding of virulence regulation and pathogenicity in mammalian hosts for Salmonella and potentially other bacteria.
Collapse
Affiliation(s)
- Luqing Cui
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Deyu Huang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Yue Zhao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Jiawei Feng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Qirong Lu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
| | - Yulian Wang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Guyue Cheng
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
- Correspondence: (M.W.); (M.D.); Tel.: +1-701-777-4875 (M.W.); +86-027-8767-2232 (M.D.); Fax: +1-701-777-2382 (M.W.); +86-027-8767-2232 (M.D.)
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
- Correspondence: (M.W.); (M.D.); Tel.: +1-701-777-4875 (M.W.); +86-027-8767-2232 (M.D.); Fax: +1-701-777-2382 (M.W.); +86-027-8767-2232 (M.D.)
| |
Collapse
|
53
|
Buyukyoruk M, Wiedenheft B. Type I-F CRISPR-Cas provides protection from DNA, but not RNA phages. Cell Discov 2019; 5:54. [PMID: 31798958 PMCID: PMC6868142 DOI: 10.1038/s41421-019-0123-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/09/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Murat Buyukyoruk
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
54
|
Wu Q, Wang B, Zhou C, Lin P, Qin S, Gao P, Wang Z, Xia Z, Wu M. Bacterial Type I CRISPR-Cas systems influence inflammasome activation in mammalian host by promoting autophagy. Immunology 2019; 158:240-251. [PMID: 31429483 DOI: 10.1111/imm.13108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (CRISPR-Cas) systems in prokaryotes function at defending against foreign DNAs, providing adaptive immunity to maintain homeostasis. CRISPR-Cas may also influence immune regulation ability in mammalian cells through alterations of pathogenic extent and nature. Recent research has implied that Type I CRISPR-Cas systems of Pseudomonas aeruginosa strain UCBPP-PA14 impede recognition by Toll-like receptor 4, and decrease pro-inflammatory responses both in vitro and in vivo. However, the molecular mechanism by which CRISPR-Cas systems affect host immunity is largely undemonstrated. Here, we explored whether CRISPR-Cas systems can influence autophagy to alter the activation of inflammasome. Using the wild-type PA14 and total CRISPR-Cas region deletion (∆TCR) mutant strain, we elucidated the role and underlying mechanism of Type I CRISPR-Cas systems in bacterial infection, and showed that CRISPR-Cas systems impacted the release of mitochondrial DNA and induction of autophagy. CRISPR-Cas deficiency led to an increase of mitochondrial DNA release, a decrease in autophagy, an increase of inflammasome activation and, ultimately, an elevation of pro-inflammatory response. Our findings illustrate a new important mechanism by which Type I CRISPR-Cas systems control their virulence potency to evade host defense.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.,Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
55
|
Milicevic O, Repac J, Bozic B, Djordjevic M, Djordjevic M. A Simple Criterion for Inferring CRISPR Array Direction. Front Microbiol 2019; 10:2054. [PMID: 31551987 PMCID: PMC6737040 DOI: 10.3389/fmicb.2019.02054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Inferring transcriptional direction (orientation) of the CRISPR array is essential for many applications, including systematically investigating non-canonical CRISPR/Cas functions. The standard method, CRISPRDirection (embedded within CRISPRCasFinder), fails to predict the orientation (ND predictions) for ∼37% of the classified CRISPR arrays (>2200 loci); this goes up to >70% for the II-B subtype where non-canonical functions were first experimentally discovered. Alternatively, Potential Orientation (also embedded within CRISPRCasFinder), has a much smaller frequency of ND predictions but might have significantly lower accuracy. We propose a novel simple criterion, where the CRISPR array direction is assigned according to the direction of its associated cas genes (Cas Orientation). We systematically assess the performance of the three methods (Cas Orientation, CRISPRDirection, and Potential Orientation) across all CRISPR/Cas subtypes, by a mutual crosscheck of their predictions, and by comparing them to the experimental dataset. Interestingly, CRISPRDirection agrees much better with Cas Orientation than with Potential Orientation, despite CRISPRDirection and Potential Orientation being mutually related – Potential Orientation corresponding to one of six (heterogeneous) predictors employed by CRISPRDirection – and being unrelated to Cas Orientation. We find that Cas Orientation has much higher accuracy compared to Potential Orientation and comparable accuracy to CRISPRDirection – while accurately assigning an orientation to ∼95% of the CRISPR arrays that are non-determined by CRISPRDirection. Cas Orientation is, at the same time, simple to employ, requiring only (routine for prokaryotes) the prediction of the associated protein coding gene direction.
Collapse
Affiliation(s)
- Ognjen Milicevic
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Multidisciplinary Ph.D. Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Jelena Repac
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Bojan Bozic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | | | - Marko Djordjevic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
56
|
Wang Y, Yin X, Zhou Z, Hu S, Li S, Liu M, Wang X, Xiao Y, Shi D, Bi D, Li Z. Cas9 regulated gene expression and pathogenicity in Riemerella anatipestifer. Microb Pathog 2019; 136:103706. [PMID: 31491547 DOI: 10.1016/j.micpath.2019.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Riemerellosis, a Riemerella anatipestifer infection, can cause meningitis, pericarditis, parahepatitis, and airsacculitis in ducks, leading to serious economic losses in the duck meat industry. However, the molecular mechanism of the pathogenesis and virulence factors of this infection are poorly understood. In the present study, we created a mutant strain RA-YMΔCas9 using trans-conjugation. Bacterial virulence tests indicated that the median lethal dose (LD50) of RA-YMΔCas9 was 5.01 × 107 CFU, significantly lower than that of the RA-YM strain, which was 1.58 × 105 CFU. The distribution and blood bacterial load from the infection groups showed no significant difference in the brain between the RA-YMΔCas9 mutant and the wild-type RA-YM strains, however, the number of mutant strains were significantly reduced in the liver, heart, and blood. Animal immunization experiments demonstrated that the intranasal administration of RA-YMΔCas9 in ducklings provided 80% protection after challenge with the wild-type strain, showing potential use as a live mucosal vaccine. RNAseq analysis indicated that Cas9 protein played a regulatory role in gene expression. This study is the first to report on the involvement of Cas9 in the regulation and pathogenesis of R. anatipestifer, and provides a theoretical basis for the development of relevant genetic engineering vaccines.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Xuehuan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
57
|
High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination. Nat Commun 2019; 10:3728. [PMID: 31427601 PMCID: PMC6700203 DOI: 10.1038/s41467-019-11695-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Discovery of CRISPR-Cas systems is one of paramount importance in the field of microbiology. Currently, how CRISPR-Cas systems are finely regulated remains to be defined. Here we use small regulatory RNA (sRNA) library to screen sRNAs targeting type I-F CRISPR-Cas system through proximity ligation by T4 RNA ligase and find 34 sRNAs linking to CRISPR loci. Among 34 sRNAs for potential regulators of CRISPR, sRNA pant463 and PhrS enhance CRISPR loci transcription, while pant391 represses their transcription. We identify PhrS as a regulator of CRISPR-Cas by binding CRISPR leaders to suppress Rho-dependent transcription termination. PhrS-mediated anti-termination facilitates CRISPR locus transcription to generate CRISPR RNA (crRNA) and subsequently promotes CRISPR-Cas adaptive immunity against bacteriophage invasion. Furthermore, this also exists in type I-C/-E CRISPR-Cas, suggesting general regulatory mechanisms in bacteria kingdom. Our findings identify sRNAs as important regulators of CRISPR-Cas, extending roles of sRNAs in controlling bacterial physiology by promoting CRISPR-Cas adaptation priming. Small non-coding RNAs (sRNA) regulate bacterial functions by finding nucleic acids and proteins. Here the authors identify PhrS sRNA in Pseudomonas as a positive regulator of CRISPR, and show PhrS acts by binding to CRISPR leader, thereby preventing Rho-mediated transcription termination and promoting anti-bacteriophage immunity.
Collapse
|
58
|
Pseudomonas aeruginosa Regulatory Protein AnvM Controls Pathogenicity in Anaerobic Environments and Impacts Host Defense. mBio 2019; 10:mBio.01362-19. [PMID: 31337721 PMCID: PMC6650552 DOI: 10.1128/mbio.01362-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infections by Pseudomonas aeruginosa, one of the most frequently isolated human pathogens, can create huge financial burdens. However, knowledge of the molecular mechanisms involved in the pathogenesis of P. aeruginosa remains elusive. We identified AnvM as a novel regulator of virulence in P. aeruginosa. Deletion of anvM altered the expression levels of more than 700 genes under aerobic and anaerobic conditions, including quorum sensing system genes and oxidative stress resistance genes. AnvM directly interacted with MvfR and Anr, thus regulating their downstream genes. More importantly, AnvM directly bound to TLR2 and TLR5, which turn on the host immune response. These findings provide insights into the significance of AnvM homologs in pathogenic bacteria and suggest a potential drug target against bacterial infection. Pseudomonas aeruginosa, one of the most common pathogens in hospital-acquired infections, is tightly controlled by a multilayered regulatory network, including the quorum sensing system (QS), the type VI secretion system (T6SS), and resistance to host immunity. We found that the P. aeruginosa 3880 (PA3880) gene, which encodes an unknown protein, acts as a regulator of anaerobic metabolism in response to oxidative stress and virulence in P. aeruginosa. More than 30 PA3880 homologs were found in other bacterial genomes, indicating that PA3880 is widely distributed in the Bacteria kingdom as a highly conserved gene. Deletion of the PA3880 gene changed the expression levels of more than 700 genes, including a group of virulence genes, under both aerobic and anaerobic conditions. To further study the mechanisms of PA3880-mediated regulation in virulence, we utilized a bacterial two-hybrid assay and found that the PA3880 protein interacted directly with QS regulator MvfR and anaerobic regulator Anr. Loss of the PA3880 protein significantly blunted the pathogenicity of P. aeruginosa, resulting in increased host survival, decreased bacterial burdens, reduced inflammatory responses, and fewer lung injuries in challenged mice hosts. Mechanistically, we found that Cys44 was a critical site for the full function of PA3880 in influencing alveolar macrophage phagocytosis and bacterial clearance. We also found that AnvM directly interacted with host receptors Toll-like receptor 2 (TLR2) and TLR5, which might lead to activation of the host immune response. Hence, we gave the name AnvM (anaerobic and virulence modulator) to the PA3880 protein. This characterization of AnvM could help to uncover new targets and strategies to treat P. aeruginosa infections.
Collapse
|
59
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
60
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
61
|
Luz ACDO, da Silva JMA, Rezende AM, de Barros MPS, Leal-Balbino TC. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa. Mol Genet Genomics 2019; 294:1095-1105. [PMID: 31098740 DOI: 10.1007/s00438-019-01575-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023]
Abstract
CRISPR/Cas is an adaptive immune system found in prokaryotes, with the main function of protecting these cells from invasion and possible death by mobile genetic elements. Pseudomonas aeruginosa is considered a model for type I-F CRISPR/Cas system studies. However, its CRISPR loci characteristics have not yet been thoroughly described, and its function has not yet been fully unraveled. The aims of this study were to find the frequency of the system in Brazilian clinical isolates; to identify the loci sequence, its spacer diversity and its origins; as well as to propose a unified spacer library to aid in future structural studies of the CRISPR loci of P. aeruginosa. We investigated types I-F and I-E gene markers to establish CRISPR/Cas typing, and observed two strains harboring both systems simultaneously, a very rare feature. Through amplification and sequencing of CRISPR loci related to type I-F system, we describe polymorphisms in DRs and 350 spacers, of which 97 are new. The spacers that were identified had their possible organisms or proteins of origin identified. Spacer arrays were grouped in five different CRISPR patterns and the plasticity was inferred by rearrangements in spacer arrays. Here, we perform the first detailed and focused description of CRISPR/Cas elements in Brazilian clinical strains of P. aeruginosa. Our findings reflect active and highly diverse CRISPR loci, and we suggest that CRISPR/Cas may also pose as a transcriptional regulatory mechanism. The structural and diversity features described here can provide insights into the function of CRISPR/Cas in this pathogen and help guide the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ana Carolina de Oliveira Luz
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | | | - Antonio Mauro Rezende
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
62
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
63
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
64
|
Endogenous Gene Regulation as a Predicted Main Function of Type I-E CRISPR/Cas System in E. coli. Molecules 2019; 24:molecules24040784. [PMID: 30795631 PMCID: PMC6413058 DOI: 10.3390/molecules24040784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas is an adaptive bacterial immune system, whose CRISPR array can actively change in response to viral infections. However, Type I-E CRISPR/Cas in E. coli (an established model system), appears not to exhibit such active adaptation, which suggests that it might have functions other than immune response. Through computational analysis, we address the involvement of the system in non-canonical functions. To assess targets of CRISPR spacers, we align them against both E. coli genome and an exhaustive (~230) set of E. coli viruses. We systematically investigate the obtained alignments, such as hit distribution with respect to genome annotation, propensity to target mRNA, the target functional enrichment, conservation of CRISPR spacers and putative targets in related bacterial genomes. We find that CRISPR spacers have a statistically highly significant tendency to target i) host compared to phage genomes, ii) one of the two DNA strands, iii) genomic dsDNA rather than mRNA, iv) transcriptionally active regions, and v) sequences (cis-regulatory elements) with slower turn-over rate compared to CRISPR spacers (trans-factors). The results suggest that the Type I-E CRISPR/Cas system has a major role in transcription regulation of endogenous genes, with a potential to rapidly rewire these regulatory interactions, with targets being selected through naïve adaptation.
Collapse
|
65
|
Lin P, Pu Q, Shen G, Li R, Guo K, Zhou C, Liang H, Jiang J, Wu M. CdpR Inhibits CRISPR-Cas Adaptive Immunity to Lower Anti-viral Defense while Avoiding Self-Reactivity. iScience 2019; 13:55-68. [PMID: 30822746 PMCID: PMC6393702 DOI: 10.1016/j.isci.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/26/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
CRISPR-Cas systems as adaptive immunity in bacteria and archaea battle against bacteriophages. However, little is known how CRISPR-Cas systems are precisely regulated to effectively eliminate intruders while not inducing self-reactivity. Here, we identify intrinsic negative modulator of CRISPR-Cas that influences interference and adaptation functions. LasI/RhlI-derived autoinducers activate cas operon by enhancing the binding of virulence factor regulator (Vfr) cis-response elements to cas1 promoter, whereas CdpR represses this intracellular signaling and blocks transcription of cas operon. Importantly, inhibition of Vfr reduces cas1 expression and impairs immunization and immune memory mediated by CRISPR-Cas, leading to more severe phage infection but lower self-targeting activities. In addition, CdpR-mediated LasI/RhlI/Vfr intracellular signaling represses cleavage of bacterial endogenous sequences by impeding Cas3 RNA cleavage activity. Thus, CdpR renders important inhibitory effects on CRISPR-Cas systems to avoid possible self-reactivity but potentially heightening infection risk. Our study provides insight into fine regulation of CRISPR-Cas systems for maintaining homeostasis. Both CRISPR-Cas immunization and immunity are suppressed by CdpR CdpR prevents bacterial defense to phage infection via CRISPR-Cas systems CdpR represses QS to modify CRISPR-Cas functionality in a Vfr-dependent manner CdpR blocks Vfr binding to cis-response elements in the promoter of cas operon
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, P. R. China; Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, P. R. China
| | - Rongpeng Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA; Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, P. R. China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, P. R. China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA.
| |
Collapse
|
66
|
Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU, Beisel CL, Sharma CM. CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell 2019; 69:893-905.e7. [PMID: 29499139 DOI: 10.1016/j.molcel.2018.01.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Cas9 nucleases naturally utilize CRISPR RNAs (crRNAs) to silence foreign double-stranded DNA. While recent work has shown that some Cas9 nucleases can also target RNA, RNA recognition has required nuclease modifications or accessory factors. Here, we show that the Campylobacter jejuni Cas9 (CjCas9) can bind and cleave complementary endogenous mRNAs in a crRNA-dependent manner. Approximately 100 transcripts co-immunoprecipitated with CjCas9 and generally can be subdivided through their base-pairing potential to the four crRNAs. A subset of these RNAs was cleaved around or within the predicted binding site. Mutational analyses revealed that RNA binding was crRNA and tracrRNA dependent and that target RNA cleavage required the CjCas9 HNH domain. We further observed that RNA cleavage was PAM independent, improved with greater complementarity between the crRNA and the RNA target, and was programmable in vitro. These findings suggest that C. jejuni Cas9 is a promiscuous nuclease that can coordinately target both DNA and RNA.
Collapse
Affiliation(s)
- Gaurav Dugar
- Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany
| | - Ryan T Leenay
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sara K Eisenbart
- Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany
| | - Thorsten Bischler
- Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany
| | - Belinda U Aul
- Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; Helmholtz Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany.
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany.
| |
Collapse
|
67
|
Weissman JL, Fagan WF, Johnson PLF. Selective Maintenance of Multiple CRISPR Arrays Across Prokaryotes. CRISPR J 2018; 1:405-413. [PMID: 31021246 DOI: 10.1089/crispr.2018.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prokaryotes are under nearly constant attack by viral pathogens. To protect against this threat of infection, bacteria and archaea have evolved a wide array of defense mechanisms, singly and in combination. While immune diversity in a single organism likely reduces the chance of pathogen evolutionary escape, it remains puzzling why many prokaryotes also have multiple, seemingly redundant, copies of the same type of immune system. Here, we focus on the highly flexible CRISPR adaptive immune system, which is present in multiple copies in a surprising 28% of the prokaryotic genomes in RefSeq. We use a comparative genomics approach looking across all prokaryotes to demonstrate that on average, organisms are under selection to maintain more than one CRISPR array. Given this surprising conclusion, we consider several hypotheses concerning the source of selection and include a theoretical analysis of the possibility that a trade-off between memory span and learning speed could select for both "long-term memory" and "short-term memory" CRISPR arrays.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland College Park , College Park, Maryland
| | - William F Fagan
- Department of Biology, University of Maryland College Park , College Park, Maryland
| | - Philip L F Johnson
- Department of Biology, University of Maryland College Park , College Park, Maryland
| |
Collapse
|
68
|
Abstract
P. aeruginosa is a soil dwelling bacterium and a plant pathogen, and it also causes life-threatening infections in humans. Thus, P. aeruginosa thrives in diverse environments and over a broad range of temperatures. Some P. aeruginosa strains rely on the CRISPR-Cas adaptive immune system as a phage defense mechanism. Our discovery that low temperatures increase CRISPR adaptation suggests that the rarely occurring but crucial naive adaptation events may take place predominantly under conditions of slow growth, e.g., during the bacterium’s soil dwelling existence and during slow growth in biofilms. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) systems are adaptive defense systems that protect bacteria and archaea from invading genetic elements. In Pseudomonas aeruginosa, quorum sensing (QS) induces the CRISPR-Cas defense system at high cell density when the risk of bacteriophage infection is high. Here, we show that another cue, temperature, modulates P. aeruginosa CRISPR-Cas. Increased CRISPR adaptation occurs at environmental (i.e., low) temperatures compared to that at body (i.e., high) temperature. This increase is a consequence of the accumulation of CRISPR-Cas complexes, coupled with reduced P. aeruginosa growth rate at the lower temperature, the latter of which provides additional time prior to cell division for CRISPR-Cas to patrol the cell and successfully eliminate and/or acquire immunity to foreign DNA. Analyses of a QS mutant and synthetic QS compounds show that the QS and temperature cues act synergistically. The diversity and level of phage encountered by P. aeruginosa in the environment exceed that in the human body, presumably warranting increased reliance on CRISPR-Cas at environmental temperatures.
Collapse
|
69
|
Guzina J, Chen WH, Stankovic T, Djordjevic M, Zdobnov E, Djordjevic M. In silico Analysis Suggests Common Appearance of scaRNAs in Type II Systems and Their Association With Bacterial Virulence. Front Genet 2018; 9:474. [PMID: 30386377 PMCID: PMC6199352 DOI: 10.3389/fgene.2018.00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
In addition to its well-established defense function, CRISPR/Cas can also exhibit crucial non-canonical activity through endogenous gene expression regulation, which was found to mainly affect bacterial virulence. These non-canonical functions depend on scaRNA, which is a small RNA encoded outside of CRISPR array, that is typically flanked by a transcription start site (TSS) and a terminator, and is in part complementary to another small CRISPR/Cas-associated RNA (tracrRNAs). Identification of scaRNAs is however largely complicated by the scarcity of RNA-Seq data across different bacteria, so that they were identified only in a relatively rare CRISPR/Cas subtype (IIB), and the possibility of finding them in other Type II systems is currently unclear. This study presents the first effort toward systematic detection of small CRISPR/Cas-associated regulatory RNAs, where obtained predictions can guide future experiments. The core of our approach is ab initio detection of small RNAs from bacterial genome, which is based on jointly predicting transcription signals - TSS and terminators - and homology to CRISPR array repeat. Particularly, we employ our improved approach for detecting bacterial TSS, since accurate TSS detection is the main limiting factor for accurate small RNA prediction. We also explore how our predictions match to available RNA-Seq data and analyze their conservation across related bacterial species. In Type IIB systems, our predictions are consistent with experimental data, and we systematically identify scaRNAs throughout this subtype. Furthermore, we identify scaRNA:tracrRNA pairs in a number of IIA/IIC systems, where the appearance of scaRNAs co-occurs with the strains being pathogenic. RNA-Seq and conservation analysis show that our method is well suited for predicting CRISPR/Cas-associated small RNAs. We also find possible existence of a modified mechanism of CRISPR-associated small RNA action, which, interestingly, closely resembles the setup employed in biotechnological applications. Overall, our findings indicate that scaRNA:tracrRNA pairs are present in all subtypes of Type II systems, and point to an underlying connection with bacterial virulence. In addition to formulating these hypotheses, careful manual curation that we performed, makes an important first step toward fully automated predictor of CRISPR/Cas-associated small RNAs, which will allow their large scale analysis across diverse bacterial genomes.
Collapse
Affiliation(s)
- Jelena Guzina
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Multidisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Wei-Hua Chen
- Swiss Institute of Bioinformatics and Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Tamara Stankovic
- Multidisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | | | - Evgeny Zdobnov
- Swiss Institute of Bioinformatics and Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marko Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
70
|
Pu Q, Zhao Y, Sun Y, Huang T, Lin P, Zhou C, Qin S, Singh BB, Wu M. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-κB signaling. FASEB J 2018; 33:1074-1085. [PMID: 30067380 DOI: 10.1096/fj.201801085r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airway remodeling with progressive epithelial alterations in the respiratory tract is a severe consequence of asthma. Although dysfunctional signaling transduction is attributed to airway inflammation, the exact mechanism of airway remodeling remains largely unknown. TRPC1, a member of the transient receptor potential canonical Ca2+ channel family, possesses versatile functions but its role in airway remodeling remains undefined. Here, we show that ablation of TRPC1 in mice alleviates airway remodeling following house dust mite (HDM) challenge with decreases in mucus production, cytokine secretion, and collagen deposition. HDM challenge induces Ca2+ influx via the TRPC1 channel, resulting in increased levels of signal transducer and activator of transcription 3 (STAT3) and proinflammatory cytokines. In contrast, STAT3 expression was significantly decreased in TRPC1-/- mouse lungs compared with wild-type controls after HDM challenge. Mechanistically, STAT3 promotes epithelial-to-mesenchymal transition and increases mucin 5AC expression. Collectively, these findings identify TRPC1 as a modulator of HDM-induced airway remodeling via STAT3-mediated increase in mucus production, which provide new insight in our understanding of the molecular basis of airway remodeling, and identify novel therapeutic targets for intervention of severe chronic asthma.-Pu, Q., Zhao, Y., Sun, Y., Huang, T., Lin, P., Zhou, C., Qin, S., Singh, B. B., Wu, M. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-κB signaling.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyu Zhao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Ting Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| |
Collapse
|
71
|
Li R, Fang L, Pu Q, Bu H, Zhu P, Chen Z, Yu M, Li X, Weiland T, Bansal A, Ye SQ, Wei Y, Jiang J, Wu M. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018; 11:11/536/eaao2387. [PMID: 29945883 DOI: 10.1126/scisignal.aao2387] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression. We investigated the role of lncRNAs in the inflammatory response to bacterial infection in the lungs. We identified the lncRNA MEG3 as a tissue-specific modulator of inflammatory responses during bacterial infection. Among the 10 transcript isoforms of MEG3, transcript 4 (referred to as MEG3-4) encodes the isoform with the lowest abundance in mouse lungs. Nonetheless, we found that MEG3-4 bound to the microRNA miR-138 in a competitive manner with mRNA encoding the proinflammatory cytokine interleukin-1β (IL-1β), thereby increasing IL-1β abundance and intensifying inflammatory responses to bacterial infection in alveolar macrophages and lung epithelial cells in culture and in lung tissue in mice. MEG3-4-mediated sponging of miR-138 in the cytoplasm increased the autocrine activity of IL-1β that subsequently induced a negative feedback mechanism mediated by nuclear factor κB that decreased MEG3-4 abundance and inflammatory cytokine production. This timely reduction in MEG3-4 abundance tempered proinflammatory responses in mice with pulmonary bacterial infection, preventing the progression to sepsis. Together, these findings reveal that MEG3-4 dynamically modulates pulmonary inflammatory responses through transcriptional regulation of immune response genes, extending the decoy and sponge mechanism associated with lncRNAs to antibacterial immunity, which affects both response and disease progression.
Collapse
Affiliation(s)
- Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Pengcheng Zhu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Zihan Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | | | | | - Shui Qing Ye
- Department of Pediatrics and Department of Biomedical and Health Informatics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, Sichuan 400042, P. R. China.
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
72
|
Sacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, Stintzi A, Szymanski CM. Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses 2018; 10:E332. [PMID: 29914170 PMCID: PMC6024767 DOI: 10.3390/v10060332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Campylobacter jejuni is a frequent foodborne pathogen of humans. As C. jejuni infections commonly arise from contaminated poultry, phage treatments have been proposed to reduce the C. jejuni load on farms to prevent human infections. While a prior report documented the transcriptome of C. jejuni phages during the carrier state life cycle, transcriptomic analysis of a lytic C. jejuni phage infection has not been reported. We used RNA-sequencing to profile the infection of C. jejuni NCTC 11168 by the lytic T4-like myovirus NCTC 12673. Interestingly, we found that the most highly upregulated host genes upon infection make up an uncharacterized operon (cj0423⁻cj0425), which includes genes with similarity to T4 superinfection exclusion and antitoxin genes. Other significantly upregulated genes include those involved in oxidative stress defense and the Campylobactermultidrug efflux pump (CmeABC). We found that phage infectivity is altered by mutagenesis of the oxidative stress defense genes catalase (katA), alkyl-hydroxyperoxidase (ahpC), and superoxide dismutase (sodB), and by mutagenesis of the efflux pump genes cmeA and cmeB. This suggests a role for these gene products in phage infection. Together, our results shed light on the phage-host dynamics of an important foodborne pathogen during lytic infection by a T4-like phage.
Collapse
Affiliation(s)
- Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Annika Flint
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Bob Blasdel
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven 3001, Belgium.
| | - Hayley M Reynolds
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven 3001, Belgium.
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
73
|
Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation In Vivo in the Escherichia coli Type I-E CRISPR-Cas System. mBio 2018; 9:mBio.02100-17. [PMID: 29666291 PMCID: PMC5904413 DOI: 10.1128/mbio.02100-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo, for the type I-E system of Escherichia coli Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5' end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing.IMPORTANCE Many bacterial and archaeal species encode CRISPR-Cas immunity systems that protect against invasion by foreign DNA. In the Escherichia coli CRISPR-Cas system, a protein complex, Cascade, binds 61-nucleotide (nt) CRISPR RNAs (crRNAs). The Cascade complex is directed to invading DNA molecules through base pairing between the crRNA and target DNA. This leads to recruitment of the Cas3 nuclease, which destroys the invading DNA molecule and promotes acquisition of new immunity elements. We made the first in vivo measurements of Cascade binding to DNA targets. Thus, we show that Cascade binding to DNA is highly promiscuous; endogenous E. coli crRNAs can direct Cascade binding to >100 chromosomal locations. In contrast, we show that targeted degradation and acquisition of new immunity elements require highly specific association of Cascade with DNA, limiting CRISPR-Cas function to the appropriate targets.
Collapse
|
74
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|
75
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
cas9 Enhances Bacterial Virulence by Repressing the regR Transcriptional Regulator in Streptococcus agalactiae. Infect Immun 2018; 86:IAI.00552-17. [PMID: 29229728 DOI: 10.1128/iai.00552-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR) and their associated cas genes have been demonstrated to regulate self-genes and virulence in many pathogens. In this study, we found that inactivation of cas9 caused reduced adhesion and intracellular survival of the piscine Streptococcus agalactiae strain GD201008-001 and significantly decreased the virulence of this strain in zebrafish and mice. Further investigation indicated that the regR transcriptional regulator was upregulated in the Δcas9 mutant. As regR mediates the repression of hyaluronidase, a critical factor involved in opening the blood-brain barrier (BBB) in mice, cas9-mediated repression of regR transcription is important for S. agalactiae to open the BBB and thereby cause meningitis in animals. This study expands our understanding of endogenous gene regulation mediated by CRISPR-Cas systems in bacteria.
Collapse
|
77
|
Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus. mSphere 2017; 2:mSphere00403-17. [PMID: 29152580 PMCID: PMC5687920 DOI: 10.1128/msphere.00403-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications. CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCCmec). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5′ tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCEStaphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications.
Collapse
|
78
|
Abstract
Bacteria and archaea use CRISPR-Cas adaptive immune systems to defend themselves from infection by bacteriophages (phages). These RNA-guided nucleases are powerful weapons in the fight against foreign DNA, such as phages and plasmids, as well as a revolutionary gene editing tool. Phages are not passive bystanders in their interactions with CRISPR-Cas systems, however; recent discoveries have described phage genes that inhibit CRISPR-Cas function. More than 20 protein families, previously of unknown function, have been ascribed anti-CRISPR function. Here, we discuss how these CRISPR-Cas inhibitors were discovered and their modes of action were elucidated. We also consider the potential impact of anti-CRISPRs on bacterial and phage evolution. Finally, we speculate about the future of this field.
Collapse
Affiliation(s)
- Adair L Borges
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158;
| | - Alan R Davidson
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158;
| |
Collapse
|
79
|
Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas: Adapting to change. Science 2017; 356:356/6333/eaal5056. [PMID: 28385959 DOI: 10.1126/science.aal5056] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Rebecca E McKenzie
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Sebastian N Kieper
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand. .,Bio-Protection Research Centre, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands. .,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
80
|
Ye Y, Lin P, Zhang W, Tan S, Zhou X, Li R, Pu Q, Koff JL, Dhasarathy A, Ma F, Deng X, Jiang J, Wu M. DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2844-2853. [PMID: 28202616 PMCID: PMC5360514 DOI: 10.4049/jimmunol.1601001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Oxygen is supplied as a supportive treatment for patients suffering from acute respiratory distress syndrome. Unfortunately, high oxygen concentration increases reactive oxygen species generation, which causes DNA damage and ultimately cell death in the lung. Although 8-oxoguanine-DNA glycosylase (OGG-1) is involved in repairing hyperoxia-mediated DNA damage, the underlying molecular mechanism remains elusive. In this study, we report that ogg-1-deficient mice exhibited a significant increase of proinflammatory cytokines (TNF-α, IL-6, and IFN-γ) in the lung after being exposed to 95% oxygen. In addition, we found that ogg-1 deficiency downregulated (macro)autophagy when exposed to hyperoxia both in vitro and in vivo, which was evident by decreased conversion of LC3-I to LC3-II, reduced LC3 punctate staining, and lower Atg7 expression compared with controls. Using a chromatin immunoprecipitation assay, we found that OGG-1 associated with the promoter of Atg7, suggesting a role for OGG1 in regulation of Atg7 activity. Knocking down OGG-1 decreased the luciferase reporter activity of Atg7. Further, inflammatory cytokine levels in murine lung epithelial cell line cells were downregulated following autophagy induction by starvation and rapamycin treatment, and upregulated when autophagy was blocked using 3-methyladenine and chloroquine. atg7 knockout mice and Atg7 small interfering RNA-treated cells exhibited elevated levels of phospho-NF-κB and intensified inflammatory cytokines, suggesting that Atg7 impacts inflammatory responses to hyperoxia. These findings demonstrate that OGG-1 negatively regulates inflammatory cytokine release by coordinating molecular interaction with the autophagic pathway in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Yan Ye
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China
| | - Weidong Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shirui Tan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Xikun Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongpeng Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 2211116, People's Republic of China
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan L Koff
- Department of Medicine, Yale University, New Haven, CT 06510
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100005, People's Republic of China; and
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
81
|
Müller-Esparza H, Randau L. Commentary: Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Front Microbiol 2017; 8:319. [PMID: 28293232 PMCID: PMC5328992 DOI: 10.3389/fmicb.2017.00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hanna Müller-Esparza
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Lennart Randau
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| |
Collapse
|
82
|
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes (cas) are essential components of an adaptive immune system that protects bacteria and archaea from viral infection. Now a recent paper published in Cell Research suggests that the Type I-F immune system in Pseudomonas aeruginosa may also be involved in post-transcriptional regulation of virulence.
Collapse
|
83
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|