51
|
Multiple elements in the eIF4G1 N-terminus promote assembly of eIF4G1•PABP mRNPs in vivo. EMBO J 2010; 30:302-16. [PMID: 21139564 DOI: 10.1038/emboj.2010.312] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/03/2010] [Indexed: 11/08/2022] Open
Abstract
eIF4G is the scaffold subunit of the eIF4F complex, whose binding domains for eIF4E and poly(A)-binding protein (PABP) are thought to enhance formation of activated eIF4F•mRNA•PABP complexes competent to recruit 43S pre-initiation complexes. We found that the RNA-binding region (RNA1) in the N-terminal domain (NTD) of yeast eIF4G1 can functionally substitute for the PABP-binding segment to rescue the function of an eIF4G1-459 mutant impaired for eIF4E binding. Assaying RNA-dependent PABP-eIF4G association in cell extracts suggests that RNA1, the PABP-binding domain, and two conserved elements (Box1 and Box2) between these segments have overlapping functions in forming native eIF4G•mRNA•PABP complexes. In vitro experiments confirm the role of RNA1 in stabilizing eIF4G-mRNA association, and further indicate that RNA1 and Box1 promote PABP binding, in addition to RNA binding, by the eIF4G1 NTD. Our findings indicate that PABP-eIF4G association is only one of several interactions that stabilize eIF4F•mRNA complexes, and emphasize that closed-loop mRNP formation via PABP-eIF4G interaction is non-essential in vivo. Interestingly, two other RNA-binding regions in eIF4G1 have critical functions downstream of eIF4F•mRNA assembly.
Collapse
|
52
|
Higashi K, Tomigahara Y, Shiraki H, Miyata K, Mikami T, Kimura T, Moro T, Inagaki Y, Kaneko H. A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem 2010; 286:4485-92. [PMID: 21115500 DOI: 10.1074/jbc.m110.151936] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to liver fibrosis. We have previously shown that nuclear translocation of YB-1 antagonizes the TGF-β/Smad3 signaling in regulating collagen gene expression. More recently, we have demonstrated that the novel small compound HSc025 promotes nuclear translocation of YB-1, resulting in the improvement of skin and pulmonary fibrosis. Here, we presented evidence as to the mechanism by which HSc025 stimulates nuclear translocation of YB-1 and the pharmacological effects of HSc025 on a murine model of hepatic fibrosis. A proteomics approach and binding assays using HSc025-immobilized resin showed that HSc025 binds to the amino acid sequence within the C-tail region of YB-1. In addition, immunoprecipitation experiments and glutathione S-transferase pulldown assays identified poly(A)-binding protein (PABP) as one of the cytoplasmic anchor proteins of YB-1. HSc025 directly binds to YB-1 and interrupts its interaction with PABP, resulting in accelerated nuclear translocation of YB-1. Transfection of cells with PABP siRNA promoted nuclear translocation of YB-1 and subsequently inhibited basal and TGF-β-stimulated collagen gene expression. Moreover, HSc025 significantly suppressed collagen gene expression in cultured activated hepatic stellate cells. Oral administration of HSc025 to mice with carbon tetrachloride-induced hepatic fibrosis improved liver injury as well as the degree of hepatic fibrosis. Altogether, the results provide a novel insight into therapy for organ fibrosis using YB-1 modulators.
Collapse
Affiliation(s)
- Kiyoshi Higashi
- Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, Osaka 554-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:277-98. [PMID: 21957010 DOI: 10.1002/wrna.52] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
54
|
Bagarova J, Chowdhury TA, Kimura M, Kleene KC. Identification of elements in the Smcp 5' and 3' UTR that repress translation and promote the formation of heavy inactive mRNPs in spermatids by analysis of mutations in transgenic mice. Reproduction 2010; 140:853-64. [PMID: 20876225 DOI: 10.1530/rep-10-0323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sperm mitochondria-associated cysteine-rich protein (Smcp) mRNA is transcribed in step 3 spermatids, and is stored in free mRNPs until translation begins ∼6 days later in step 11. To identify sequences that control the timing of Smcp mRNA translation, mutations in both UTRs were analyzed in transgenic mice using green fluorescent protein (GFP), squashes of seminiferous tubules, and quantification of polysomal loading in adult and 21 dpp testes in sucrose and Nycodenz gradients. GFP fluorescence is first detected in step 9 spermatids in lines harboring a transgene containing the Gfp 5' UTR and Smcp 3' UTR. Unexpectedly, this mRNA is stored in large, inactive mRNPs in early spermatids that sediment with polysomes in sucrose gradients, but equilibrate with the density of free mRNPs in Nycodenz gradients. Randomization of the segment 6-38 nt upstream of the first Smcp poly(A) signal results in early detection of GFP, a small increase in polysomal loading in 21 dpp testis, inactivation of the formation of heavy mRNPs, and loss of binding of a Y-box protein. GFP is first detected in step 5 spermatids in a transgene containing the Smcp 5' UTR and Gfp 3' UTR. Mutations in the start codons in the upstream reading frames eliminate translational delay by the Smcp 5' UTR. Collectively, these findings demonstrate that Smcp mRNA translation is regulated by multiple elements in the 5' UTR and 3' UTR. In addition, differences in regulation between Smcp-Gfp mRNAs containing one Smcp UTR and the natural Smcp mRNA suggest that interactions between the Smcp 5' UTR and 3' UTR may be required for regulation of the Smcp mRNA.
Collapse
Affiliation(s)
- Jana Bagarova
- Cardiovascular Research Center, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
55
|
Jenkins RH, Bennagi R, Martin J, Phillips AO, Redman JE, Fraser DJ. A conserved stem loop motif in the 5'untranslated region regulates transforming growth factor-β(1) translation. PLoS One 2010; 5:e12283. [PMID: 20865036 PMCID: PMC2928724 DOI: 10.1371/journal.pone.0012283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/16/2010] [Indexed: 01/10/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) regulates cellular proliferation, differentiation, migration, and survival. The human TGF-β1 transcript is inherently poorly translated, and translational activation has been documented in relation to several stimuli. In this paper, we have sought to identify in cis regulatory elements within the TGF-β1 5′Untranslated Region (5′UTR). In silico analysis predicted formation of stable secondary structure in a G/C-rich element between nucleotides +77 to +106, and demonstrated that this element is highly conserved across species. Circular dichroism spectroscopy confirmed the presence of secondary structure in this region. The proximal 5′UTR was inhibitory to translation in reporter gene experiments, and mutation of the secondary structure motif increased translational efficiency. Translational regulation of TGF-β1 mRNA is linked to altered binding of YB-1 protein to its 5′UTR. Immunoprecipitation-RT-qPCR demonstrated a high basal association of YB-1 with TGF-β1 mRNA. However, mutation of the secondary structure motif did not prevent interaction of YB-1 with the 5′UTR, suggesting that YB-1 binds to this region due to its G/C-rich composition, rather than a specific, sequence-dependent, binding site. These data identify a highly conserved element within the TGF-β1 5′UTR that forms stable secondary structure, and is responsible for the inherent low translation efficiency of this cytokine.
Collapse
Affiliation(s)
- Robert H. Jenkins
- Institute of Nephrology, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Rasha Bennagi
- Institute of Nephrology, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - John Martin
- Institute of Nephrology, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Aled O. Phillips
- Institute of Nephrology, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - James E. Redman
- School of Chemistry, Cardiff University, Park Place, Cardiff, Wales, United Kingdom
| | - Donald J. Fraser
- Institute of Nephrology, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Yanagiya A, Delbes G, Svitkin YV, Robaire B, Sonenberg N. The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J Clin Invest 2010; 120:3389-400. [PMID: 20739757 DOI: 10.1172/jci43350] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
Translational control plays a key role in late spermiogenesis. A number of mRNAs encoding proteins required for late spermiogenesis are expressed in early spermatids but are stored as translationally inactive messenger ribonucleoprotein particles (mRNPs). The translation of these mRNAs is associated with shortening of their poly(A) tail in late spermiogenesis. Poly(A)-binding protein (Pabp) plays an important role in mRNA stabilization and translation. Three Pabp-interacting proteins, Paip1, Paip2a, and Paip2b, have been described. Paip2a is expressed in late spermatids. To investigate the role of Paip2 in spermiogenesis, we generated mice with knockout of either Paip2a or Paip2b and double-KO (DKO) mice lacking both Paip2a and Paip2b. Paip2a-KO and Paip2a/Paip2b-DKO mice exhibited male infertility. Translation of several mRNAs encoding proteins essential to male germ cell development was inhibited in late spermiogenesis in Paip2a/Paip2b-DKO mice, resulting in defective elongated spermatids. Inhibition of translation in Paip2a/Paip2b-DKO mice was caused by aberrant increased expression of Pabp, which impaired the interaction between eukaryotic initiation factor 4E (eIF4E) and the cap structure at the 5' end of the mRNA. We therefore propose a model whereby efficient mRNA translation in late spermiogenesis occurs at an optimal concentration of Pabp, a condition not fulfilled in Paip2a/Paip2b-DKO mice.
Collapse
Affiliation(s)
- Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
57
|
Vogt PK, Hart JR, Gymnopoulos M, Jiang H, Kang S, Bader AG, Zhao L, Denley A. Phosphatidylinositol 3-kinase: the oncoprotein. Curr Top Microbiol Immunol 2010. [PMID: 20582532 DOI: 10.1007/82-2010-80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The catalytic and regulatory subunits of class I phosphoinositide 3-kinase (PI3K) have oncogenic potential. The catalytic subunit p110α and the regulatory subunit p85 undergo cancer-specific gain-of-function mutations that lead to enhanced enzymatic activity, ability to signal constitutively, and oncogenicity. The β, γ, and δ isoforms of p110 are cell-transforming as overexpressed wild-type proteins. Class I PI3Ks have the unique ability to generate phosphoinositide 3,4,5 trisphosphate (PIP(3)). Class II and class III PI3Ks lack this ability. Genetic and cell biological evidence suggests that PIP(3) is essential for PI3K-mediated oncogenicity, explaining why class II and class III enzymes have not been linked to cancer. Mutational analysis reveals the existence of at least two distinct molecular mechanisms for the gain of function seen with cancer-specific mutations in p110α; one causing independence from upstream receptor tyrosine kinases, the other inducing independence from Ras. An essential component of the oncogenic signal that is initiated by PI3K is the TOR (target of rapamycin) kinase. TOR is an integrator of growth and of metabolic inputs. In complex with the raptor protein (TORC1), it controls cap-dependent translation, and this function is essential for PI3K-initiated oncogenesis.
Collapse
Affiliation(s)
- Peter K Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
59
|
Lin J, Kolomeisky A, Meller A. Helix-coil kinetics of individual polyadenylic acid molecules in a protein channel. PHYSICAL REVIEW LETTERS 2010; 104:158101. [PMID: 20482020 DOI: 10.1103/physrevlett.104.158101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Indexed: 05/29/2023]
Abstract
Helix-coil transition kinetics of polyadenylic acid [poly(A)] inside a small protein channel is investigated for the first time, at the single molecule level. The confinement of a RNA molecule inside the channel slows its kinetics by nearly 3 orders of magnitude as compared to bulk measurements of free poly(A). These findings are related to the interaction energy of the RNA structure with the interior of the pore, explained by a simple two-state model. These results shed light on the way intermolecular interactions alter nucleic acid kinetics.
Collapse
Affiliation(s)
- Jianxun Lin
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
60
|
Abstract
Cytoplasmic PABP [poly(A)-binding protein] is a multifunctional protein with well-studied roles in mRNA translation and stability. In the present review, we examine recent evidence that the activity of PABP is altered during infection with a wide range of viruses, bringing about changes in its stability, complex formation and intracellular localization. Targeting of PABP by both RNA and DNA viruses highlights the role of PABP as a central regulator of gene expression.
Collapse
|