51
|
DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere. Protein Cell 2014; 5:411-9. [PMID: 24691906 PMCID: PMC4026425 DOI: 10.1007/s13238-014-0049-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/30/2023] Open
Abstract
Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.
Collapse
|
52
|
Zhang H, Tian XJ, Mukhopadhyay A, Kim KS, Xing J. Statistical mechanics model for the dynamics of collective epigenetic histone modification. PHYSICAL REVIEW LETTERS 2014; 112:068101. [PMID: 24580708 DOI: 10.1103/physrevlett.112.068101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 06/03/2023]
Abstract
Epigenetic histone modifications play an important role in the maintenance of different cell phenotypes. The exact molecular mechanism for inheritance of the modification patterns over cell generations remains elusive. We construct a Potts-type model based on experimentally observed nearest-neighbor enzyme lateral interactions and nucleosome covalent modification state biased enzyme recruitment. The model can lead to effective nonlocal interactions among nucleosomes suggested in previous theoretical studies, and epigenetic memory is robustly inheritable against stochastic cellular processes.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA
| | - Xiao-Jun Tian
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA
| | | | - K S Kim
- Lawrence Livermore National Laboratory and University of California, Livermore, California 94550, USA
| | - Jianhua Xing
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA and Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0406, USA and Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
53
|
Steinhauf D, Rodriguez A, Vlachakis D, Virgo G, Maksimov V, Kristell C, Olsson I, Linder T, Kossida S, Bongcam-Rudloff E, Bjerling P. Silencing motifs in the Clr2 protein from fission yeast, Schizosaccharomyces pombe. PLoS One 2014; 9:e86948. [PMID: 24475199 PMCID: PMC3903592 DOI: 10.1371/journal.pone.0086948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is a well-established model for heterochromatin formation, but the exact sequence of events for initiation remains to be elucidated. The essential factors involved include RNA transcribed from repeated sequences together with the methyltransferase Clr4. In addition, histone deacetylases, like Clr3, found in the SHREC complex are also necessary for transcriptional silencing. Clr2 is another crucial factor required for heterochromatin formation found in the SHREC complex. The function of Clr2 has been difficult to establish due to the lack of conserved domains or homology to proteins of known molecular function. Using a bioinformatics approach, three conserved motifs in Clr2 were identified, which contained amino acids important for transcriptional repression. Analysis of clr2 mutant strains revealed a major role for Clr2 in mating-type and rDNA silencing, and weaker effects on centromeric silencing. The effect on mating-type silencing showed variegation in several of the strains with mutated versions of Clr2 indicating an establishment or maintenance defect. Moreover, the critical amino acids in Clr2 were also necessary for transcriptional repression in a minimal system, by the tethering of Clr4 upstream of a reporter gene, inserted into the euchromatic part of the genome. Finally, in silico modeling suggested that the mutations in Clr2 cause disruption of secondary structures in the Clr2 protein. Identification of these critical amino acids in the protein provides a useful tool to explore the molecular mechanism behind the role of Clr2 in heterochromatin formation.
Collapse
Affiliation(s)
- Daniel Steinhauf
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Alejandro Rodriguez
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Dimitrios Vlachakis
- Bioinformatics and Medical Informatics Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Gordon Virgo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Vladimir Maksimov
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Carolina Kristell
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Ida Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Tomas Linder
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sophia Kossida
- Bioinformatics and Medical Informatics Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pernilla Bjerling
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
54
|
Tadeo X, Wang J, Kallgren SP, Liu J, Reddy BD, Qiao F, Jia S. Elimination of shelterin components bypasses RNAi for pericentric heterochromatin assembly. Genes Dev 2014; 27:2489-99. [PMID: 24240238 PMCID: PMC3841737 DOI: 10.1101/gad.226118.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RNAi pathway is required for heterochromatin assembly, and loss of RNAi causes pericentric heterochromatin defects. Tadeo et al. show that deletion of telomere shelterin components in RNAi mutants restores pericentric heterochromatin. Shelterin component Poz1 mutant analysis reveals that defective telomere silencing, but not telomere length control, is critical for bypassing RNAi. Furthermore, heterochromatin protein Swi6 is redistributed to pericentric regions in RNAi mutants. Heterochromatin domains thus use multiple pathways to restrain Swi6 and avoid promiscuous heterochromatin formation. The RNAi pathway is required for heterochromatin assembly at repetitive DNA elements in diverse organisms. In fission yeast, loss of RNAi causes pericentric heterochromatin defects, compromising gene silencing and chromosome segregation. Here we show that deletion of telomere shelterin components restores pericentric heterochromatin and its functions in RNAi mutants. We further isolated a separation-of-function mutant of Poz1 and revealed that defective telomere silencing, but not telomere length control, is critical for bypassing RNAi. Further analyses demonstrated that compromising shelterin-mediated heterochromatin assembly in RNAi mutants releases heterochromatin protein Swi6, which is redistributed to pericentric regions through RNAi-independent heterochromatin assembly pathways. Given the high mobility of Swi6 protein and that increased levels of Swi6 facilitates heterochromatin spreading as well as ectopic heterochromatin assembly, our results suggest that constitutive heterochromatin domains use multiple pathways to form high-affinity platforms to restrain Swi6, thus limiting its availability and avoiding promiscuous heterochromatin formation.
Collapse
Affiliation(s)
- Xavier Tadeo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Rechavi O. Guest list or black list: heritable small RNAs as immunogenic memories. Trends Cell Biol 2013; 24:212-20. [PMID: 24231398 DOI: 10.1016/j.tcb.2013.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022]
Abstract
Small RNA-mediated gene silencing plays a pivotal role in genome immunity by recognizing and eliminating viruses and transposons that may otherwise colonize the genome. However, individual genomic parasites are highly diverse and employ multiple immune-evasion techniques, making this silencing challenging. Here I review a new theory proposing that the integrity of the germline is maintained by transgenerationally transmitted RNA 'memories' that record ancestral gene expression patterns and delineate 'self' from 'foreign' sequences. To maintain such recollection, two tactics are employed in parallel: 'black listing' of invading nucleic acids and 'guest listing' of endogenous genes. Studies in several organisms have shown that this memorization is used by the next generation of small RNAs to act as 'inherited vaccines' that attack invading elements or as 'inherited licenses' that permit the transcription of autogenous sequences.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 69978.
| |
Collapse
|
56
|
Wang J, Tadeo X, Hou H, Tu PG, Thompson J, Yates JR, Jia S. Epe1 recruits BET family bromodomain protein Bdf2 to establish heterochromatin boundaries. Genes Dev 2013; 27:1886-902. [PMID: 24013502 PMCID: PMC3778242 DOI: 10.1101/gad.221010.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterochromatin spreading leads to gene silencing, and boundary elements constrain such spreading. IRC inverted repeats are required for boundary function at centromeric heterochromatin in fission yeast. Jia and colleagues now identify BET family homolog Bdf2 as required for heterochromatin boundary function at IRCs. Bdf2 interacts with boundary protein Epe1, recognizes acetylated histone H4 tails, and antagonizes Sir2-mediated deacetylation of histone H4K16. This study illustrates a mechanism for establishing chromosome boundaries through recruitment of a factor that protects euchromatic histone modifications. Heterochromatin spreading leads to the silencing of genes within its path, and boundary elements have evolved to constrain such spreading. In fission yeast, heterochromatin at centromeres I and III is flanked by inverted repeats termed IRCs, which are required for proper boundary functions. However, the mechanisms by which IRCs prevent heterochromatin spreading are unknown. Here, we identified Bdf2, which is homologous to the mammalian bromodomain and extraterminal (BET) family double bromodomain proteins involved in diverse types of cancers, as a factor required for proper boundary function at IRCs. Bdf2 is enriched at IRCs through its interaction with the boundary protein Epe1. The bromodomains of Bdf2 recognize acetylated histone H4 tails and antagonize Sir2-mediated deacetylation of histone H4K16. Furthermore, abolishing H4K16 acetylation (H4K16ac) with an H4K16R mutation promotes heterochromatin spreading, and mimicking H4K16ac by an H4K16Q mutation blocks heterochromatin spreading at IRCs. Our results thus illustrate a mechanism of establishing chromosome boundaries at specific sites through the recruitment of a factor that protects euchromatic histone modifications. They also reveal a previously unappreciated function of H4K16ac in cooperation with H3K9 methylation to regulate heterochromatin spreading.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Froyd CA, Kapoor S, Dietrich F, Rusche LN. The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin. PLoS Genet 2013; 9:e1003935. [PMID: 24204326 PMCID: PMC3814328 DOI: 10.1371/journal.pgen.1003935] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022] Open
Abstract
Deacetylases of the Sir2 or sirtuin family are thought to regulate life cycle progression and life span in response to nutrient availability. This family has undergone successive rounds of duplication and diversification, enabling the enzymes to perform a wide variety of biological functions. Two evolutionarily conserved functions of yeast Sir2 proteins are the generation of repressive chromatin in subtelomeric domains and the suppression of unbalanced recombination within the tandem rDNA array. Here, we describe the function of the Sir2 ortholog ClHst1 in the yeast Clavispora lusitaniae, an occasional opportunistic pathogen. ClHst1 was localized to the non-transcribed spacer regions of the rDNA repeats and deacetylated histones at these loci, indicating that, like other Sir2 proteins, ClHst1 modulates chromatin structure at the rDNA repeats. However, we found no evidence that ClHst1 associates with subtelomeric regions or impacts gene expression directly. This surprising observation highlights the plasticity of sirtuin function. Related yeast species, including Candida albicans, possess an additional Sir2 family member. Thus, it is likely that the ancestral Candida SIR2/HST1 gene was duplicated and subfunctionalized, such that HST1 retained the capacity to regulate rDNA whereas SIR2 had other functions, perhaps including the generation of subtelomeric chromatin. After subsequent species diversification, the SIR2 paralog was apparently lost in the C. lusitaniae lineage. Thus, C. lusitaniae presents an opportunity to discover how subtelomeric chromatin can be reconfigured.
Collapse
Affiliation(s)
- Cara A. Froyd
- Biochemistry Department, Duke University, Durham, North Carolina, United States of America
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Fred Dietrich
- Department of Molecular Genetics & Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Laura N. Rusche
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
58
|
|
59
|
Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 2013; 32:2321-35. [PMID: 23771057 PMCID: PMC3770337 DOI: 10.1038/emboj.2013.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/23/2013] [Indexed: 01/20/2023] Open
Abstract
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4-mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4-mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi-deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly. The demonstration that H3K14 deacetylation promotes recruitment of the Clr4 histone methyltransferase establishes a new function for the Sir2 deacetylase in de novo heterochromatin formation.
Collapse
|