51
|
Pan SD, Grandgirard D, Leib SL. Adjuvant Cannabinoid Receptor Type 2 Agonist Modulates the Polarization of Microglia Towards a Non-Inflammatory Phenotype in Experimental Pneumococcal Meningitis. Front Cell Infect Microbiol 2020; 10:588195. [PMID: 33251159 PMCID: PMC7674855 DOI: 10.3389/fcimb.2020.588195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Microglia initiates and sustains the inflammatory reaction that drives the pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its activation down-regulates pro-inflammatory processes, driving microglia towards an anti-inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in inflammatory conditions like pneumococcal meningitis. We evaluated the effects of JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven by S. pneumoniae in vitro and in experimental pneumococcal meningitis. Materials/methods Primary mixed glial cultures were stimulated with live or heat-inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle. Nitric oxide and cytokines levels were measured in the supernatant. In vivo, pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg, s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection (hpi) for histological assessment of hippocampal apoptosis and cortical damage and determination of cyto/chemokines in tissue homogenates. Microglia were characterized using Iba-1 immunostaining. Inflammation in brain homogenates was determined using membrane-based antibody arrays. Results In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133 treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133 significantly lowered microglia activation assessed by quantification of cell process length and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly lower parenchymal levels of chemokines (CINC-1, CINC-2α/β, and MIP-3α), TIMP-1, and IL-6 at 24 hpi, and CINC-1, MIP-1α, and IL-1α at 42 hpi. Quantitative analysis of brain damage did not reveal an effect of JWH-133. Conclusions JWH-133 attenuates microglial activation and downregulates the concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in vivo. However, we didn't observe a reduction in cortical or hippocampal injury. This data provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively downmodulates neuroinflammation but does not reduce brain damage in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Steven D Pan
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
52
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
53
|
Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41:1263-1271. [PMID: 32203086 PMCID: PMC7608191 DOI: 10.1038/s41401-020-0385-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
The endocannabinoid system (ECS) has received extensive attention for its neuroprotective effect on the brain. This system comprises endocannabinoids, endocannabinoid receptors, and the corresponding ligands and proteins. The molecular players involved in their regulation and metabolism are potential therapeutic targets for neuropsychiatric diseases including anxiety, depression and neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The inhibitors of two endocannabinoid hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), have the capacity to increase the level of endocannabinoids indirectly, causing fewer side effects than those associated with direct supplementation of cannabinoids. Their antidepressant and anxiolytic mechanisms are considered to modulate the hypothalamic-pituitary-adrenal axis and regulate synaptic and neural plasticity. In terms of AD/PD, treatment with FAAH/MAGL inhibitors leads to reduction in amyloid β-protein deposition and inhibition of the death of dopamine neurons, which are commonly accepted to underlie the pathogenesis of AD and PD, respectively. Inflammation as the cause of depression/anxiety and PD/AD is also the target of FAAH/MAGL inhibitors. In this review, we summarize the application and involvement of FAAH/MAGL inhibitors in related neurological diseases. Focus on the latest research progress using FAAH/MAGL inhibitors is expected to facilitate the development of novel approaches with therapeutic potential.
Collapse
|
54
|
Functional Crosstalk between CB and TRPV1 Receptors Protects Nigrostriatal Dopaminergic Neurons in the MPTP Model of Parkinson's Disease. J Immunol Res 2020; 2020:5093493. [PMID: 33062722 PMCID: PMC7539109 DOI: 10.1155/2020/5093493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
The present study examined whether crosstalk between cannabinoid (CB) and transient potential receptor vanilloid type 1 (TRPV1) could contribute to the survival of nigrostriatal dopamine neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). MPTP induced a significant loss of nigrostriatal dopamine neurons and glial activation in the substantia nigra (SN) and striatum (STR) as visualized by tyrosine hydroxylase (TH) or macrophage antigen complex-1 (MAC-1) or glial fibrillary acidic protein (GFAP) immunocytochemistry, respectively. RT-PCR analysis shows the upregulation of inducible nitric oxide synthase, interleukin-1β, and tumor necrosis factor-α in microglia in the SN in vivo, indicating the activation of the inflammatory system. By contrast, treatment with capsaicin (a specific TRPV1 agonist) increased the survival of dopamine neurons in the SN and their fibers and dopamine levels in the STR in MPTP mice. Capsaicin neuroprotection is accompanied by inhibiting MPTP-induced glial activation and production of inflammatory cytokines. Treatment with AM251 and AM630 (CB1/2 antagonists) abolished capsaicin-induced beneficial effects, indicating the existence of a functional crosstalk between CB and TRPV1. Moreover, treatment with anandamide (an endogenous agonist for both CB and TRVP1) rescued nigrostriatal dopamine neurons and reduced gliosis-derived neuroinflammatory responses in MPTP mice. These results suggest that the cannabinoid and vanilloid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with neuroinflammation.
Collapse
|
55
|
Wang C, Xu K, Wang Y, Mao Y, Huang Y, Liang Y, Liu Y, Hao J, Gu X, Ma Z, Sun Y. Spinal cannabinoid receptor 2 activation reduces hypersensitivity associated with bone cancer pain and improves the integrity of the blood-spinal cord barrier. Reg Anesth Pain Med 2020; 45:783-791. [PMID: 32796132 PMCID: PMC7513263 DOI: 10.1136/rapm-2019-101262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023]
Abstract
Background Disruption of the blood–spinal cord barrier (BSCB) can facilitate inflammation that results in pain hypersensitivity. Proinflammatory cytokines produced by activated microglia and astrocytes damage the BSCB. This study aims to explore whether the BSCB is damaged in the bone cancer pain (BCP) model and to investigate a potential role and mechanism of JWH015 ((2-methyl-1-propyl-1H-indol-3-yl)−1-naphthalenylmethanone), a selective cannabinoid receptor 2 (CB2R) agonist, in preserving the BSCB integrity in the BCP model. Methods We used a male mouse model of BCP. Pain hypersensitivity was measured over time. Evans blue dye extravasation, transmission electron microscopy and Western blotting were performed to investigate the permeability and structural integrity of the BSCB. Immunofluorescence staining and western blotting were used to investigate the effect of JWH015 on the activation of glial cells and the levels of proinflammatory cytokines. Results A single intrathecal injection of JWH015 ameliorated pain hypersensitivity, the BSCB disruption and microglia and astrocyte activation. Decreases in the expression of ZO-1 and claudin-5 were partially restored by JWH015. The levels of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α and the enzyme MMP9 were reduced by JWH015. However, all effects were prevented by pretreatment with a CB2R-selective antagonist, AM630 ((6-iodo-2-methyl-1-(2-morpholinoethyl)−1H-indol-3-yl)(4-methoxyphenyl)methanone). Conclusions JWH015 alleviates neuroinflammation and maintains the BSCB integrity and permeability in a mouse model of BCP, which is probably mediated by inhibiting glial cells activation. This study reveals the new analgesic mechanism of JWH015 on BCP and provides a perspective to explore novel drugs that target the BSCB to control BCP.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ke Xu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yu Wang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yanting Mao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ying Liang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Jing Hao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
56
|
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life (Basel) 2020; 10:life10060086. [PMID: 32545328 PMCID: PMC7344445 DOI: 10.3390/life10060086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology. Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms'. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide. However, the described clinical applications and safety of pharmacotherapy with cannabis products are yet to be fully supported by scientific evidence. Furthermore, the novel psychoactive substances are currently a popular alternative to classical drugs of abuse, representing an unknown health hazard for young adults who may develop PD later in their lifetime. This review addresses the neurotoxic and neuroprotective impact of illicit substance consumption in PD, presenting clinical evidence and molecular and cellular mechanisms of this association. This research area is utterly important for contemporary society since illicit drugs' legalization is under discussion which may have consequences both for the onset of PD and for the treatment of its symptoms.
Collapse
Affiliation(s)
- Carla Ferreira
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Al. Prof. Hernâni Monteiro, P-4200–319 Porto, Portugal
| | - Catarina Almeida
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
| | - Sandra Tenreiro
- CEDOC–Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, P-1150-082 Lisboa, Portugal;
| | - Alexandre Quintas
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
57
|
Espadas I, Keifman E, Palomo-Garo C, Burgaz S, García C, Fernández-Ruiz J, Moratalla R. Beneficial effects of the phytocannabinoid Δ 9-THCV in L-DOPA-induced dyskinesia in Parkinson's disease. Neurobiol Dis 2020; 141:104892. [PMID: 32387338 DOI: 10.1016/j.nbd.2020.104892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.
Collapse
Affiliation(s)
- Isabel Espadas
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | | | - Cristina Palomo-Garo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Burgaz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Rosario Moratalla
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
58
|
Hu Y, Zhang K, Zhang T, Wang J, Chen F, Qin W, Tong W, Guan Q, He Y, Gu C, Chen X, Kang UJ, Sun YE, Li S, Jin L. Exercise Reverses Dysregulation of T-Cell-Related Function in Blood Leukocytes of Patients With Parkinson's Disease. Front Neurol 2020; 10:1389. [PMID: 32047471 PMCID: PMC6997272 DOI: 10.3389/fneur.2019.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/17/2019] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with movement and balance impairments. Although studies have reported improvement of motor symptoms with physical exercise, the mechanisms by which exercise is beneficial remains poorly understood. Our study addresses the exercise-induced changes to peripheral immune cells by interrogating the transcriptome of blood-derived leukocytes in PD patients before and after exercise. Patients attended 1 h exercise classes twice a week for 12 weeks. Leukocytes were collected at the beginning and end of the study for gene expression analysis by RNA-seq or quantitative real-time PCR. We correlated differentially expressed genes after exercise with clinical measures and analyzed the potential functions of gene changes with Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analysis. Exercise improved measures of movement and balance when compared with scores before the exercise program. Among the gene changes, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis suggests that T-cell receptor signaling, T-cell activation, and T-cell migration pathways were downregulated, while the T-cell receptor signaling pathway was the most significantly correlated with clinical measures. To further investigate T-cell-related changes in PD leukocytes, we reanalyzed the differentially expressed genes from publicly available microarray data and found that genes in the T-cell activation, differentiation, and migration pathways were upregulated in PD samples compared to controls in a time-dependent manner. Together, our findings suggest that exercise rehabilitation may improve movement and balance in PD patients by reversing the upregulated T-cell activation pathways associated with PD. This study was registered with the Chinese Clinical Trial Registry under ChiCTR-TRC-14004707. Registered on May 27, 2014.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Neurology, Department of Neuroscience and Physiology, NYU Langone Health, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Neuroscience Institute, New York, NY, United States
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Qin
- Department of Spine Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weifang Tong
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Guan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yijing He
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunya Gu
- Department of Spine Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Un Jung Kang
- Department of Neurology, Department of Neuroscience and Physiology, NYU Langone Health, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Neuroscience Institute, New York, NY, United States
| | - Yi E. Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
59
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
60
|
Cortez IL, Rodrigues da Silva N, Guimarães FS, Gomes FV. Are CB2 Receptors a New Target for Schizophrenia Treatment? Front Psychiatry 2020; 11:587154. [PMID: 33329132 PMCID: PMC7673393 DOI: 10.3389/fpsyt.2020.587154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Schizophrenia is a complex disorder that involves several neurotransmitters such as dopamine, glutamate, and GABA. More recently, the endocannabinoid system has also been associated with this disorder. Although initially described as present mostly in the periphery, cannabinoid type-2 (CB2) receptors are now proposed to play a role in several brain processes related to schizophrenia, such as modulation of dopaminergic neurotransmission, microglial activation, and neuroplastic changes induced by stress. Here, we reviewed studies describing the involvement of the CB2 receptor in these processes and their association with the pathophysiology of schizophrenia. Taken together, these pieces of evidence indicate that CB2 receptor may emerge as a new target for the development of antipsychotic drugs.
Collapse
Affiliation(s)
- Isadora L Cortez
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Naielly Rodrigues da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
61
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
62
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
63
|
Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP. Biomolecules 2019; 9:biom9100564. [PMID: 31590236 PMCID: PMC6843129 DOI: 10.3390/biom9100564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 h after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain’s vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions.
Collapse
|
64
|
Geresu B, Canseco-Alba A, Sanabria B, Lin Z, Liu QR, Onaivi ES, Engidawork E. Involvement of CB2 Receptors in the Neurobehavioral Effects of Catha Edulis (Vahl) Endl. (Khat) in Mice. Molecules 2019; 24:E3164. [PMID: 31480324 PMCID: PMC6749201 DOI: 10.3390/molecules24173164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
There is behavioral evidence for the interaction between crude khat extract and the endocannabinoid system, whereby the endocannabinoid system alters khat extract-mediated behavioral effects through modulation of the monoaminergic system. The objective of this study was to investigate the role of the endocannabinoid system on the neurobehavioral effect of khat extract in mice following concomitant administration of khat extract and the CB2R agonist, JWH133. Locomotor activity test, immunohistochemistry, and reverse transcriptase polymerase chain reaction technique were utilized to assess locomotor activity, tyrosine hydroxylase immunoreactivity, and expression of dopamine transporter mRNA gene. The results show sub-acute administration of khat extract alone increased locomotor activity in mice and co-administration of the CB2R agonist, JWH133, reduced khat extract induced hyperlocomotor activity. The data revealed that cell type specific deletion of CB2Rs on dopaminergic neurons increased the hyperlocomotor behavior of khat extract. Furthermore, the results revealed that khat extract attenuated MPTP induced motor deficits, which is enhanced by JWH133. Khat extract also increased expression of tyrosine hydroxylase positive cells and expression of dopamine transporter mRNA gene in wild type mice. Nevertheless, JWH133 did not alter the effect of khat extract on tyrosine hydroxylase immunoreactivity and dopamine transporter mRNA expression when given together with khat extract. Taken together, the results suggest that the CB2Rs selectively interact with khat extract-mediated locomotor effects and could be utilized as therapeutic target in central nervous system movement disorders associated with dopamine dysregulation.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/physiology
- Cannabinoids/administration & dosage
- Cannabinoids/pharmacology
- Catha/chemistry
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/physiology
- Gene Deletion
- Gene Expression Regulation/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Plant Extracts/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Berhanu Geresu
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Ana Canseco-Alba
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA 02478, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA.
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Addis Ababa University, 1176 Addis Ababa, Ethiopia.
| |
Collapse
|
65
|
Li Y, Xie L, Huang T, Zhang Y, Zhou J, Qi B, Wang X, Chen Z, Li P. Aging Neurovascular Unit and Potential Role of DNA Damage and Repair in Combating Vascular and Neurodegenerative Disorders. Front Neurosci 2019; 13:778. [PMID: 31440124 PMCID: PMC6694749 DOI: 10.3389/fnins.2019.00778] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023] Open
Abstract
Progressive neurological deterioration poses enormous burden on the aging population with ischemic stroke and neurodegenerative disease patients, such as Alzheimers’ disease and Parkinson’s disease. The past two decades have witnessed remarkable advances in the research of neurovascular unit dysfunction, which is emerging as an important pathological feature that underlies these neurological disorders. Dysfunction of the unit allows penetration of blood-derived toxic proteins or leukocytes into the brain and contributes to white matter injury, disturbed neurovascular coupling and neuroinflammation, which all eventually lead to cognitive dysfunction. Recent evidences suggest that aging-related oxidative stress, accumulated DNA damage and impaired DNA repair capacities compromises the genome integrity not only in neurons, but also in other cell types of the neurovascular unit, such as endothelial cells, astrocytes and pericytes. Combating DNA damage or enhancing DNA repair capacities in the neurovascular unit represents a promising therapeutic strategy for vascular and neurodegenerative disorders. In this review, we focus on aging related mechanisms that underlie DNA damage and repair in the neurovascular unit and introduce several novel strategies that target the genome integrity in the neurovascular unit to combat the vascular and neurodegenerative disorders in the aging brain.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zengai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
66
|
Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JÁ, Morera-Herreras T. Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:229-257. [PMID: 31349929 DOI: 10.1016/bs.irn.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The basal ganglia (BG), an organized network of nuclei that integrates cortical information, play a crucial role in controlling motor function. In fact, movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD) are caused by the degeneration of specific structures within the BG. There is substantial evidence supporting the idea that cannabinoids may constitute novel promising compounds for the treatment of movement disorders as neuroprotective and anti-inflammatory agents. This potential therapeutic role of cannabinoids is based, among other qualities, on their capacity to reduce oxidative injury and excitotoxicity, control calcium influx and limit the toxicity of reactive microglia. The mechanisms involved in these effects are related to CB1 and CB2 receptor activation, although some of the effects are CB receptor independent. Thus, taking into account the aforementioned properties, compounds that act on the endocannabinoid system could be useful as a basis for developing disease-modifying therapies for PD and HD.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María Botta
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
67
|
Sahu P, Mudgal J, Arora D, Kinra M, Mallik SB, Rao CM, Pai KSR, Nampoothiri M. Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice. Psychopharmacology (Berl) 2019; 236:1829-1838. [PMID: 30666359 DOI: 10.1007/s00213-019-5166-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE AND OBJECTIVES Cannabinoid receptor 2 (CB2R) signaling in the brain is associated with the pathophysiology of depression. Sickness behavior, characterized by lessened mobility, social interaction, and depressive behavior, is linked with neuroinflammation, oxidative stress, and immune system. The present study was aimed at evaluating 1-phenylisatin (PI), a CB2R agonist, in sickness behavior. METHODS Influence of acute and 7-day activation of CB2R using PI in lipopolysaccharide (LPS)-induced sickness behavior was assessed in mice. An acute injection of LPS (1.5 mg/kg) produced a fully developed sickness behavior in animals within 1 h of administration. The behavioral paradigm was assessed by open field test, forced swim test, and tail suspension test. Further, tumor necrosis factor-α (TNF-α), antioxidant enzymes, and lipid peroxidation were measured in the brain to correlate neuroinflammation and oxidative stress with sickness behavior. Both treatments, PI (20 mg/kg) and imipramine (15 mg/kg), were administered orally (once for acute and once daily for 7-day protocols). RESULTS LPS elevated the brain TNF-α level, augmented oxidative stress, and induced the sickness behavior in mice. Acute and 7-day treatment of mice with PI significantly reduced the LPS-induced sickness behavior. In addition, PI inhibited the neuroinflammation evidenced by a reduction in brain TNF-α and oxidative stress. CONCLUSION Our data propose that acute and long-term activation of CB2R might prevent neuroinflammation and oxidative stress-associated sickness behavior.
Collapse
Affiliation(s)
- Puspita Sahu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K S R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
68
|
A selective CB 2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice. Biomed Pharmacother 2019; 116:109025. [PMID: 31154267 DOI: 10.1016/j.biopha.2019.109025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2 agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1β, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.
Collapse
|
69
|
Fuzzati-Armentero MT, Cerri S, Blandini F. Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us? Front Neurol 2019; 10:232. [PMID: 30941089 PMCID: PMC6433876 DOI: 10.3389/fneur.2019.00232] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
The brain is no longer considered an immune privileged organ and neuroinflammation has long been associated with Parkinson's disease. Accumulating evidence demonstrates that innate and adaptive responses take place in the CNS. The extent to which peripheral immune alterations impacts on the CNS, or vice and versa, is, however, still a matter of debate. Gaining a better knowledge of the molecular and cellular immune dysfunctions present in these two compartments and clarifying their mutual interactions is a fundamental step in understanding and preventing Parkinson's disease (PD) pathogenesis. This review provides an overview of the current knowledge on inflammatory processes evidenced both in PD patients and in toxin-induced animal models of the disease. It discusses differences and similarities between human and animal studies in the context of neuroinflammation and immune responses and how they have guided therapeutic strategies to slow down disease progression. Future longitudinal studies are necessary and can help gain a better understanding on peripheral-central nervous system crosstalk to improve therapeutic strategies for PD.
Collapse
|
70
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
71
|
Baul HS, Manikandan C, Sen D. Cannabinoid receptor as a potential therapeutic target for Parkinson's Disease. Brain Res Bull 2019; 146:244-252. [PMID: 30664919 DOI: 10.1016/j.brainresbull.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the loss of dopaminergic neurons from substantia nigra pars compacta of basal ganglia caused due to gene mutation, misfolded protein aggregation, reactive oxygen species generation and inflammatory stress. Degeneration of dopaminergic neurons results in muscle stiffness, uncoordinated body movements, sleep disturbance, fatigue, amnesia and impaired voice. Currently, levodopa (L-DOPA) administration is the most widely used therapy for PD. But prolonged administration of L-DOPA is associated with the symptoms of dyskinesia. However, emerging evidences suggest the role of cannabinoid receptors (CBRs) in curtailing the progression of PD by activating neuroprotective pathways. Hence, cannabinoid therapy could be a promising alternative to combat PD in future. In the present review we have discussed the potential role of CBRs in attenuating the key mechanisms of PD and how the existing research gaps needs to be bridged in order to understand the molecular mechanism of CBRs in detail.
Collapse
Affiliation(s)
- Himadri Shekhaar Baul
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Ceera Manikandan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
72
|
Ganeshan V, Skladnev NV, Kim JY, Mitrofanis J, Stone J, Johnstone DM. Pre-conditioning with Remote Photobiomodulation Modulates the Brain Transcriptome and Protects Against MPTP Insult in Mice. Neuroscience 2019; 400:85-97. [PMID: 30625333 DOI: 10.1016/j.neuroscience.2018.12.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 12/14/2022]
Abstract
Transcranial photobiomodulation (PBM), which involves the application of low-intensity red to near-infrared light (600-1100 nm) to the head, provides neuroprotection in animal models of various neurodegenerative diseases. However, the absorption of light energy by the human scalp and skull may limit the utility of transcranial PBM in clinical contexts. We have previously shown that targeting light at peripheral tissues (i.e. "remote PBM") also provides protection of the brain in an MPTP mouse model of Parkinson's disease, suggesting remote PBM might be a viable alternative strategy for overcoming penetration issues associated with transcranial PBM. This present study aimed to determine an effective pre-conditioning regimen of remote PBM for inducing neuroprotection and elucidate the molecular mechanisms by which remote PBM enhances the resilience of brain tissue. Balb/c mice were irradiated with 670-nm light (4 J/cm2 per day) targeting dorsum and hindlimbs for 2, 5 or 10 days, followed by injection of the parkinsonian neurotoxin MPTP (50 mg/kg) over two consecutive days. Despite no direct irradiation of the head, 10 days of pre-conditioning with remote PBM significantly attenuated MPTP-induced loss of midbrain tyrosine hydroxylase-positive dopaminergic cells and mitigated the increase in FOS-positive neurons in the caudate-putamen complex. Interrogation of the midbrain transcriptome by RNA microarray and pathway enrichment analysis suggested upregulation of cell signaling and migration (including CXCR4+ stem cell and adipocytokine signaling), oxidative stress response pathways and modulation of the blood-brain barrier following remote PBM. These findings establish remote PBM preconditioning as a viable neuroprotective intervention and provide insights into the mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Varshika Ganeshan
- Bosch Institute, University of Sydney, NSW 2006, Australia; Discipline of Physiology, University of Sydney, NSW 2006, Australia
| | - Nicholas V Skladnev
- Bosch Institute, University of Sydney, NSW 2006, Australia; Discipline of Physiology, University of Sydney, NSW 2006, Australia
| | - Ji Yeon Kim
- Bosch Institute, University of Sydney, NSW 2006, Australia; Discipline of Physiology, University of Sydney, NSW 2006, Australia; School of Medicine, University of Queensland Centre for Clinical Research, QLD 4029, Australia
| | - John Mitrofanis
- Bosch Institute, University of Sydney, NSW 2006, Australia; Discipline of Anatomy & Histology, University of Sydney, NSW 2006, Australia
| | - Jonathan Stone
- Bosch Institute, University of Sydney, NSW 2006, Australia; Discipline of Physiology, University of Sydney, NSW 2006, Australia
| | - Daniel M Johnstone
- Bosch Institute, University of Sydney, NSW 2006, Australia; Discipline of Physiology, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
73
|
An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr Opin Anaesthesiol 2018; 31:407-414. [PMID: 29794855 DOI: 10.1097/aco.0000000000000616] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This narrative review summarizes recent insights into the role of the cannabinoid type 2 (CB2) receptor as potential therapeutic target in neuropathic pain and neurodegenerative conditions. RECENT FINDINGS The cannabinoid system continues to receive attention as a therapeutic target. The CB2 receptor is primarily expressed on glial cells only when there is active inflammation and appears to be devoid of undesired psychotropic effects or addiction liability. The CB2 receptor has been shown to have potential as a therapeutic target in models of diseases with limited or no currently approved therapies, such as neuropathic pain and neurodegenerative conditions such as Alzheimer's disease. SUMMARY The functional involvement of CB2 receptor in neuropathic pain and other neuroinflammatory diseases highlights the potential therapeutic role of drugs acting at the CB2 receptor.
Collapse
|
74
|
Zhou L, Zhou S, Yang P, Tian Y, Feng Z, Xie XQ, Liu Y. Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 2018; 94:756-772. [PMID: 30093080 PMCID: PMC6151282 DOI: 10.1016/j.kint.2018.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022]
Abstract
The cannabinoid receptor type 2 (CB2) is a G protein-coupled seven transmembrane receptor that transmits endogenous cannabinoid signaling. The role of CB2 in the pathogenesis of kidney injury and fibrosis remains poorly understood. Here we demonstrate that CB2 was induced, predominantly in kidney tubular epithelium, in various models of kidney disease induced by unilateral ureteral obstruction, adriamycin or ischemia/reperfusion injury. In vitro, forced expression of CB2 or treatment with a CB2 agonist was sufficient to trigger matrix gene expression, whereas knockdown of CB2 by siRNA abolished transforming growth factor-β1-induced signaling and fibrogenic responses in kidney tubular cells. CB2 also mediated fibroblasts and macrophage activation in vitro. Mice with genetic ablation of CB2 were protected against kidney injury after ureteral obstruction, validating a pathogenic role of CB2 in renal fibrosis in vivo. By using in silico screening and medicinal chemistry modifications, we discovered a novel compound, XL-001, that bound to CB2 with high affinity and selectivity and acted as an inverse agonist. Incubation with XL-001 inhibited in a dose-dependent fashion the fibrogenic response induced by CB2 overexpression, CB2 agonist or transforming growth factor-β1. In vivo, intraperitoneal injections of XL-001 ameliorated kidney injury, fibrosis and inflammation in both the obstruction and ischemia/reperfusion models. Delayed administration of XL-001 was also effective in ameliorating kidney fibrosis and inflammation. Thus, CB2 is a pathogenic mediator in kidney fibrosis and targeted inhibition with the novel inverse agonist XL-001 may provide a strategy in the fight against fibrotic kidney diseases.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Discovery
- Epithelium
- Extracellular Matrix/genetics
- Fibroblasts
- Fibrosis
- Gene Expression
- Gene Silencing
- Inflammation/etiology
- Inflammation/prevention & control
- Kidney Tubules/metabolism
- Kidney Tubules/pathology
- Macrophages
- Male
- Mice
- Mice, Inbred BALB C
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/prevention & control
- Reperfusion Injury/complications
- Signal Transduction
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Transforming Growth Factor beta1/metabolism
- Ureteral Obstruction/complications
Collapse
Affiliation(s)
- Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Tian
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
75
|
Bok E, Cho EJ, Chung ES, Shin WH, Jin BK. Interleukin-4 Contributes to Degeneration of Dopamine Neurons in the Lipopolysaccharide-treated Substantia Nigra in vivo. Exp Neurobiol 2018; 27:309-319. [PMID: 30181693 PMCID: PMC6120964 DOI: 10.5607/en.2018.27.4.309] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
The present study investigated the effects of interleukin (IL)-4 on dopamine (DA) neurons in the substantia nigra (SN) in vivo of lipopolysaccharide (LPS)-treated rat. Tyrosine hydroxylase immunohistochemistry showed a significant loss of nigral DA neurons at 3 and 7 day post-LPS. In parallel, IL-4 immunoreactivity was upregulated as early as 1 day, reached a peak at 3 day and remained elevated at 7 day post-LPS. IL-4 immunoreactivity was detected exclusively in microglia. IL-4 neutralizing antibody (NA) significantly increased survival of DA neurons in LPS-treated SN in vivo by inhibiting microglial activation and production of proinflammatory mediator such as IL-1β as assessed by immunihistochemical, RT-PCR and ELISA analysis, respectively. Accompanying neuroprotection are IL-4NA effects on decreased disruption of blood-brain barrier and astrocytes. The present data suggest that endogenously expressed IL-4 from reactive microglia may be involved in the neuropathological processes of degeneration of DA neurons occurring in Parkinson's disease.
Collapse
Affiliation(s)
- Eugene Bok
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Eun Ju Cho
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Eun Sook Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
76
|
Aymerich MS, Aso E, Abellanas MA, Tolon RM, Ramos JA, Ferrer I, Romero J, Fernández-Ruiz J. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem Pharmacol 2018; 157:67-84. [PMID: 30121249 DOI: 10.1016/j.bcp.2018.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis. Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases. In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. First, we describe the localization of the molecular components of the ECS and how they are altered under neurodegenerative conditions, either contributing to or protecting cells from degeneration. Second, we address recent advances in the modulation of the ECS using experimental models through different strategies including the direct targeting of cannabinoid receptors with agonists or antagonists, increasing the endocannabinoid tone by the inhibition of endocannabinoid hydrolysis, and activation of cannabinoid receptor-independent effects. Preclinical evidence indicates that cannabinoid pharmacology is complex but supports the therapeutic potential of targeting the ECS. Third, we review the clinical evidence and discuss the future perspectives on how to bridge human and animal studies to develop cannabinoid-based therapies for each neurodegenerative disorder. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to each disease and the multiple unexplored pathways in cannabinoid pharmacology that could be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria S Aymerich
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Spain.
| | - Ester Aso
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Miguel A Abellanas
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain
| | - Rosa M Tolon
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Jose A Ramos
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Isidre Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Julian Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Javier Fernández-Ruiz
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
77
|
Fang X. Impaired tissue barriers as potential therapeutic targets for Parkinson's disease and amyotrophic lateral sclerosis. Metab Brain Dis 2018; 33:1031-1043. [PMID: 29681010 DOI: 10.1007/s11011-018-0239-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier and the intestinal barrier show signs of disruption in patients with idiopathic Parkinson's disease (PD) and animal models of nigrostriatal degeneration, and likewise in amyotrophic lateral sclerosis (ALS) models. A substantial body of evidence shows that defects in epithelial membrane barriers, both in the gut and within the cerebral vasculature, can result in increased vulnerability of tissues to external factors potentially participating in the pathogenesis of PD and ALS. As such, restoration of tissue barriers may prove to be a novel therapeutic target in neurodegenerative disease. In this review, we focus on the potential of new intervention strategies for rescuing and maintaining barrier functions in PD and ALS.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
78
|
Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M. The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases. Prog Neurobiol 2018; 160:82-100. [DOI: 10.1016/j.pneurobio.2017.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
|
79
|
Navarro G, Borroto-Escuela D, Angelats E, Etayo Í, Reyes-Resina I, Pulido-Salgado M, Rodríguez-Pérez AI, Canela EI, Saura J, Lanciego JL, Labandeira-García JL, Saura CA, Fuxe K, Franco R. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB 1 and CB 2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia. Brain Behav Immun 2018; 67:139-151. [PMID: 28843453 DOI: 10.1016/j.bbi.2017.08.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB1 and CB2 receptors, which may form heteromeric complexes (CB1-CB2Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB1 and circa 20 fold for CB2), whereas receptor levels were similar for CB1 and markedly upregulated for CB2; CB1-CB2Hets were also upregulated. Unlike in resting cells, CB2 receptors became robustly coupled to Gi in activated cells, in which CB1-CB2Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß1-42). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APPSw,Ind) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APPSw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB1-CB2Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB1-CB2Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB1-CB2 heteroreceptor complex in activated microglia have potential as targets in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gemma Navarro
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain; Dept. Biochemistry and Physiology, Pharmacy School, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Dasiel Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8., 17177 Stockholm, Sweden
| | - Edgar Angelats
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain
| | - Íñigo Etayo
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain
| | - Irene Reyes-Resina
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain
| | - Marta Pulido-Salgado
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain; Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Barcelona ave. s/n, 15782 Santiago de Compostela, Spain
| | - Enric I Canela
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain
| | - Josep Saura
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - José Luis Lanciego
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain; Neuroscience Department, Center for Applied Medical Research (CIMA), University of Navarra, Avida Pio XII, 55., 31008 Pamplona, Spain
| | - José Luis Labandeira-García
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain; Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Barcelona ave. s/n, 15782 Santiago de Compostela, Spain
| | - Carlos A Saura
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain; Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Bellaterra. Plaça Cívica, s/n, 08193 Bellaterra, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8., 17177 Stockholm, Sweden
| | - Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Sinesio Delgado, 4, 28029 Madrid, Spain.
| |
Collapse
|
80
|
Minogue AM. Role of infiltrating monocytes/macrophages in acute and chronic neuroinflammation: Effects on cognition, learning and affective behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:15-18. [PMID: 28189704 DOI: 10.1016/j.pnpbp.2017.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/29/2016] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
Peripheral macrophages have limited capacity to gain access to the brain parenchyma under normal physiological conditions. However, accumulating evidence indicates that significant trafficking to the central nervous systems occurs in response to injury or infection and is also apparent under chronic neuroinflammatory conditions. The role of infiltrating macrophages in neuronal function is unclear and confounded by the similarity in morphology and phenotype adopted by both activated macrophages and microglia. Furthermore, the ability of macrophages/microglia to adopt both pro- and anti-inflammatory activation states, along with the fact that these cells display heterogenous expression of molecules associated with both states, has made it difficult to discover their impact upon neuronal injury and cognitive processes. The ability of macrophages to exert a neuroprotective role is influenced by the microenvironment they encounter upon tissue invasion. Upon encountering an inflammatory microenvironment, macrophage polarisation is driven towards a pro-inflammatory (M1) phenotype, a state associated with reduced capacity for restorative processes such as the removal of debris, and enhanced production of pro-inflammatory mediators such as TNFα, IL-1β and NADPH oxidase. Prolonged production of these inflammatory mediators has been shown to affect neuronal function and health. Thus, macrophage polarisation may be dictated by the inflammatory queues these cells are exposed to upon migration and their subsequent impact on neuronal function may be determined by their ability to resolve the underlying inflammation.
Collapse
Affiliation(s)
- Aedín M Minogue
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
81
|
Zhang QS, Heng Y, Chen Y, Luo P, Wen L, Zhang Z, Yuan YH, Chen NH. A Novel Bibenzyl Compound (20C) Protects Mice from 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine/Probenecid Toxicity by Regulating the α-Synuclein-Related Inflammatory Response. J Pharmacol Exp Ther 2017; 363:284-292. [PMID: 28912345 DOI: 10.1124/jpet.117.244020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023] Open
Abstract
The novel bibenzyl compound 2-[4-hydroxy-3-(4- hydroxyphenyl) benzyl]-4-(4- hydroxyphenyl) phenol (20C) plays a neuroprotective role in vitro, but its effects in vivo have not yet been elucidated. In this study, we estimated the efficacy of 20C in vivo using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) mouse model from behavior, dopamine, and neuron and then the possible mechanisms for these effects were further investigated. The experimental results showed that 20C improved behavioral deficits, attenuated dopamine depletion, reduced dopaminergic neuron loss, protected the blood-brain barrier (BBB) structure, ameliorated α-synuclein dysfunction, suppressed glial activation, and regulated both nuclear factor-κB (NF-κB) signaling and the NOD-like receptor protein (NLRP) 3 inflammasome pathway. Our results indicated that 20C may prevent neurodegeneration in the MPTP/p mouse model by targeting α-synuclein and regulating α-synuclein-related inflammatory responses, including BBB damage, glial activation, NF-κB signaling, and the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Qiu-Shuang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Piao Luo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Lu Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-S.Z., Y.H., Y.C., L.W., Z.Z., Y.-H.Y., N.-H.C.); and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China (P.L., N.-H.C.)
| |
Collapse
|
82
|
Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson's disease. Neurochem Int 2017; 110:14-24. [PMID: 28826718 DOI: 10.1016/j.neuint.2017.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023]
Abstract
The modulation of the brain endocannabinoid system has been identified as an option to treat neurodegenerative diseases including Parkinson's disease (PD). Especially the elevation of endocannabinoid levels by inhibition of hydrolytic degradation represents a valuable approach. To evaluate whether monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) inhibition could be beneficial for PD, we examined in parallel the therapeutic potential of the highly selective MAGL inhibitor KML29 elevating 2-arachidonoylglyerol (2-AG) levels and the highly selective FAAH inhibitor PF-3845 elevating anandamide (AEA) levels in a chronic methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/probenecid) mouse model of PD. Chronic administration of KML29 (10 mg/kg) but not PF-3845 (10 mg/kg) attenuated striatal MPTP/probenecid-induced dopamine depletion. Furthermore, KML29 induced an increase in Gdnf but not Bdnf expression, whereas PF-3845 decreased the MPTP/probenecid-induced Cnr2 expression without any effects on neurotrophin expression. Investigation of treatment-naïve striatal mRNA levels revealed a high presence of Gdnf and Mgll in contrast to Bdnf and Faah. Treatment of primary mouse microglia with 2-AG increased Gdnf but not Bdnf expression, suggesting that microglia might mediate the observed KML29-induced increase in Gdnf. In summary, pharmacological MAGL but not FAAH inhibition in the chronic MPTP/probenecid model attenuated the MPTP/probenecid-induced effects on striatal dopamine levels which were accompanied by an increase in 2-AG levels.
Collapse
|
83
|
Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2017; 42:239-247. [PMID: 29989012 PMCID: PMC6035378 DOI: 10.1016/j.jgr.2017.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/15/2017] [Indexed: 01/20/2023] Open
Abstract
In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
84
|
Navarro G, Morales P, Rodríguez-Cueto C, Fernández-Ruiz J, Jagerovic N, Franco R. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Front Neurosci 2016; 10:406. [PMID: 27679556 PMCID: PMC5020102 DOI: 10.3389/fnins.2016.00406] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/22/2016] [Indexed: 12/04/2022] Open
Abstract
Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, University of BarcelonaBarcelona, Spain; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Cell and Molecular Neuropharmacology, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelona, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Center for Drug Discovery, University of North Carolina at GreensboroGreensboro, NC, USA
| | - Carmen Rodríguez-Cueto
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad ComplutenseMadrid, Spain; Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Javier Fernández-Ruiz
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad ComplutenseMadrid, Spain; Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, University of BarcelonaBarcelona, Spain; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Cell and Molecular Neuropharmacology, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|