51
|
Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf. Appl Environ Microbiol 2022; 88:e0021622. [PMID: 35404072 PMCID: PMC9088280 DOI: 10.1128/aem.00216-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen minimum zones (OMZs) are hot spots for redox-sensitive nitrogen transformations fueled by sinking organic matter. In comparison, the regulating role of sulfur-cycling microbes in marine OMZs, their impact on carbon cycling in pelagic and benthic habitats, and activities below the seafloor remain poorly understood. Using 13C DNA stable isotope probing (SIP) and metatranscriptomics, we explored microbial guilds involved in sulfur and carbon cycling from the ocean surface to the subseafloor on the Namibian shelf. There was a clear separation in microbial community structure across the seawater-seafloor boundary, which coincided with a 100-fold-increased concentration of microbial biomass and unique gene expression profiles of the benthic communities. 13C-labeled 16S rRNA genes in SIP experiments revealed carbon-assimilating taxa and their distribution across the sediment-water interface. Most of the transcriptionally active taxa among water column communities that assimilated 13C from diatom exopolysaccharides (mostly Bacteroidetes, Actinobacteria, Alphaproteobacteria, and Planctomycetes) also assimilated 13C-bicarbonate under anoxic conditions in sediment incubations. Moreover, many transcriptionally active taxa from the seafloor community (mostly sulfate-reducing Deltaproteobacteria and sulfide-oxidizing Gammaproteobacteria) that assimilated 13C-bicarbonate under sediment anoxic conditions also assimilated 13C from diatom exopolysaccharides in the surface ocean and OMZ waters. Despite strong selection at the sediment-water interface, many taxa related to either planktonic or benthic communities were found to be present at low abundance and actively assimilating carbon under both sediment and water column conditions. In austral winter, mixing of shelf waters reduces stratification and suspends sediments from the seafloor into the water column, potentially spreading metabolically versatile microbes across niches. IMPORTANCE Microbial activities in oxygen minimum zones (OMZs) transform inorganic fixed nitrogen into greenhouse gases, impacting the Earth’s climate and nutrient equilibrium. Coastal OMZs are predicted to expand with global change and increase carbon sedimentation to the seafloor. However, the role of sulfur-cycling microbes in assimilating carbon in marine OMZs and related seabed habitats remain poorly understood. Using 13C DNA stable isotope probing and metatranscriptomics, we explore microbial guilds involved in sulfur and carbon cycling from ocean surface to subseafloor on the Namibian shelf. Despite strong selection and differential activities across the sediment-water interface, many active taxa were identified in both planktonic and benthic communities, either fixing inorganic carbon or assimilating organic carbon from algal biomass. Our data show that many planktonic and benthic microbes linked to the sulfur cycle can cross redox boundaries when mixing of the shelf waters reduces stratification and suspends seafloor sediment particles into the water column.
Collapse
|
52
|
Orsi WD, Vuillemin A, Coskun ÖK, Rodriguez P, Oertel Y, Niggemann J, Mohrholz V, Gomez-Saez GV. Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis. THE ISME JOURNAL 2022; 16:1245-1261. [PMID: 34893690 PMCID: PMC9038920 DOI: 10.1038/s41396-021-01169-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Fungi are ubiquitous in the ocean and hypothesized to be important members of marine ecosystems, but their roles in the marine carbon cycle are poorly understood. Here, we use 13C DNA stable isotope probing coupled with phylogenetic analyses to investigate carbon assimilation within diverse communities of planktonic and benthic fungi in the Benguela Upwelling System (Namibia). Across the redox stratified water column and in the underlying sediments, assimilation of 13C-labeled carbon from diatom extracellular polymeric substances (13C-dEPS) by fungi correlated with the expression of fungal genes encoding carbohydrate-active enzymes. Phylogenetic analysis of genes from 13C-labeled metagenomes revealed saprotrophic lineages related to the facultative yeast Malassezia were the main fungal foragers of pelagic dEPS. In contrast, fungi living in the underlying sulfidic sediments assimilated more 13C-labeled carbon from chemosynthetic bacteria compared to dEPS. This coincided with a unique seafloor fungal community and dissolved organic matter composition compared to the water column, and a 100-fold increased fungal abundance within the subseafloor sulfide-nitrate transition zone. The subseafloor fungi feeding on 13C-labeled chemolithoautotrophs under anoxic conditions were affiliated with Chytridiomycota and Mucoromycota that encode cellulolytic and proteolytic enzymes, revealing polysaccharide and protein-degrading fungi that can anaerobically decompose chemosynthetic necromass. These subseafloor fungi, therefore, appear to be specialized in organic matter that is produced in the sediments. Our findings reveal that the phylogenetic diversity of fungi across redox stratified marine ecosystems translates into functionally relevant mechanisms helping to structure carbon flow from primary producers in marine microbiomes from the surface ocean to the subseafloor.
Collapse
|
53
|
Choi A, Lee TK, Cho H, Lee WC, Hyun JH. Shifts in benthic bacterial communities associated with farming stages and a microbiological proxy for assessing sulfidic sediment conditions at fish farms. MARINE POLLUTION BULLETIN 2022; 178:113603. [PMID: 35390629 DOI: 10.1016/j.marpolbul.2022.113603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/22/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
To assess the aquaculture-induced sediment conditions associated with sulfur cycles, shifts in bacterial communities across farming stages were investigated. The sulfate reduction rate (SRR), and concentrations of acid volatile sulfide (AVS) and H2S were significantly higher at the mid- and post-farming stages than at the early stage, indicating that the aquaculture effects persist even after harvest. Incomplete organic carbon-oxidizing sulfate-reducing bacteria (IO-SRB) affiliated with Desulfobulbaceae, and gammaproteobacterial sulfur oxidizing bacteria (SOB) (Thiohalobacter, Thioprofundum, and Thiohalomonas) were dominant during the early stage, whereas fermenting bacteria (Bacteroidetes and Firmicutes) and complete oxidizing SRB (CO-SRB) belonging to Desulfobacteraceae, and epsilonproteobacterial SOB (Sulfurovum) dominated during the mid- and post-stages. The shift in SRB and SOB communities well reflected the anoxic and sulfidic conditions of farm sediment. Especially, the Sulfurovum-like SOB correlated highly and positively with H2S, AVS, and SRR, suggesting that they could be relevant microbiological proxies to assess sulfidic conditions in farm sediment.
Collapse
Affiliation(s)
- Ayeon Choi
- Department of Marine Science and Convergence Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Marine Biotechnology Research Center, Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University,1Yonseidae-gil, Wonju, Gangwon-do 26493, South Korea
| | - Hyeyoun Cho
- Department of Marine Science and Convergence Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Won-Chan Lee
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| | - Jung-Ho Hyun
- Department of Marine Science and Convergence Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea.
| |
Collapse
|
54
|
Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees. FORESTS 2022. [DOI: 10.3390/f13050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sapium sebiferum (L.) Roxb. is an economically important tree in eastern Asia, and it exhibits many traits associated with good forestation species in coastal land. However, scarce research has been conducted to elucidate the effects of rhizosphere bacterial diversity on the adaptability and viability of S. sebiferum trees grown in the coastal environment. Field trials were conducted, and rhizosphere soil samples were collected from typical coastal and forestry nursery environments. Rhizosphere bacterial communities were evaluated using 16S rRNA pyrosequencing. A total of 43 bacterial phyla were detected in all the coastal and nursery rhizospheric soil samples. Relatively higher rhizosphere community diversity was found in coastal field-grown trees. Proteobacteria, Acidobacteriota, Bacteroidota, Chloroflex, and Gemmatimonadota were dominant bacterial phyla in rhizosphere communities of tallow trees. However, the rare groups in the coastal rhizosphere soils, with a relative abundance lower than 1%, including Latescibacterota, Methylomirabilota, NB1-j, and Nitrospirota, were largely absent in the nursery field-grown tree’s rhizosphere soils. LEfSe analysis identified a total of 43 bacterial groups that were more significantly abundant in the coastal rhizosphere environment than in that of forestry nursery grown trees. Further, our cladogram analysis identified Nitrospirota, Methylomirabilota, NB1-j, and Latescibacterota as biomarkers for the coastal environment at the phylum taxonomic level. These results suggested that the adaptability of S. sebiferum trees in coastal environment might be promoted by rhizosphere microbial interactions. Complex tree–microbe interactions might enhance the resistance of the trees to coastal environment, partially by recruiting certain bacterial microbiome species, which is of high saline-alkali resistance.
Collapse
|
55
|
Seidel L, Ketzer M, Broman E, Shahabi-Ghahfarokhi S, Rahmati-Abkenar M, Turner S, Ståhle M, Bergström K, Manoharan L, Ali A, Forsman A, Hylander S, Dopson M. Weakened resilience of benthic microbial communities in the face of climate change. ISME COMMUNICATIONS 2022; 2:21. [PMID: 37938692 PMCID: PMC9723771 DOI: 10.1038/s43705-022-00104-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 07/29/2023]
Abstract
Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbial communities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50 years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The system demonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction. Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer to the sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesis transcripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface, with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that may result in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energy production in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increased temperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures may amplify negative effects at the base of coastal biochemical cycling.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Marcelo Ketzer
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | | | - Stephanie Turner
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Magnus Ståhle
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Anders Forsman
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
56
|
Ma L, Yang W, Huang S, Liu R, Li H, Huang X, Xiong J, Liu X. Integrative Assessments on Molecular Taxonomy of Acidiferrobacter thiooxydans ZJ and Its Environmental Adaptation Based on Mobile Genetic Elements. Front Microbiol 2022; 13:826829. [PMID: 35250944 PMCID: PMC8889020 DOI: 10.3389/fmicb.2022.826829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acidiferrobacter spp. are facultatively anaerobic acidophiles that belong to a distinctive Acidiferrobacteraceae family, which are similar to Ectothiorhodospiraceae phylogenetically, and are closely related to Acidithiobacillia class/subdivision physiologically. The limited genome information has kept them from being studied on molecular taxonomy and environmental adaptation in depth. Herein, Af. thiooxydans ZJ was isolated from acid mine drainage (AMD), and the complete genome sequence was reported to scan its genetic constitution for taxonomic and adaptative feature exploration. The genome has a single chromosome of 3,302,271 base pairs (bp), with a GC content of 63.61%. The phylogenetic tree based on OrthoANI highlighted the unique position of Af. thiooxydans ZJ, which harbored more unique genes among the strains from Ectothiorhodospiraceae and Acidithiobacillaceae by pan-genome analysis. The diverse mobile genetic elements (MGEs), such as insertion sequence (IS), clustered regularly interspaced short palindromic repeat (CRISPR), prophage, and genomic island (GI), have been identified and characterized in Af. thiooxydans ZJ. The results showed that Af. thiooxydans ZJ may effectively resist the infection of foreign viruses and gain functional gene fragments or clusters to shape its own genome advantageously. This study will offer more evidence of the genomic plasticity and improve our understanding of evolutionary adaptation mechanisms to extreme AMD environment, which could expand the potential utilization of Af. thiooxydans ZJ as an iron and sulfur oxidizer in industrial bioleaching.
Collapse
Affiliation(s)
- Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Weiyi Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shanshan Huang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Huiying Li
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Junming Xiong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
57
|
Govindarajan A, Crum M, Adolacion J, Kiaghadi A, Acuña-Gonzalez E, Rifai HS, Willson RC. Sediment and their bacterial communities in an industrialized estuary after Hurricane Harvey. MARINE POLLUTION BULLETIN 2022; 175:113359. [PMID: 35124375 DOI: 10.1016/j.marpolbul.2022.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Estuaries experience variable physicochemical conditions, especially after hurricanes and due to anthropogenic sources of pollution. Their microbial communities are not as well understood in terms of community structure and diversity, particularly in response to stresses from pollution and severe events. This study presents a 16S rRNA-based description of sediment microbial communities in the Houston Ship Channel-Galveston Bay estuary after Hurricane Harvey in 2017. A total of 11 sites were sampled, and microbial genomic DNA was isolated from sediment. The presence and abundance of specific bacterial and archaeal taxa in the sediment indicated pollutant inputs from identified legacy sources. The abundance of certain microbial groups was explained by the mobilization of contaminated sediment and sediment transport due to Harvey. Several microorganisms involved in the biodegradation of xenobiotics were observed. The spatial occurrence of Dehalococcoidia, a degrader of persistent polychlorinated compounds, was explained in relation to sediment properties and contaminant concentrations.
Collapse
Affiliation(s)
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay Adolacion
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Mexico
| | - Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Edgar Acuña-Gonzalez
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
58
|
Guo R, Ma X, Zhang J, Liu C, Thu CA, Win TN, Aung NL, Win HS, Naing S, Li H, Zhou F, Wang P. Microbial community structures and important taxa across oxygen gradients in the Andaman Sea and eastern Bay of Bengal epipelagic waters. Front Microbiol 2022; 13:1041521. [PMID: 36406446 PMCID: PMC9667114 DOI: 10.3389/fmicb.2022.1041521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 05/01/2023] Open
Abstract
In oceanic oxygen minimum zones (OMZs), the abundances of aerobic organisms significantly decrease and energy shifts from higher trophic levels to microorganisms, while the microbial communities become critical drivers of marine biogeochemical cycling activities. However, little is known of the microbial ecology of the Andaman Sea and eastern Bay of Bengal (BoB) OMZs. In the present study, a total of 131 samples which from the Andaman Sea and eastern BoB epipelagic waters were analyzed. The microbial community distribution patterns across oxygen gradients, including oxygenic zones (OZs, dissolved oxygen [DO] ≥ 2 mg/L), oxygen limited zones (OLZs, 0.7 mg/L < DO < 2 mg/L), and OMZs (DO ≤ 0.7 mg/L), were investigated. Mantel tests and Spearman's correlation analysis revealed that DO was the most important driver of microbial community structures among several environmental factors. Microbial diversity, richness, and evenness were highest in the OLZs and lowest in the OZs. The microbial community compositions of OZ and OMZ waters were significantly different. Random forest analysis revealed 24 bioindicator taxa that differentiated OZ, OLZ, and OMZ water communities. These bioindicator taxa included Burkholderiaceae, HOC36, SAR11 Clade IV, Thioglobaceae, Nitrospinaceae, SAR86, and UBA10353. Further, co-occurrence network analysis revealed that SAR202, AEGEAN-169, UBA10353, SAR406, and Rhodobacteraceae were keystone taxa among the entire interaction network of the microbial communities. Functional prediction further indicated that the relative abundances of microbial populations involved in nitrogen and sulfur cycling were higher in OMZs. Several microbial taxa, including the Thioglobaceae, Nitrospinaceae, SAR202, SAR406, WPS-2, UBA10353, and Woeseiaceae, may be involved in nitrogen and/or sulfur cycling, while also contributing to oxygen consumption in these waters. This study consequently provides new insights into the microbial community structures and potentially important taxa that contribute to oxygen consumption in the Andaman Sea and eastern BoB OMZ.
Collapse
Affiliation(s)
- Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
| | - Xiao Ma
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chit Aung Thu
- Research and Development Section, Department of Fisheries, Naypyidaw, Myanmar
| | - Tun Naing Win
- Department of Meteorology and Hydrology, Ministry of Transport and Communication, Naypyidaw, Myanmar
| | - Nyan Lin Aung
- Environmental Conservation Department, Ministry of Natural Resources and Environmental Conservation, Naypyidaw, Myanmar
| | - Hlaing Swe Win
- National Analytical Laboratory, Department of Research in Innovation, Ministry of Education, Naypyidaw, Myanmar
| | - Sanda Naing
- Port and Harbour Engineering Department, Myanmar Maritime University, Thanlyin, Myanmar
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- *Correspondence: Feng Zhou,
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- Pengbin Wang,
| |
Collapse
|
59
|
Luo Y, Yuan H, Zhao J, Qi Y, Cao WW, Liu JM, Guo W, Bao ZH. Multiple factors influence bacterial community diversity and composition in soils with rare earth element and heavy metal co-contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112749. [PMID: 34488142 DOI: 10.1016/j.ecoenv.2021.112749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The effects of long-term rare earth element (REE) and heavy metal (HM) contamination on soil bacterial communities remains poorly understood. In this study, soil samples co-contaminated with REEs and HMs were collected from a rare-earth tailing dam. The bacterial community composition and diversity were analyzed through Illumina high-throughput sequencing with 16S rRNA gene amplicons. Bacterial community richness and diversity were lower in the co-contaminated soils than in the uncontaminated soils, with clearly different bacterial community compositions. The results showed that total organic carbon and available potassium were the most important factors affecting bacterial community richness and diversity, followed by the REE and HM contents. Although the canonical correspondence analysis results showed that an REE alone had no obvious effects on bacterial community structures, we found that the combined effects of soil physicochemical properties and REE and HM contents regulated bacterial community structure and composition. The effects of REEs and HMs on bacterial communities were similar, whereas their combined contributions were greater than the individual effects of REEs or HMs. Some bacterial taxa were worth noting. These specifically included the plant growth-promoting bacteria Exiguobacterium (sensitive to REEs and HMs) and oligotrophic microorganisms with metal tolerance (prevalent in contaminated soil); moreover, relative abundance of JTB255-Marine Benthic Group, Rhodobacteraceae, Erythrobacter, and Truepera may be correlated with REEs. This study was the first to investigate the responses of bacterial communities to REE and HM co-contamination. The current results have major implications for the ecological risk assessment of environments co-contaminated with REEs and HMs.
Collapse
Affiliation(s)
- Ying Luo
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Yuan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Energy Investment Group CO., LID. Electric Power Engineering Technology Research Institute, Hohhot 010060, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Yu Qi
- Inner Mongolia Academy of Environmental Science, Hohhot 010011, China
| | - Wei-Wei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ju-Mei Liu
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
60
|
Flood BE, Louw DC, Van der Plas AK, Bailey JV. Giant sulfur bacteria (Beggiatoaceae) from sediments underlying the Benguela upwelling system host diverse microbiomes. PLoS One 2021; 16:e0258124. [PMID: 34818329 PMCID: PMC8612568 DOI: 10.1371/journal.pone.0258124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Due to their lithotrophic metabolisms, morphological complexity and conspicuous appearance, members of the Beggiatoaceae have been extensively studied for more than 100 years. These bacteria are known to be primarily sulfur-oxidizing autotrophs that commonly occur in dense mats at redox interfaces. Their large size and the presence of a mucous sheath allows these cells to serve as sites of attachment for communities of other microorganisms. But little is known about their individual niche preferences and attached microbiomes, particularly in marine environments, due to a paucity of cultivars and their prevalence in habitats that are difficult to access and study. Therefore, in this study, we compare Beggiatoaceae strain composition, community composition, and geochemical profiles collected from sulfidic sediments at four marine stations off the coast of Namibia. To elucidate community members that were directly attached and enriched in both filamentous Beggiatoaceae, namely Ca. Marithioploca spp. and Ca. Maribeggiatoa spp., as well as non-filamentous Beggiatoaceae, Ca. Thiomargarita spp., the Beggiatoaceae were pooled by morphotype for community analysis. The Beggiatoaceae samples collected from a highly sulfidic site were enriched in strains of sulfur-oxidizing Campylobacterota, that may promote a more hospitable setting for the Beggiatoaceae, which are known to have a lower tolerance for high sulfide to oxygen ratios. We found just a few host-specific associations with the motile filamentous morphotypes. Conversely, we detected 123 host specific enrichments with non-motile chain forming Beggiatoaceae. Potential metabolisms of the enriched strains include fermentation of host sheath material, syntrophic exchange of H2 and acetate, inorganic sulfur metabolism, and nitrite oxidation. Surprisingly, we did not detect any enrichments of anaerobic ammonium oxidizing bacteria as previously suggested and postulate that less well-studied anaerobic ammonium oxidation pathways may be occurring instead.
Collapse
Affiliation(s)
- Beverly E. Flood
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
- * E-mail:
| | - Deon C. Louw
- National Marine Information and Research Centre, Swakopmund, Namibia
| | | | - Jake V. Bailey
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
61
|
Genus-Specific Carbon Fixation Activity Measurements Reveal Distinct Responses to Oxygen Among Hydrothermal Vent Campylobacteria. Appl Environ Microbiol 2021; 88:e0208321. [PMID: 34788061 DOI: 10.1128/aem.02083-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (prev. Epsilonproteobacteria) often dominate the microbial community and that three genera - Arcobacter, Sulfurimonas and Sulfurovum - frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in-situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (∼ 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances. Importance: Sulfidic environments worldwide are often dominated by sulfur-oxidizing, carbon-fixing Campylobacteria. Environmental factors associated with this group's dominance are now understood, but far less is known about the ecology and physiology of members of subgroups of chemoautotrophic Campylobacteria. In this study, we used a novel method to differentiate the genus-specific chemoautotrophic activity of three subtypes of Campylobacteria. In combination with evidence from microscopic counts, chemical consumption/production during incubations, and DNA-based measurements, our data show that oxygen concentration affects both community composition and chemoautotrophic function in situ. These results help us better understand factors controlling microbial diversity at deep-sea hydrothermal vents, and provide first-order insights into the ecophysiological differences between these distinct microbial taxa.
Collapse
|
62
|
Currie AA, Marshall AJ, Lohrer AM, Cummings VJ, Seabrook S, Cary SC. Sea Ice Dynamics Drive Benthic Microbial Communities in McMurdo Sound, Antarctica. Front Microbiol 2021; 12:745915. [PMID: 34777294 PMCID: PMC8581541 DOI: 10.3389/fmicb.2021.745915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change is driving dramatic variability in sea ice dynamics, a key driver in polar marine ecosystems. Projected changes in Antarctica suggest that regional warming will force dramatic shifts in sea ice thickness and persistence, altering sea ice-associated primary production and deposition to the seafloor. To improve our understanding of the impacts of sea ice change on benthic ecosystems, we directly compared the benthic microbial communities underlying first-year sea ice (FYI) and multi-year sea ice (MYI). Using two tractable coastal habitats in McMurdo Sound, Antarctica, where FYI (Cape Evans) and MYI (New Harbour) prevail, we show that the structure and composition of the benthic microbial communities reflect the legacy of sea ice dynamics. At Cape Evans, an enrichment of known heterotrophic algal polysaccharide degrading taxa (e.g., Flavobacteriaceae, unclassified Gammaproteobacteria, and Rubritaleaceae) and sulfate-reducing bacteria (e.g., Desulfocapsaceae) correlated with comparatively higher chlorophyll a (14.2±0.8μgg-1) and total organic carbon content (0.33%±0.04), reflecting increased productivity and seafloor deposition beneath FYI. Conversely, at New Harbour, an enrichment of known archaeal (e.g., Nitrosopumilaceae) and bacterial (e.g., Woeseiaceae and Nitrospiraceae) chemoautotrophs was common in sediments with considerably lower chlorophyll a (1.0±0.24μgg-1) and total organic carbon content (0.17%±0.01), reflecting restricted productivity beneath MYI. We also report evidence of a submarine discharge of sub-permafrost brine from Taylor Valley into New Harbour. By comparing our two study sites, we show that under current climate-warming scenarios, changes to sea ice productivity and seafloor deposition are likely to initiate major shifts in benthic microbial communities, with heterotrophic organic matter degradation processes becoming increasingly important. This study provides the first assessment of how legacy sea ice conditions influence benthic microbial communities in Antarctica, contributing insight into sea ice-benthic coupling and ecosystem functioning in a polar environment.
Collapse
Affiliation(s)
- Ashleigh A Currie
- School of Science, University of Waikato, Hamilton, New Zealand.,Environmental Research Institute, International Centre for Terrestrial Antarctic Research, Hamilton, New Zealand
| | - Alexis J Marshall
- School of Science, University of Waikato, Hamilton, New Zealand.,Environmental Research Institute, International Centre for Terrestrial Antarctic Research, Hamilton, New Zealand
| | - Andrew M Lohrer
- National Institute of Water and Atmosphere, Hamilton, New Zealand
| | - Vonda J Cummings
- National Institute of Water and Atmosphere, Wellington, New Zealand
| | - Sarah Seabrook
- National Institute of Water and Atmosphere, Wellington, New Zealand
| | - S Craig Cary
- School of Science, University of Waikato, Hamilton, New Zealand.,Environmental Research Institute, International Centre for Terrestrial Antarctic Research, Hamilton, New Zealand
| |
Collapse
|
63
|
Dubé CE, Ziegler M, Mercière A, Boissin E, Planes S, Bourmaud CAF, Voolstra CR. Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nat Commun 2021; 12:6402. [PMID: 34737272 PMCID: PMC8568919 DOI: 10.1038/s41467-021-26543-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Coral microbiomes are critical to holobiont functioning, but much remains to be understood about how prevailing environment and host genotype affect microbial communities in ecosystems. Resembling human identical twin studies, we examined bacterial community differences of naturally occurring fire coral clones within and between contrasting reef habitats to assess the relative contribution of host genotype and environment to microbiome structure. Bacterial community composition of coral clones differed between reef habitats, highlighting the contribution of the environment. Similarly, but to a lesser extent, microbiomes varied across different genotypes in identical habitats, denoting the influence of host genotype. Predictions of genomic function based on taxonomic profiles suggest that environmentally determined taxa supported a functional restructuring of the microbial metabolic network. In contrast, bacteria determined by host genotype seemed to be functionally redundant. Our study suggests microbiome flexibility as a mechanism of environmental adaptation with association of different bacterial taxa partially dependent on host genotype.
Collapse
Affiliation(s)
- C. E. Dubé
- grid.11642.300000 0001 2111 2608UMR 9220 ENTROPIE, UR-IRD-CNRS-UNC-IFREMER, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex, La Réunion France ,grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia ,grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, G1V 0A6 Canada
| | - M. Ziegler
- grid.8664.c0000 0001 2165 8627Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany ,grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
| | - A. Mercière
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - E. Boissin
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - S. Planes
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - C. A. -F. Bourmaud
- grid.11642.300000 0001 2111 2608UMR 9220 ENTROPIE, UR-IRD-CNRS-UNC-IFREMER, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex, La Réunion France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - C. R. Voolstra
- grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia ,grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
64
|
Hydrodynamic disturbance controls microbial community assembly and biogeochemical processes in coastal sediments. ISME JOURNAL 2021; 16:750-763. [PMID: 34584214 PMCID: PMC8857189 DOI: 10.1038/s41396-021-01111-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide- and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communities and biogeochemical dynamics in sediment profiles from three sites varying in their exposure to hydrodynamic disturbance. Strong variations in sediment geochemistry, biogeochemical activities, and microbial abundance, composition, and capabilities were observed between the sites. Most of these variations, except for microbial abundance and diversity, significantly correlated with the relative disturbance level of each sample. In line with previous findings, metabolically flexible habitat generalists (e.g., Flavobacteriaceae, Woeseaiceae, Rhodobacteraceae) dominated in all samples. However, we present evidence that aerobic specialists such as ammonia-oxidizing archaea (Nitrosopumilaceae) were more abundant and active in more disturbed samples, whereas bacteria capable of sulfate reduction (e.g., uncultured Desulfobacterales), dissimilatory nitrate reduction to ammonium (DNRA; e.g., Ignavibacteriaceae), and sulfide-dependent chemolithoautotrophy (e.g., Sulfurovaceae) were enriched and active in less disturbed samples. These findings are supported by insights from nine deeply sequenced metagenomes and 169 derived metagenome-assembled genomes. Altogether, these findings suggest that hydrodynamic disturbance is a critical factor controlling microbial community assembly and biogeochemical processes in coastal sediments. Moreover, they strengthen our understanding of the relationships between microbial composition and biogeochemical processes in these unique environments.
Collapse
|
65
|
Tee HS, Waite D, Lear G, Handley KM. Microbial river-to-sea continuum: gradients in benthic and planktonic diversity, osmoregulation and nutrient cycling. MICROBIOME 2021; 9:190. [PMID: 34544488 PMCID: PMC8454136 DOI: 10.1186/s40168-021-01145-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Coastal aquatic ecosystems include chemically distinct, but highly interconnected environments. Across a freshwater-to-marine transect, aquatic communities are exposed to large variations in salinity and nutrient availability as tidal cycles create periodic fluctuations in local conditions. These factors are predicted to strongly influence the resident microbial community structure and functioning, and alter the structure of aquatic food webs and biogeochemical cycles. Nevertheless, little is known about the spatial distribution of metabolic properties across salinity gradients, and no study has simultaneously surveyed the sediment and water environments. Here, we determined patterns and drivers of benthic and planktonic prokaryotic and microeukaryotic community assembly across a river and tidal lagoon system by collecting sediments and planktonic biomass at nine shallow subtidal sites in the summer. Genomic and transcriptomic analyses, alongside a suite of complementary geochemical data, were used to determine patterns in the distribution of taxa, mechanisms of salt tolerance, and nutrient cycling. RESULTS Taxonomic and metabolic profiles related to salt tolerance and nutrient cycling of the aquatic microbiome were found to decrease in similarity with increasing salinity, and distinct trends in diversity were observed between the water column and sediment. Non-saline and saline communities adopted divergent strategies for osmoregulation, with an increase in osmoregulation-related transcript expression as salinity increased in the water column due to lineage-specific adaptations to salt tolerance. Results indicated a transition from phosphate limitation in freshwater habitats to nutrient-rich conditions in the brackish zone, where distinct carbon, nitrogen and sulfur cycling processes dominated. Phosphorus acquisition-related activity was highest in the freshwater zone, along with dissimilatory nitrate reduction to ammonium in freshwater sediment. Activity associated with denitrification, sulfur metabolism and photosynthesis were instead highest in the brackish zone, where photosynthesis was dominated by distinct microeukaryotes in water (Cryptophyta) and sediment (diatoms). Despite microeukaryotes and archaea being rare relative to bacteria, results indicate that they contributed more to photosynthesis and ammonia oxidation, respectively. CONCLUSIONS Our study demonstrates clear freshwater-saline and sediment-water ecosystem boundaries in an interconnected coastal aquatic system and provides a framework for understanding the relative importance of salinity, planktonic-versus-benthic habitats and nutrient availability in shaping aquatic microbial metabolic processes, particularly in tidal lagoon systems. Video abstract.
Collapse
Affiliation(s)
- Hwee Sze Tee
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
| | - David Waite
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
- Current address: Ministry for Primary Industries, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
| | - Kim Marie Handley
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
| |
Collapse
|
66
|
Mori F, Umezawa Y, Kondo R, Nishihara GN, Wada M. Potential oxygen consumption and community composition of sediment bacteria in a seasonally hypoxic enclosed bay. PeerJ 2021; 9:e11836. [PMID: 34434647 PMCID: PMC8362671 DOI: 10.7717/peerj.11836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
The dynamics of potential oxygen consumption at the sediment surface in a seasonally hypoxic bay were monitored monthly by applying a tetrazolium dye (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride [INT]) reduction assay to intact sediment core samples for two consecutive years (2012–2013). Based on the empirically determined correlation between INT reduction (INT-formazan formation) and actual oxygen consumption of sediment samples, we inferred the relative contribution of biological and non-biological (chemical) processes to the potential whole oxygen consumption in the collected sediment samples. It was demonstrated that both potentials consistently increased and reached a maximum during summer hypoxia in each year. For samples collected in 2012, amplicon sequence variants (ASVs) of the bacterial 16S rRNA genes derived from the sediment surface revealed a sharp increase in the relative abundance of sulfate reducing bacteria toward hypoxia. In addition, a notable shift in other bacterial compositions was observed before and after the INT assay incubation. It was Arcobacter (Arcobacteraceae, Campylobacteria), a putative sulfur-oxidizing bacterial genus, that increased markedly during the assay period in the summer samples. These findings have implications not only for members of Delta- and Gammaproteobacteria that are consistently responsible for the consumption of dissolved oxygen (DO) year-round in the sediment, but also for those that might grow rapidly in response to episodic DO supply on the sediment surface during midst of seasonal hypoxia.
Collapse
Affiliation(s)
- Fumiaki Mori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan.,Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Nagasaki, Japan.,Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi, Japan
| | - Yu Umezawa
- Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Fukui, Japan
| | - Gregory N Nishihara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan.,Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Minoru Wada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
| |
Collapse
|
67
|
Wang X, Kong F, Li Y, Li Q, Wang C, Zhang J, Xi M. Effect of simulated tidal cycle on DOM, nitrogen and phosphorus release from sediment in Dagu River-Jiaozhou Bay estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147158. [PMID: 34088113 DOI: 10.1016/j.scitotenv.2021.147158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/14/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Tide drives salt mixing processes, erosion, deposition, and nutrient circulation in sediments, which is critical to the estuarine systems. This study aims to investigate the effects of tidal cycle intensity on sediment dissolved organic matter (DOM), nitrogen and phosphorus release. In this study, the effects of tide are investigated by simulating different intensity of tidal disturbance with tidal simulator devices. The microbial community changes under different tidal cycle are disclosed to explain the mechanism of nutrient release. In addition, the short-term release of nitrogen and phosphorus under simulated tidal cycle is predicted by stepwise regression method. Results show that the higher the tidal cycle intensity, the stronger the DOM mineralization in sediments and diffusion into overlying water, leading to a sustained increase of fluorescence intensity in DOM. Besides, the tidal disturbance promotes the NH4+-N and NO3--N release and the tidal disturbance is helpful for ammonification. While the greater the tidal intensity, the lower the NO3--N release. Content of released total phosphorus (TP) maintains at a low level and fluctuates over time under different simulated tidal intensity. In addition, tidal cycle greatly changes the microbial richness and diversity. Gammaproteobactere has the ability of denitrification and can reduce nitrate to nitrite. Besides, tidal environment greatly affects the abundance of Marinobacter which can enhance the N, P, and C migration transformation ability. The research on microbial community further explains the mechanism of nutrient release. The model of nitrogen and phosphorus release contributes to providing basic data for predicting the short-term release of nutrients under different simulated tidal intensity.
Collapse
Affiliation(s)
- Xinjuan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qinghao Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunrong Wang
- College of Mathematics and Statistics, Qingdao University, Qingdao 266071, China
| | - Junlong Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
68
|
Boeuf D, Eppley JM, Mende DR, Malmstrom RR, Woyke T, DeLong EF. Metapangenomics reveals depth-dependent shifts in metabolic potential for the ubiquitous marine bacterial SAR324 lineage. MICROBIOME 2021; 9:172. [PMID: 34389059 PMCID: PMC8364033 DOI: 10.1186/s40168-021-01119-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/22/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Oceanic microbiomes play a pivotal role in the global carbon cycle and are central to the transformation and recycling of carbon and energy in the ocean's interior. SAR324 is a ubiquitous but poorly understood uncultivated clade of Deltaproteobacteria that inhabits the entire water column, from ocean surface waters to its deep interior. Although some progress has been made in elucidating potential metabolic traits of SAR324 in the dark ocean, very little is known about the ecology and the metabolic capabilities of this group in the euphotic and twilight zones. To investigate the comparative genomics, ecology, and physiological potential of the SAR324 clade, we examined the distribution and variability of key genomic features and metabolic pathways in this group from surface waters to the abyss in the North Pacific Subtropical Gyre, one of the largest biomes on Earth. RESULTS We leveraged a pangenomic ecological approach, combining spatio-temporally resolved single-amplified genome, metagenomic, and metatranscriptomic datasets. The data revealed substantial genomic diversity throughout the SAR324 clade, with distinct depth and temporal distributions that clearly differentiated ecotypes. Phylogenomic subclade delineation, environmental distributions, genomic feature similarities, and metabolic capacities revealed strong congruence. The four SAR324 ecotypes delineated in this study revealed striking divergence from one another with respect to their habitat-specific metabolic potentials. The ecotypes living in the dark or twilight oceans shared genomic features and metabolic capabilities consistent with a sulfur-based chemolithoautotrophic lifestyle. In contrast, those inhabiting the sunlit ocean displayed higher plasticity energy-related metabolic pathways, supporting a presumptive photoheterotrophic lifestyle. In epipelagic SAR324 ecotypes, we observed the presence of two types of proton-pumping rhodopsins, as well as genomic, transcriptomic, and ecological evidence for active photoheterotrophy, based on xanthorhodopsin-like light-harvesting proteins. CONCLUSIONS Combining pangenomic and both metagenomic and metatranscriptomic profiling revealed a striking divergence in the vertical distribution, genomic composition, metabolic potential, and predicted lifestyle strategies of geographically co-located members of the SAR324 bacterial clade. The results highlight the utility of metapangenomic approaches employed across environmental gradients, to decipher the properties and variation in function and ecological traits of specific phylogenetic clades within complex microbiomes. Video abstract.
Collapse
Affiliation(s)
- Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - John M. Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - Daniel R. Mende
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA 94720 USA
| | - Edward F. DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| |
Collapse
|
69
|
Miksch S, Meiners M, Meyerdierks A, Probandt D, Wegener G, Titschack J, Jensen MA, Ellrott A, Amann R, Knittel K. Bacterial communities in temperate and polar coastal sands are seasonally stable. ISME COMMUNICATIONS 2021; 1:29. [PMID: 36739458 PMCID: PMC9723697 DOI: 10.1038/s43705-021-00028-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 04/18/2023]
Abstract
Coastal sands are biocatalytic filters for dissolved and particulate organic matter of marine and terrestrial origin, thus, acting as centers of organic matter transformation. At high temporal resolution, we accessed the variability of benthic bacterial communities over two annual cycles at Helgoland (North Sea), and compared it with seasonality of communities in Isfjorden (Svalbard, 78°N) sediments, where primary production does not occur during winter. Benthic community structure remained stable in both, temperate and polar sediments on the level of cell counts and 16S rRNA-based taxonomy. Actinobacteriota of uncultured Actinomarinales and Microtrichales were a major group, with 8 ± 1% of total reads (Helgoland) and 31 ± 6% (Svalbard). Their high activity (frequency of dividing cells 28%) and in situ cell numbers of >10% of total microbes in Svalbard sediments, suggest Actinomarinales and Microtrichales as key heterotrophs for carbon mineralization. Even though Helgoland and Svalbard sampling sites showed no phytodetritus-driven changes of the benthic bacterial community structure, they harbored significantly different communities (p < 0.0001, r = 0.963). The temporal stability of benthic bacterial communities is in stark contrast to the dynamic succession typical of coastal waters, suggesting that pelagic and benthic bacterial communities respond to phytoplankton productivity very differently.
Collapse
Affiliation(s)
| | - Mirja Meiners
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - David Probandt
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Jürgen Titschack
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Senckenberg am Meer, Wilhelmshaven, Germany
| | - Maria A Jensen
- UNIS, The University Centre in Svalbard, Longyearbyen, Norway
| | - Andreas Ellrott
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katrin Knittel
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
70
|
Cockell CS, Schaefer B, Wuchter C, Coolen MJL, Grice K, Schnieders L, Morgan JV, Gulick SPS, Wittmann A, Lofi J, Christeson GL, Kring DA, Whalen MT, Bralower TJ, Osinski GR, Claeys P, Kaskes P, de Graaff SJ, Déhais T, Goderis S, Hernandez Becerra N, Nixon S. Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Front Microbiol 2021; 12:668240. [PMID: 34248877 PMCID: PMC8264514 DOI: 10.3389/fmicb.2021.668240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Bettina Schaefer
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Cornelia Wuchter
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Kliti Grice
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Luzie Schnieders
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Joanna V Morgan
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Sean P S Gulick
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.,Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.,Center for Planetary Systems Habitability, University of Texas at Austin, Austin, TX, United States
| | - Axel Wittmann
- Arizona State University, Eyring Materials Center, Tempe, AZ, United States
| | - Johanna Lofi
- Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Gail L Christeson
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
| | - David A Kring
- Lunar and Planetary Institute, Houston, TX, United States
| | - Michael T Whalen
- Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Timothy J Bralower
- Department of Geosciences, Pennsylvania State University, University Park, PA, United States
| | - Gordon R Osinski
- Institute for Earth and Space Exploration and Department of Earth Sciences, University of Western Ontario, London, ON, Canada
| | - Philippe Claeys
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pim Kaskes
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sietze J de Graaff
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Déhais
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Goderis
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Natali Hernandez Becerra
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, IN, United States
| | - Sophie Nixon
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, IN, United States
| | | |
Collapse
|
71
|
Huang Z, Mo S, Yan L, Wei X, Huang Y, Zhang L, Zhang S, Liu J, Xiao Q, Lin H, Guo Y. A Simple Culture Method Enhances the Recovery of Culturable Actinobacteria From Coastal Sediments. Front Microbiol 2021; 12:675048. [PMID: 34194410 PMCID: PMC8236954 DOI: 10.3389/fmicb.2021.675048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Molecular methods revealed that the majority of microbes in natural environments remains uncultivated. To fully understand the physiological and metabolic characteristics of microbes, however, culturing is still critical for microbial studies. Here, we used bacterial community analysis and four culture media, namely, traditional marine broth 2216 (MB), water extracted matter (WEM), methanol extracted matter (MEM), and starch casein agar (SCA), to investigate the diversity of cultivated bacteria in coastal sediments. A total of 1,036 isolates were obtained in pure culture, and they were classified into five groups, namely, Alphaproteobacteria (52.51%), Gammaproteobacteria (23.26%), Actinobacteria (13.32%), Firmicutes, and Bacteroidetes. Compared to other three media, WEM recovered a high diversity of actinobacteria (42 of 63 genotypes), with Micromonospora and Streptomyces as the most cultivated genera. Amplicon sequencing of the bacterial 16S ribosomal RNA (rRNA) gene V3-V4 fragment revealed eight dominant groups, Alphaproteobacteria (12.81%), Gammaproteobacteria (20.07%), Deltaproteobacteria (12.95%), Chloroflexi (13.09%), Bacteroidetes (8.28%), Actinobacteria (7.34%), Cyanobacteria (6.20%), and Acidobacteria (5.71%). The dominant members affiliated to Actinobacteria belonged to "Candidatus Actinomarinales," "Candidatus Microtrichales," and Nitriliruptorales. The cultivated actinobacteria accounted for a small proportion (<5%) compared to the actinobacterial community, which supported that the majority of actinobacteria are still waiting for cultivation. Our study concluded that WEM could be a useful and simple culture medium that enhanced the recovery of culturable actinobacteria from coastal sediments.
Collapse
Affiliation(s)
- Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine Algae, Quanzhou, China
| | - Shiqing Mo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Lifei Yan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Xiaomei Wei
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Yuanyuan Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Lizhen Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuhui Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jianzong Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Qingqing Xiao
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hong Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Yu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
72
|
Huang D, Zhang Z, Sun M, Feng Z, Ye M. Characterization and ecological function of bacterial communities in seabed sediments of the southwestern Yellow Sea and northwestern East China Sea, Western Pacific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143233. [PMID: 33158535 DOI: 10.1016/j.scitotenv.2020.143233] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The marine ecosystems of the marginal seas of the Western Pacific region are frequently disturbed by terrigenous materials. It is of great significance to investigate the ecological functioning of these marine areas, which can be well understood by exploring the microbial communities of sediments. However, the geographical distribution, composition, and genetic functions of sedimentary bacterial communities of the Yellow Sea and East China Sea (YEC Seas) are poorly understood. In this work, sediment samples were collected from YEC Sea areas to investigate bacterial communities by high-throughput sequencing. A total of 1960 genera were determined, with Proteobacteria being the dominant phylum (45.03%), followed by Planctomycetes, Bacteroidetes, Acidobacteria, and Chloroflexi. Correlation analysis indicates that the bacterial composition is influenced by environmental factors, including pressure, depth, seawater density, salinity, organic matter content, nutrient, and heavy metal. Approximately 178 metabolism pathways annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were detected in the bacterial communities, including ones for nutrient metabolism (C, 3.04%; S, 0.70%; N, 0.52%; and P, 0.22%) and exogenous pollutant metabolism (e.g., polycyclic aromatic hydrocarbons (PAHs), chlorobenzene, and benzoate; up to 4.97%). The results demonstrate that the abundant bacterial communities in the sediments of the YEC Seas are important for maintaining marine ecological functioning, especially for elemental biogeochemical cycling and exogenous pollutant transformation.
Collapse
Affiliation(s)
- Dan Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhongyun Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, PR China
| | - Zhengyao Feng
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mao Ye
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
73
|
Metabarcoding profiling of microbial diversity associated with trout fish farming. Sci Rep 2021; 11:421. [PMID: 33432095 PMCID: PMC7801479 DOI: 10.1038/s41598-020-80236-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023] Open
Abstract
Earthy and musty off-flavors are routinely observed in farmed trout worldwide. The microbial association to the production of those off-flavors was previously reported. The current manuscript aimed to catalog the microbial enrichment (eukaryotes and prokaryotes) in semi-intensive aquaculture freshwater sources that might influence the trout aquaculture quality production. The 16S rRNA and ITS metabarcoding analyses were applied on the inflow- and pond-water samples from trout farms previously recorded a malodor fish products and located alongside Moosach and Sempt Rivers in Bavaria province, Germany. The results showed that more than 99% of the detected prokaryotic OTUs (Operational Taxonomic Unit identification) were bacteria as of ~ 75.57% were Proteobacteria, and ~ 14.4% were Bacteroidetes. Meanwhile, 118 out of 233 of the eukaryotic OTUs were known species. Of these, ~ 45% were plant pathogens, and ~ 28% were mushroom/yeasts. Based on the comparative analysis between inflow- and pond-water samples, several pro- and eukaryotic microorganisms that affect the trout aquaculture water quality and industry have been detected, including the malodor-producing microorganisms, e.g., Cyanobacteria and Actinobacteria, along with fish infectious microorganisms, e.g., Chilodonella cyprinid, Metschnikowia bicuspidate. Additionally, the effect of the human- and industrial-related activities around the sampling area on the microbiota of the investigated farms were highlighted.
Collapse
|
74
|
Bacterial Composition and Diversity in Deep-Sea Sediments from the Southern Colombian Caribbean Sea. DIVERSITY-BASEL 2020. [DOI: 10.3390/d13010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deep-sea sediments are considered an extreme environment due to high atmospheric pressure and low temperatures, harboring novel microorganisms. To explore marine bacterial diversity in the southern Colombian Caribbean Sea, this study used 16S ribosomal RNA (rRNA) gene sequencing to estimate bacterial composition and diversity of six samples collected at different depths (1681 to 2409 m) in two localities (CCS_A and CCS_B). We found 1842 operational taxonomic units (OTUs) assigned to bacteria. The most abundant phylum was Proteobacteria (54.74%), followed by Bacteroidetes (24.36%) and Firmicutes (9.48%). Actinobacteria and Chloroflexi were also identified, but their dominance varied between samples. At the class-level, Alphaproteobacteria was most abundant (28.4%), followed by Gammaproteobacteria (24.44%) and Flavobacteria (16.97%). The results demonstrated that some bacteria were common to all sample sites, whereas other bacteria were unique to specific samples. The dominant species was Erythrobacter citreus, followed by Gramella sp. Overall, we found that, in deeper marine sediments (e.g., locality CCS_B), the bacterial alpha diversity decreased while the dominance of several genera increased; moreover, for locality CCS_A, our results suggest that the bacterial diversity could be associated with total organic carbon content. We conclude that physicochemical properties (e.g., organic matter content) create a unique environment and play an important role in shaping bacterial communities and their diversity.
Collapse
|
75
|
Lannes R, Cavaud L, Lopez P, Bapteste E. Marine Ultrasmall Prokaryotes Likely Affect the Cycling of Carbon, Methane, Nitrogen, and Sulfur. Genome Biol Evol 2020; 13:6039174. [PMID: 33325996 PMCID: PMC7851587 DOI: 10.1093/gbe/evaa261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Recently, we uncovered the genetic components from six carbon fixation autotrophic pathways in cleaned ultrasmall size fractions from marine samples (<0.22 µm) gathered worldwide by the Tara Oceans Expedition. This first finding suggested that prokaryotic nanoorganisms, phylogenetically distantly related to the known CPR and DPANN groups, could collectively impact carbon cycling and carbon fixation across the world's ocean. To extend our mining of the functional and taxonomic microbial dark matter from the ultrasmall size fraction from the Tara Oceans Expedition, we investigated the distribution of 28 metabolic pathways associated with the cycling of carbon, methane, nitrogen, and sulfur. For all of these pathways, we report the existence not only of novel metabolic homologs in the ultrasmall size fraction of the oceanic microbiome, associated with nanoorganisms belonging to the CPR and DPANN lineages, but also of metabolic homologs exclusively found in marine host taxa belonging to other (still unassigned) microbial lineages. Therefore, we conclude that marine nanoorganisms contribute to a greater diversity of key biogeochemical cycles than currently appreciated. In particular, we suggest that oceanic nanoorganisms may be involved in a metabolic loop around Acetyl-CoA, have an underappreciated genetic potential to degrade methane, contribute to sustaining redox-reactions by producing Coenzyme F420, and affect sulfur cycling, notably as they harbor a complete suite of homologs of enzymes of the SOX system.
Collapse
Affiliation(s)
- Romain Lannes
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Louise Cavaud
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
76
|
Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc 2020; 16:634-676. [PMID: 33311714 DOI: 10.1038/s41596-020-00427-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Stable isotope labeling of microbial taxa of interest and their sorting provide an efficient and direct way to answer the question "who does what?" in complex microbial communities when coupled with fluorescence in situ hybridization or downstream 'omics' analyses. We have developed a platform for automated Raman-based sorting in which optical tweezers and microfluidics are used to sort individual cells of interest from microbial communities on the basis of their Raman spectra. This sorting of cells and their downstream DNA analysis, such as by mini-metagenomics or single-cell genomics, or cultivation permits a direct link to be made between the metabolic roles and the genomes of microbial cells within complex microbial communities, as well as targeted isolation of novel microbes with a specific physiology of interest. We describe a protocol from sample preparation through Raman-activated live cell sorting. Subsequent cultivation of sorted cells is described, whereas downstream DNA analysis involves well-established approaches with abundant methods available in the literature. Compared with manual sorting, this technique provides a substantially higher throughput (up to 500 cells per h). Furthermore, the platform has very high sorting accuracy (98.3 ± 1.7%) and is fully automated, thus avoiding user biases that might accompany manual sorting. We anticipate that this protocol will empower in particular environmental and host-associated microbiome research with a versatile tool to elucidate the metabolic contributions of microbial taxa within their complex communities. After a 1-d preparation of cells, sorting takes on the order of 4 h, depending on the number of cells required.
Collapse
|
77
|
Sun Y, Song Z, Zhang H, Liu P, Hu X. Seagrass vegetation affect the vertical organization of microbial communities in sediment. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105174. [PMID: 33099080 DOI: 10.1016/j.marenvres.2020.105174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Seagrasses represent high primary productivity and provide important ecosystem services to the marine environment. Seagrass-associated microbial communities are playing essential ecological functional roles in biogeochemical cycles. However, little is known about the effect of seagrass vegetation on microbial communities in sediment. In the present study, the sediment cores of seagrass bed (dominated by Zostera japonica and Zostera marine) and degradation area in Swan Lake (China) were sampled; then, biogeochemical parameters were analyzed, and microbial community composition was investigated by using high-throughput sequencing of the 16S rRNA gene. The results showed that the presence of seagrass could lead to a decrease in the richness and diversity of the microbial community. In the vertical direction, a pronounced shift from Proteobacteria-dominated upper layers to Chloroflexi and Crenarchaeota-dominated deep layers in all sediment cores were observed. Besides, Bathyarchaeia is more abundant at degradation area, while Vibrionaceae, Sulfurovum and Lokiarchaeial overrepresent at the seagrass bed area. Vibrionaceae was abundant in the rhizosphere of Z. marina and Z. japonica, and the proportions reached 84.45% and 63.89%, respectively. This enrichment of Vibrio spp. may be caused by the macrobenthic species near the seagrass rhizosphere, and these Vibrio spp. reduced the diversity and stability of microbial community, which may lead to the degradation of seagrass. This study would provide clues for the distribution patterns and niche preferences of seagrass microbiome. The conservation strategy of seagrass would be further elucidated from the perspective of the microbiome.
Collapse
Affiliation(s)
- Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenglei Song
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Pengyuan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
78
|
Mei R, Nobu MK, Narihiro T, Liu WT. Metagenomic and Metatranscriptomic Analyses Revealed Uncultured Bacteroidales Populations as the Dominant Proteolytic Amino Acid Degraders in Anaerobic Digesters. Front Microbiol 2020; 11:593006. [PMID: 33193263 PMCID: PMC7661554 DOI: 10.3389/fmicb.2020.593006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Current understanding of amino acid (AA) degraders in anaerobic digesters is mainly based on cultured species, whereas microorganisms that play important roles in a complex microbial community remain poorly characterized. This study investigated short-term enrichments degrading single AAs using metagenomics and metatranscriptomics. Metagenomic analysis revealed that populations related to cultured AA degraders had an abundance <2.5% of the sequences. In contrast, metagenomic-assembled bins related to uncultured Bacteroidales collectively accounted for >35% of the sequences. Phylogenetic analyses suggested that these Bacteroidales populations represented a yet-to-be characterized family lineage, i.e., Bacteroidetes vadinHA17. The bins possessed the genetic capacity related to protein degradation, including surface adhesion (3–7 genes), secreted peptidase (52–77 genes), and polypeptide-specific transporters (2–5 genes). Furthermore, metatranscriptomics revealed that these Bacteroidales populations expressed the complete metabolic pathways for degrading 16 to 17 types of AAs in enrichments fed with respective substrates. These characteristics were distinct from cultured AA degraders including Acidaminobacter and Peptoclostridium, suggesting the uncultured Bacteroidales were the major protein-hydrolyzing and AA-degrading populations. These uncultured Bacteroidales were further found to be dominant and active in full-scale anaerobic digesters, indicating their important ecological roles in the native habitats. “Candidatus Aminobacteroidaceae” was proposed to represent the previously uncharted family Bacteroidetes vadinHA17.
Collapse
Affiliation(s)
- Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Masaru K Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
79
|
Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA, Yayanos AA, Kusube M, Methé BA, Bartlett DH. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genomics 2020; 21:692. [PMID: 33023469 PMCID: PMC7542103 DOI: 10.1186/s12864-020-07102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. Results Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. Conclusions We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Than S Kyaw
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Roger A Chastain
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A Aristides Yayanos
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Masataka Kusube
- Department of Material Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama, 644-0023, Japan
| | - Barbara A Methé
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
80
|
Stevenson MA, Faust JC, Andrade LL, Freitas FS, Gray ND, Tait K, Hendry KR, Hilton RG, Henley SF, Tessin A, Leary P, Papadaki S, Ford A, März C, Abbott GD. Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200223. [PMID: 32862813 PMCID: PMC7481670 DOI: 10.1098/rsta.2020.0223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (n-alkanes, n-alkanoic acids, n-alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Collapse
Affiliation(s)
- Mark A. Stevenson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- e-mail:
| | - Johan C. Faust
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Luiza L. Andrade
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Felipe S. Freitas
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Neil D. Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Karen Tait
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | | | - Robert G. Hilton
- Department of Geography, Science Laboratories, Durham University, South Road, Durham DH1 3LE, UK
| | - Sian F. Henley
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Allyson Tessin
- Department of Geology, Kent State University, Kent, OH 44240, USA
| | - Peter Leary
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sonia Papadaki
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Ailbe Ford
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Christian März
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Geoffrey D. Abbott
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
81
|
Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.
Collapse
Affiliation(s)
- Andrea Di Cesare
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Petra Pjevac
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090, Vienna, Austria
| | - Ester Eckert
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Neven Curkov
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | - Gianluca Corno
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Material Chemistry, Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia.
| |
Collapse
|
82
|
Zhang K, Zheng X, He Z, Yang T, Shu L, Xiao F, Wu Y, Wang B, Li Z, Chen P, Yan Q. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments. Microb Biotechnol 2020; 13:1597-1610. [PMID: 32940416 PMCID: PMC7415356 DOI: 10.1111/1751-7915.13622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial sulfate reduction and sulfur oxidation are vital processes to enhance organic matter degradation in sediments. However, the diversity and composition of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their environmental driving factors are still poorly understood in aquaculture ponds, which received mounting of organic matter. In this study, bacterial communities, SRB and SOB from sediments of aquaculture ponds with different sizes of grass carp (Ctenopharyngodon idellus) were analysed using high-throughput sequencing and quantitative real-time PCR (qPCR). The results indicated that microbial communities in aquaculture pond sediments of large juvenile fish showed the highest richness and abundance of SRB and SOB, potentially further enhancing microbial sulfur cycling. Specifically, SRB were dominated by Desulfobulbus and Desulfovibrio, whereas SOB were dominated by Dechloromonas and Leptothrix. Although large juvenile fish ponds had relatively lower concentrations of sulfur compounds (i.e. total sulfur, acid-volatile sulfide and elemental sulfur) than those of larval fish ponds, more abundant SRB and SOB were found in the large juvenile fish ponds. Further redundancy analysis (RDA) and linear regression indicated that sulfur compounds and sediment suspension are the major environmental factors shaping the abundance and community structure of SRB and SOB in aquaculture pond sediments. Findings of this study expand our current understanding of microbial driving sulfur cycling in aquaculture ecosystems and also provide novel insights for ecological and green aquaculture managements.
Collapse
Affiliation(s)
- Keke Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiafei Zheng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
- College of AgronomyHunan Agricultural UniversityChangsha410128China
| | - Tony Yang
- Swift Current Research and Development CentreAgriculture & Agri‐Food CanadaSwift CurrentSKCanada
| | - Longfei Shu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Fanshu Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yongjie Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Binhao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhou Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Pubo Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)School of Environmental Science and EngineeringEnvironmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
83
|
Buongiorno J, Sipes K, Wasmund K, Loy A, Lloyd KG. Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS One 2020; 15:e0234839. [PMID: 32853201 PMCID: PMC7451513 DOI: 10.1371/journal.pone.0234839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022] Open
Abstract
Distinct lineages of Gammaproteobacteria clade Woeseiales are globally distributed in marine sediments, based on metagenomic and 16S rRNA gene analysis. Yet little is known about why they are dominant or their ecological role in Arctic fjord sediments, where glacial retreat is rapidly imposing change. This study combined 16S rRNA gene analysis, metagenome-assembled genomes (MAGs), and genome-resolved metatranscriptomics uncovered the in situ abundance and transcriptional activity of Woeseiales with burial in four shallow sediment sites of Kongsfjorden and Van Keulenfjorden of Svalbard (79°N). We present five novel Woeseiales MAGs and show transcriptional evidence for metabolic plasticity during burial, including sulfur oxidation with reverse dissimilatory sulfite reductase (dsrAB) down to 4 cm depth and nitrite reduction down to 6 cm depth. A single stress protein, spore protein SP21 (hspA), had a tenfold higher mRNA abundance than any other transcript, and was a hundredfold higher on average than other transcripts. At three out of the four sites, SP21 transcript abundance increased with depth, while total mRNA abundance and richness decreased, indicating a shift in investment from metabolism and other cellular processes to build-up of spore protein SP21. The SP21 gene in MAGs was often flanked by genes involved in membrane-associated stress response. The ability of Woeseiales to shift from sulfur oxidation to nitrite reduction with burial into marine sediments with decreasing access to overlying oxic bottom waters, as well as enter into a dormant state dominated by SP21, may account for its ubiquity and high abundance in marine sediments worldwide, including those of the rapidly shifting Arctic.
Collapse
Affiliation(s)
- Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
84
|
Macrofaunal control of microbial community structure in continental margin sediments. Proc Natl Acad Sci U S A 2020; 117:15911-15922. [PMID: 32576690 PMCID: PMC7376573 DOI: 10.1073/pnas.1917494117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Through a process called "bioturbation," burrowing macrofauna have altered the seafloor habitat and modified global carbon cycling since the Cambrian. However, the impact of macrofauna on the community structure of microorganisms is poorly understood. Here, we show that microbial communities across bioturbated, but geochemically and sedimentologically divergent, continental margin sites are highly similar but differ clearly from those in nonbioturbated surface and underlying subsurface sediments. Solid- and solute-phase geochemical analyses combined with modeled bioturbation activities reveal that dissolved O2 introduction by burrow ventilation is the major driver of archaeal community structure. By contrast, solid-phase reworking, which regulates the distribution of fresh, algal organic matter, is the main control of bacterial community structure. In nonbioturbated surface sediments and in subsurface sediments, bacterial and archaeal communities are more divergent between locations and appear mainly driven by site-specific differences in organic carbon sources.
Collapse
|
85
|
Krause S, Molari M, Gorb EV, Gorb SN, Kossel E, Haeckel M. Persistence of plastic debris and its colonization by bacterial communities after two decades on the abyssal seafloor. Sci Rep 2020; 10:9484. [PMID: 32528001 PMCID: PMC7289819 DOI: 10.1038/s41598-020-66361-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The fate of plastic debris entering the oceans is largely unconstrained. Currently, intensified research is devoted to the abiotic and microbial degradation of plastic floating near the ocean surface for an extended period of time. In contrast, the impacts of environmental conditions in the deep sea on polymer properties and rigidity are virtually unknown. Here, we present unique results of plastic items identified to have been introduced into deep-sea sediments at a water depth of 4150 m in the eastern equatorial Pacific Ocean more than two decades ago. The results, including optical, spectroscopic, physical and microbial analyses, clearly demonstrate that the bulk polymer materials show no apparent sign of physical or chemical degradation. Solely the polymer surface layers showed reduced hydrophobicity, presumably caused by microbial colonization. The bacterial community present on the plastic items differed significantly (p < 0.1%) from those of the adjacent natural environment by a dominant presence of groups requiring steep redox gradients (Mesorhizobium, Sulfurimonas) and a remarkable decrease in diversity. The establishment of chemical gradients across the polymer surfaces presumably caused these conditions. Our findings suggest that plastic is stable over extended times under deep-sea conditions and that prolonged deposition of polymer items at the seafloor may induce local oxygen depletion at the sediment-water interface.
Collapse
Affiliation(s)
- S Krause
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
| | - M Molari
- HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - E V Gorb
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - S N Gorb
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - E Kossel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - M Haeckel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
86
|
Matturro B, Mascolo G, Rossetti S. Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. N Biotechnol 2020; 56:96-102. [DOI: 10.1016/j.nbt.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
|
87
|
Zhang X, Zhao C, Yu S, Jiang Z, Liu S, Wu Y, Huang X. Rhizosphere Microbial Community Structure Is Selected by Habitat but Not Plant Species in Two Tropical Seagrass Beds. Front Microbiol 2020; 11:161. [PMID: 32194512 PMCID: PMC7065525 DOI: 10.3389/fmicb.2020.00161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 11/19/2022] Open
Abstract
Rhizosphere bacterial community structures and their determining drivers have been studied in a variety of marine and freshwater ecosystems for a range of plant species. However, there is still limited information about the influence of habitat on microbial communities in seagrass beds. This study aimed to determine which factors (habitat and plant species) have crucial roles on the rhizospheric bacteria associated with two tropical seagrass species (Thalassia hemprichii and Enhalus acoroides) that are dominant at Xincun Bay and Tanmen Harbor in Hainan Island, South China. Using Illumina HiSeq sequencing, we observed substantial differences in the bacterial richness, diversity, and relative abundances of taxa between the two habitats, which were characterized differently in sediment type and nutrient status. Rhizospheric bacteria from sandy sediment at the eutrophic Xincun Bay were dominated by Desulfobacteraceae and Helicobacteraceae, which are primarily involved in sulfate cycling, whereas rhizosphere microbes from the reef flat at oligotrophic Tanmen Harbor were dominated by Vibrionaceae and Woeseiaceae, which may play important roles in nitrogen and carbon fixing. Additionally, we speculated that host-specific effects of these two seagrass species may be covered under nutrient-rich conditions and in mixed community patches, emphasizing the importance of the nutrient status of the sediment and vegetation composition of the patches. In addition, our study confirmed that Proteobacteria was more adapted to the rhizosphere environment than to low-carbon conditions that occurred in bulk sediment, which was primarily dominated by well-known fermentative bacteria in the phylum Firmicutes.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Shuo Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
88
|
Fu L, Li D, Mi T, Zhao J, Liu C, Sun C, Zhen Y. Characteristics of the archaeal and bacterial communities in core sediments from Southern Yap Trench via in situ sampling by the manned submersible Jiaolong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134884. [PMID: 31767325 DOI: 10.1016/j.scitotenv.2019.134884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
The hadal environment is the deepest part of the ocean and harbors a significant number of unique microbial communities. Here, we collected core sediment samples of Southern Yap Trench with the deep-sea manned submersible Jiaolong and analyzed the microbial community structure and abundance in the samples through high-throughput sequencing and real-time fluorescence quantitative PCR (qPCR), taking physicochemical parameters into account to explore potential environmental drivers and metabolic pathways therein. Considering the typical "V-shape" topography and frequent sediment collapses on trench walls, the core sediments of Southern Yap Trench harbored distinct microbial populations with fluctuating distributions and metabolic processes dominated by Proteobacteria and Thaumarchaeota. To discover the main potential metabolic processes of microbes, functional genes were detected by qPCR. The abundance of bacteria was greater than that of archaea in Southern Yap Trench sediments. The abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), sulfate-reducing bacteria (SRB) and denitrifying bacteria (denitrifier) decreased with increasing depth and decreasing total organic carbon (TOC%) and total nitrogen (TN%) and showed a positive and significant correlation with TOC% (P < 0.01), TN% (P < 0.01), TOC/TN molar ratio (C/N ratio) (P < 0.01) and median grain size (P < 0.01). From the perspective of function based on the 16S rRNA gene, aerobic ammonium oxidization, carbon assimilation, and chemoheterotrophic function may be the dominant processes in Southern Yap Trench sediments. Moreover, considering the isolated geomorphological and hydrological characteristics of Southern Yap Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal sediments associated with the trench geomorphology.
Collapse
Affiliation(s)
- Lulu Fu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dong Li
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jun Zhao
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Chengjun Sun
- Marine Ecology Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266237, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
89
|
Vasquez‐Cardenas D, Meysman FJR, Boschker HTS. A Cross-System Comparison of Dark Carbon Fixation in Coastal Sediments. GLOBAL BIOGEOCHEMICAL CYCLES 2020; 34:e2019GB006298. [PMID: 32713991 PMCID: PMC7375125 DOI: 10.1029/2019gb006298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 05/22/2023]
Abstract
Dark carbon fixation (DCF) by chemoautotrophic microorganisms can sustain food webs in the seafloor by local production of organic matter independent of photosynthesis. The process has received considerable attention in deep sea systems, such as hydrothermal vents, but the regulation, depth distribution, and global importance of coastal sedimentary DCF have not been systematically investigated. Here we surveyed eight coastal sediments by means of stable isotope probing (13C-DIC) combined with bacterial biomarkers (phospholipid-derived fatty acids) and compiled additional rates from literature into a global database. DCF rates in coastal sediments range from 0.07 to 36.30 mmol C m-2 day-1, and there is a linear relation between DCF and water depth. The CO2 fixation ratio (DCF/CO2 respired) also shows a trend with water depth, decreasing from 0.09 in nearshore environments to 0.04 in continental shelf sediments. Five types of depth distributions of chemoautotrophic activity are identified based on the mode of pore water transport (advective, bioturbated, and diffusive) and the dominant pathway of microbial sulfur oxidation. Extrapolated to the global coastal ocean, we estimate a DCF rate of 0.04 to 0.06 Pg C year-1, which is less than previous estimates based on indirect measurements (0.15 Pg C year-1), but remains substantially higher than the global DCF rate at deep sea hydrothermal vents (0.001-0.002 Pg C year-1).
Collapse
Affiliation(s)
| | - Filip J. R. Meysman
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
- Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Henricus T. S. Boschker
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
- Department of BiologyUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
90
|
Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME JOURNAL 2020; 14:1042-1056. [PMID: 31988474 PMCID: PMC7082342 DOI: 10.1038/s41396-020-0588-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Abstract
Surveys of 16S rRNA gene sequences derived from marine sediments have indicated that a widely distributed group of Gammaproteobacteria, named “JTB255-Marine Benthic Group” (now the candidate order Woeseiales), accounts for 1–22% of the retrieved sequences. Despite their ubiquity in seafloor communities, little is known about their distribution and specific ecological niches in the deep sea, which constitutes the largest biome globally. Here, we characterized the phylogeny, environmental distribution patterns, abundance, and metabolic potential of Woeseiales bacteria with a focus on representatives from the deep sea. From a phylogenetic analysis of publicly available 16S rRNA gene sequences (≥1400 bp, n = 994), we identified lineages of Woeseiales with greater prevalence in the deep sea than in coastal environments, a pattern corroborated by the distribution of 16S oligotypes recovered from 28 globally distributed sediment samples. Cell counts revealed that Woeseiales bacteria accounted for 5 ± 2% of all microbial cells in deep-sea surface sediments at 23 globally distributed sites. Comparative analyses of a genome, metagenome bins, and single-cell genomes suggested that members of the corresponding clades are likely to grow on proteinaceous matter, potentially derived from detrital cell membranes, cell walls, and other organic remnants in marine sediments.
Collapse
|
91
|
Zhao Y, Liu P, Rui J, Cheng L, Wang Q, Liu X, Yuan Q. Dark carbon fixation and chemolithotrophic microbial community in surface sediments of the cascade reservoirs, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134316. [PMID: 31783464 DOI: 10.1016/j.scitotenv.2019.134316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Dark carbon fixation (DCF) by chemolithotrophic microbes can make considerable contribution to inorganic carbon fixation in aquatic ecosystems. However, little is known about the importance and diversity of chemolithotrophic microbes in cascade reservoir sediments. In this study, we determined the potential DCF rates of sediments of three cascade reservoirs in Wujiang River basin by carbon isotopic labeling. The results showed that the DCF rates of the surface sediments ranged from 1.5 to 14.7 mmol C m-2 d-1. The ratio of DCF to mineralization rate of sediment organic matter of surface sediment was between 11.6%~60.9%. High-throughput sequencing analysis of cbbL and cbbM genes involved in Calvin Benson Cycle indicated that cbbL-carrying CO2-assimilating bacteria included diverse functional groups, while cbbM type was mostly involved in sulfur oxidation. The sediments of Hongfeng (HF) reservoir, which has much longer hydraulic residence time (HRT) and locates in most upstream of a major tributary of Wujiang River, have substantially higher DCF rates. The cbbL and cbbM communities in HF were dominated by sulfur oxidizing bacteria, and were largely different from that in the other two reservoirs. Our results suggested that chemolithotrophy plays an important role in carbon cycling of sediments in cascade reservoir. Meanwhile, HRT and relative location of cascade reservoirs are the key control factors of both DCF and composition of autotrophic microbial communities in cascade reservoir sediments.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Junpeng Rui
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qian Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
92
|
Yamindago A, Lee N, Woo S, Yum S. Impact of zinc oxide nanoparticles on the bacterial community of Hydra magnipapillata. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-00058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
93
|
The Impact of a Fish Cannery Wastewater Discharge on the Bacterial Community Structure and Sanitary Conditions of Marine Coastal Sediments. WATER 2019. [DOI: 10.3390/w11122566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of fish cannery discharge (FCD) on bacteria in marine coastal sediments were investigated. Redox potentials were measured, and granulometry was determined by wet ASTM sieving, and with the Sedigraph method. Prokaryotic abundance (PA) was determined by epifluorescence microscopy (DAPI staining), and faecal indicator bacteria (FIB) enumerated with the multiple test tube and most probable number method. Total lipids were determined gravimetrically, and sterols analysed by GC/MSD. Bacterial community composition was determined after total DNA isolation, Illumina MiSeq amplification, and SILVAngs processing pipeline. The FCD was rich in lipids, heterotrophic prokaryotes and FIB. The bacterial community of the FCD was dominated by Firmicutes and Gammaproteobacteria and many potentially pathogenic bacteria. Highly porosusgravelly sands clogged with fish remains transitioned to less permeable sandy muds away from the FCD. All sediments were anoxic with extremely negative potentials around the outfall. High surface PA and FIB spread 300 m from the outfall. Gammaproteobacteria and Deltaproteobacteria appeared in all sediments. Sulfurovum and Anaerolineaceae characterized the most polluted locations where gammaproteobacterial Woeseiaceae/JTB255 marine benthic group declined. Gammaproteobacteria and Bacteroidetes characterized surface sediments, while Chloroflexi and Deltaproteobacteria prevailed in deeper layers. The FCD enriched sediments in lipids and allochthonous bacteria degrading sanitary quality, lowering the permeability, redox potential, and bacterial diversity.
Collapse
|
94
|
Zhu X, Mao L, Chen B. Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil. ENVIRONMENT INTERNATIONAL 2019; 133:105211. [PMID: 31675569 DOI: 10.1016/j.envint.2019.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Biochar induces various priming effects on native soil organic carbon (nSOC), whereas the underlying mechanisms linking these to soil microbial community structure and functions remain unclear. To investigate soil microbial community structure and functions associated with priming effects, rice straw (RS) and the derived biochar samples (RS400 and RS700, pyrolyzed at 400 °C and 700 °C, respectively) were applied to a sandy loam soil for a 33- and 200-day incubation. Using stable C isotopic ratios, CO2-C emissions from biochar/feedstock and nSOC were quantitatively identified and indicated an enhanced C stability of RS700 over that of RS and RS400. A decreased soil pH and increased dissolved organic carbon and NH4+-N concentrations with the RS amendment are driving forces that lead to an enhanced soil microbial activity and a higher abundance of heterotrophic microbes, especially Proteobacteria and Acidobacteria, which contribute to high CO2 emissions. The enhanced C stability of biochar and nSOC over that of pristine feedstock was primarily attributable to a stable and high soil pH, which minimized the disturbance of soil heterotrophic microbial community structure and functions, favoring the growth of Actinobacteria, Proteobacteria, and Ascomycota. The biochar amendment in soil enriched the metabolic pathways of biosynthesis and the decomposition of secondary metabolites, polycyclic aromatic hydrocarbons (PAHs) degradation, and electron transfer carriers.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
95
|
Kato S, Hirai M, Ohkuma M, Suzuki K. Microbial metabolisms in an abyssal ferromanganese crust from the Takuyo-Daigo Seamount as revealed by metagenomics. PLoS One 2019; 14:e0224888. [PMID: 31703093 PMCID: PMC6839870 DOI: 10.1371/journal.pone.0224888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022] Open
Abstract
Rocky outcrops covered with thick Fe and Mn oxide coatings, which are known as ferromanganese (Fe-Mn) crusts, are commonly found on slopes of aged seamounts in bathyal and abyssal zones. Although the presence of diverse microorganisms on these Fe-Mn crusts has been reported, little is known about their metabolism. Here, we report the metabolic potential of the microbial community in an abyssal crust collected in the Takuyo-Daigo Seamount, in the north-western Pacific. We performed shotgun metagenomic sequencing of the Fe-Mn crust, and detected putative genes involved in dissolution and precipitation of Fe and Mn, nitrification, sulfur oxidation, carbon fixation, and decomposition of organics in the metagenome. In addition, four metagenome-assembled genomes (MAGs) of abundant members in the microbial community were recovered from the metagenome. The MAGs were affiliated with Thaumarchaeota, Alphaproteobacteria, and Gammaproteobacteria, and were distantly related to previously reported genomes/MAGs of cultured and uncultured species. Putative genes involved in the above reactions were also found in the crust MAGs. Our results suggest that crust microbial communities play a role in biogeochemical cycling of C, N, S, Fe, and Mn, and imply that they contribute to the growth of Fe-Mn crusts.
Collapse
Affiliation(s)
- Shingo Kato
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Katsuhiko Suzuki
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
96
|
Li AZ, Han XB, Zhang MX, Zhou Y, Chen M, Yao Q, Zhu HH. Culture-Dependent and -Independent Analyses Reveal the Diversity, Structure, and Assembly Mechanism of Benthic Bacterial Community in the Ross Sea, Antarctica. Front Microbiol 2019; 10:2523. [PMID: 31787942 PMCID: PMC6856632 DOI: 10.3389/fmicb.2019.02523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
The benthic bacterial community in Antarctic continental shelf ecosystems are not well-documented. We collected 13 surface sediments from the Ross Sea, a biological hotspot in high-latitude maritime Antarctica undergoing rapid climate change and possible microflora shift, and aimed to study the diversity, structure and assembly mechanism of benthic bacterial community using both culture-dependent and -independent approaches. High-throughput sequencing of 16S rRNA gene amplicons revealed 370 OTUs distributed in 21 phyla and 284 genera. The bacterial community was dominated by Bacteroidetes, Gamma- and Alphaproteobacteria, and constituted by a compact, conserved and positively-correlated group of anaerobes and other competitive aerobic chemoheterotrophs. Null-model test based on βNTI and RCBray indicated that stochastic processes, including dispersal limitation and undominated fractions, were the main forces driving community assembly. On the other hand, environmental factors, mainly temperature, organic matter and chlorophyll, were significantly correlated with bacterial richness, diversity and community structure. Moreover, metabolic and physiological features of the prokaryotic taxa were mapped to evaluate the adaptive mechanisms and functional composition of the benthic bacterial community. Our study is helpful to understand the structural and functional aspects, as well as the ecological and biogeochemical role of the benthic bacterial community in the Ross Sea.
Collapse
Affiliation(s)
- An-Zhang Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xi-Bin Han
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Ming-Xia Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meng Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Grass Science, Guangdong Engineering Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
97
|
Pelikan C, Jaussi M, Wasmund K, Seidenkrantz MS, Pearce C, Kuzyk ZZA, Herbold CW, Røy H, Kjeldsen KU, Loy A. Glacial Runoff Promotes Deep Burial of Sulfur Cycling-Associated Microorganisms in Marine Sediments. Front Microbiol 2019; 10:2558. [PMID: 31787951 PMCID: PMC6853847 DOI: 10.3389/fmicb.2019.02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments and subsequent microbial mineralization. Here, we investigated controls on microbial community assembly in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the Godthåbsfjord region, south-western Greenland. We used a correlative approach integrating 16S rRNA gene and dissimilatory sulfite reductase (dsrB) amplicon sequence data over six meters of depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were characterized by comparably high sedimentation rates and had "young" sediment ages of <500 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates (SRR), and C/N ratios were strongly correlated with differences in microbial community composition between GI and NGI sediments, indicating that age and diagenetic state were key drivers of microbial community assembly in subsurface sediments. Similar bacterial and archaeal communities were present in the surface sediments of all stations, whereas only in GI sediments were many surface taxa also abundant through the whole sediment core. The relative abundance of these taxa, including diverse Desulfobacteraceae members, correlated positively with SRRs, indicating their active contributions to sulfur-cycling processes. In contrast, other surface community members, such as Desulfatiglans, Atribacteria, and Chloroflexi, survived the slow sediment burial at NGI stations and dominated in the deepest sediment layers. These taxa are typical for the energy-limited marine deep biosphere and their relative abundances correlated positively with sediment age. In conclusion, our data suggests that high rates of sediment accumulation caused by glacier runoff and associated changes in biogeochemistry, promote persistence of sulfur-cycling activity and burial of a larger fraction of the surface microbial community into the deep subsurface.
Collapse
Affiliation(s)
- Claus Pelikan
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Marion Jaussi
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Marit-Solveig Seidenkrantz
- Palaeoceanography and Palaeoclimate Group, Arctic Research Centre, and iClimate Interdisciplinary Centre for Climate Change, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Christof Pearce
- Palaeoceanography and Palaeoclimate Group, Arctic Research Centre, and iClimate Interdisciplinary Centre for Climate Change, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Zou Zou Anna Kuzyk
- Department of Geological Sciences, Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB, Canada
| | - Craig W. Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hans Røy
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
98
|
Polinski JM, Bucci JP, Gasser M, Bodnar AG. Metabarcoding assessment of prokaryotic and eukaryotic taxa in sediments from Stellwagen Bank National Marine Sanctuary. Sci Rep 2019; 9:14820. [PMID: 31616016 PMCID: PMC6794287 DOI: 10.1038/s41598-019-51341-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
Stellwagen Bank National Marine Sanctuary (SBNMS) in the Gulf of Maine is a historic fishing ground renowned for remarkable productivity. Biodiversity conservation is a key management priority for SBNMS and yet data on the diversity of microorganisms, both prokaryotic and eukaryotic, is lacking. This study utilized next generation sequencing to characterize sedimentary communities within SBNMS at three sites over two seasons. Targeting 16S and 18S small subunit (SSU) rRNA genes and fungal Internal Transcribed Spacer (ITS) rDNA sequences, samples contained high diversity at all taxonomic levels and identified 127 phyla, including 115 not previously represented in the SBNMS Management Plan and Environmental Assessment. A majority of the diversity was bacterial, with 59 phyla, but also represented were nine Archaea, 18 Animalia, 14 Chromista, eight Protozoa, two Plantae, and 17 Fungi phyla. Samples from different sites and seasons were dominated by the same high abundance organisms but displayed considerable variation in rare taxa. The levels of biodiversity seen on this small spatial scale suggest that benthic communities of this area support a diverse array of micro- and macro-organisms, and provide a baseline for future studies to assess changes in community structure in response to rapid warming in the Gulf of Maine.
Collapse
Affiliation(s)
| | - John P Bucci
- Gloucester Marine Genomics Institute, Inc. Gloucester, Massachusetts, USA.,School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Mark Gasser
- Gloucester Marine Genomics Institute, Inc. Gloucester, Massachusetts, USA.,The Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, USA
| | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Inc. Gloucester, Massachusetts, USA
| |
Collapse
|
99
|
Liu J, Yao J, Sunahara G, Wang F, Li Z, Duran R. Nonferrous metal (loid) s mediate bacterial diversity in an abandoned mine tailing impoundment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24806-24818. [PMID: 31240654 DOI: 10.1007/s11356-019-05092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Migration and transformation of toxic metal (loid) s in tailing sites inevitably lead to ecological disturbances and serious threats to the surroundings. However, the horizontal and vertical distribution of bacterial diversity has not been determined in nonferrous metal (loid) tailing ponds, especially in Guangxi China, where the world's largest and potentially most toxic sources of metal (loid) s are located. Distribution of bacterial communities was stable at horizontal levels. At the surface (0-10 cm), the stability was most attributed to Bacillus and Enterococcus, while bacterial communities at the subsurface (50 cm) were mainly contributed by Nitrospira and Sulfuricella. Variable vertical distribution of bacterial communities has led to the occurrence of specific genera and specific predicted functions (such as transcription regulation factors). Sulfurifustis (a S-oxidizing and inorganic carbon fixing bacteria) genera were specific at the surface, whereas Streptococcus-related genera were found at the surface and subsurface, but were more abundant in the latter depth. Physical-chemical parameters, such as pH, TN, and metal (loid) (As, Cd, Pb, Cu, and Zn) concentrations were the main drivers of bacterial community abundance, diversity, composition, and metabolic functions. These results increase our understanding of the physical-chemical effects on the spatial distribution of bacterial communities and provide useful insight for the bioremediation and site management of nonferrous metal (loid) tailings.
Collapse
Affiliation(s)
- Jianli Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Natural Resource Sciences, McGill University, Montreal, H9X3V9, Quebec, Canada
| | - Fei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Robert Duran
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| |
Collapse
|
100
|
Pjevac P, Dyksma S, Goldhammer T, Mujakić I, Koblížek M, Mußmann M, Amann R, Orlić S. In situ abundance and carbon fixation activity of distinct anoxygenic phototrophs in the stratified seawater lake Rogoznica. Environ Microbiol 2019; 21:3896-3908. [PMID: 31299137 DOI: 10.1111/1462-2920.14739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/08/2023]
Abstract
Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.
Collapse
Affiliation(s)
- Petra Pjevac
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Stefan Dyksma
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tobias Goldhammer
- MARUM Center for Marine Environmental Sciences, Bremen, Germany.,Department of Chemical Analytics and Biogeochemistry, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Izabela Mujakić
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
| | - Michal Koblížek
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
| | - Marc Mußmann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sandi Orlić
- Ruđer Bošković Institute, Zagreb, Croatia.,Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia
| |
Collapse
|