51
|
Abstract
The microbiome residing in anaerobic digesters drives the anaerobic digestion (AD) process to convert various feedstocks to biogas as a renewable source of energy. This microbiome has been investigated in numerous studies in the last century. The early studies used cultivation-based methods and analysis to identify the four guilds (or functional groups) of microorganisms. Molecular biology techniques overcame the limitations of cultivation-based methods and allowed the identification of unculturable microorganisms, revealing the high diversity of microorganisms involved in AD. In the past decade, omics technologies, including metataxonomics, metagenomics, metatranscriptomics, metaproteomics, and metametabolomics, have been or start to be used in comprehensive analysis and studies of biogas-producing microbiomes. In this chapter, we reviewed the utilities and limitations of these analysis methods, techniques, and technologies when they were used in studies of biogas-producing microbiomes, as well as the new information on diversity, composition, metabolism, and syntrophic interactions of biogas-producing microbiomes. We also discussed the current knowledge gaps and the research needed to further improve AD efficiency and stability.
Collapse
|
52
|
Campanaro S, Treu L, Rodriguez-R LM, Kovalovszki A, Ziels RM, Maus I, Zhu X, Kougias PG, Basile A, Luo G, Schlüter A, Konstantinidis KT, Angelidaki I. New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:25. [PMID: 32123542 PMCID: PMC7038595 DOI: 10.1186/s13068-020-01679-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microorganisms in biogas reactors are essential for degradation of organic matter and methane production. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still needed to identify the globally distributed biogas community members and serve as a reliable repository. RESULTS Here, 134 publicly available metagenomes derived from different biogas reactors were used to recover 1635 metagenome-assembled genomes (MAGs) representing different biogas bacterial and archaeal species. All genomes were estimated to be > 50% complete and nearly half ≥ 90% complete with ≤ 5% contamination. In most samples, specialized microbial communities were established, while only a few taxa were widespread among the different reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass degradation and methane production from waste biomass. An extensive evaluation of the replication index provided an estimation of the growth dynamics for microbes involved in different steps of the food chain. CONCLUSIONS The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify its composition and to adapt to the environmental conditions, including temperatures and a wide range of substrates. Our findings enhance our mechanistic understanding of the AD microbiome and substantially extend the existing repository of genomes. The established database represents a relevant resource for future studies related to this engineered ecosystem.
Collapse
Affiliation(s)
- Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Luis M. Rodriguez-R
- School of Civil & Environmental Engineering and School of Biological Sciences (Adjunct), Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512 USA
| | - Adam Kovalovszki
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ryan M. Ziels
- Department of Civil Engineering, University of British Columbia, Vancouver, BC Canada
| | - Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Panagiotis G. Kougias
- Hellenic Agricultural Organization DEMETER, Soil and Water Resources Institute, Thermi-Thessaloniki, Greece
| | - Arianna Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
| | - Andreas Schlüter
- Hellenic Agricultural Organization DEMETER, Soil and Water Resources Institute, Thermi-Thessaloniki, Greece
| | - Konstantinos T. Konstantinidis
- School of Civil & Environmental Engineering and School of Biological Sciences (Adjunct), Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512 USA
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
53
|
Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery. Molecules 2019; 24:molecules24244544. [PMID: 31842312 PMCID: PMC6943514 DOI: 10.3390/molecules24244544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022] Open
Abstract
Disturbances in anaerobic digestion (AD) negatively impact the overall reactor performance. These adverse effects have been widely investigated for methane generation. However, AD recently appeared as a potential technology to obtain volatile fatty acids (VFAs) and thus, the impact of process disturbances must be evaluated. In this sense, microbial response towards a starvation period of two weeks was investigated resulting in a conversion of organic matter into VFAs of 0.39 ± 0.03 COD-VFAs/CODin. However, the lack of feeding reduced the yield to 0.30 ± 0.02 COD-VFAs/CODin. Microbial analysis revealed that the starvation period favored the syntrophic acetate-oxidizing bacteria coupled with hydrogenotrophic methanogens. Finally, the system was fed at 9 g COD/Ld resulting in process recovery (0.39 ± 0.04 COD-VFAs/CODin). The different microbiome obtained at the end of the process was proved to be functionally redundant, highlighting the AD robustness for VFAs production.
Collapse
|
54
|
Li Z, Yao Q, Guo X, Crits-Christoph A, Mayes MA, Hervey WJ, Lebeis SL, Banfield JF, Hurst GB, Hettich RL, Pan C. Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO 2 and 13C-Methanol. Front Microbiol 2019; 10:2706. [PMID: 31866955 PMCID: PMC6908837 DOI: 10.3389/fmicb.2019.02706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022] Open
Abstract
Stable isotope probing (SIP) enables tracking the nutrient flows from isotopically labeled substrates to specific microorganisms in microbial communities. In proteomic SIP, labeled proteins synthesized by the microbial consumers of labeled substrates are identified with a shotgun proteomics approach. Here, proteomic SIP was combined with targeted metagenomic binning to reconstruct metagenome-assembled genomes (MAGs) of the microorganisms producing labeled proteins. This approach was used to track carbon flows from 13CO2 to the rhizosphere communities of Zea mays, Triticum aestivum, and Arabidopsis thaliana. Rhizosphere microorganisms that assimilated plant-derived 13C were capable of metabolic and signaling interactions with their plant hosts, as shown by their MAGs containing genes for phytohormone modulation, quorum sensing, and transport and metabolism of nutrients typical of those found in root exudates. XoxF-type methanol dehydrogenases were among the most abundant proteins identified in the rhizosphere metaproteomes. 13C-methanol proteomic SIP was used to test the hypothesis that XoxF was used to metabolize and assimilate methanol in the rhizosphere. We detected 7 13C-labeled XoxF proteins and identified methylotrophic pathways in the MAGs of 8 13C-labeled microorganisms, which supported the hypothesis. These two studies demonstrated the capability of proteomic SIP for functional characterization of active microorganisms in complex microbial communities.
Collapse
Affiliation(s)
- Zhou Li
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Qiuming Yao
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xuan Guo
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Melanie A Mayes
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - William Judson Hervey
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC, United States
| | - Sarah L Lebeis
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Chongle Pan
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,School of Computer Science and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
55
|
Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, O'Malley MA, García Martín H, Pfleger BF, Raskin L, Venturelli OS, Weissbrodt DG, Noguera DR, McMahon KD. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol 2019; 17:725-741. [PMID: 31548653 PMCID: PMC8323346 DOI: 10.1038/s41579-019-0255-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
Collapse
Affiliation(s)
- Christopher E Lawson
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - William R Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | | | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee-Knoxville, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbra, CA, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, USA
| | - Héctor García Martín
- DOE Joint Bioenergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
- Basque Center for Applied Mathematics, Bilbao, Spain
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ophelia S Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, USA
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
56
|
Chan AWY, Naphtali J, Schellhorn HE. High-throughput DNA sequencing technologies for water and wastewater analysis. Sci Prog 2019; 102:351-376. [PMID: 31818206 PMCID: PMC10424514 DOI: 10.1177/0036850419881855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional microbiological water monitoring uses culture-dependent techniques to screen indicator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-generation sequencing technologies becoming less expensive, water quality monitoring programs can now leverage the massively parallel nature of second-generation sequencing technologies for batch sample processing to simultaneously obtain compositional and functional information of culturable and as yet uncultured microbial organisms. This review provides an introduction to the technical capabilities and considerations necessary for the use of second-generation sequencing technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate the composition and functional potential of microbiomes found in water and wastewater systems.
Collapse
Affiliation(s)
| | - James Naphtali
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
57
|
Lemmel F, Maunoury-Danger F, Leyval C, Cébron A. DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils. FEMS Microbiol Ecol 2019; 95:5626340. [PMID: 31730156 DOI: 10.1093/femsec/fiz181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil organic pollutants. Although PAH-degrading bacteria are present in almost all soils, their selection and enrichment have been shown in historically high PAH contaminated soils. We can wonder if the effectiveness of PAH biodegradation and the PAH-degrading bacterial diversity differ among soils. The stable isotope probing (SIP) technique with 13C-phenanthrene (PHE) as a model PAH was used to: (i) compare for the first time a range of 10 soils with various PAH contamination levels, (ii) determine their PHE-degradation efficiency and (iii) identify the active PHE-degraders using 16S rRNA gene amplicon sequencing from 13C-labeled DNA. Surprisingly, the PHE degradation rate was not directly correlated to the initial level of total PAHs and phenanthrene in the soils, but was mostly explained by the initial abundance and richness of soil bacterial communities. A large diversity of PAH-degrading bacteria was identified for seven of the soils, with differences among soils. In the soils where the PHE degradation activities were the higher, Mycobacterium species were always the dominant active PHE degraders. A positive correlation between PHE-degradation level and the diversity of active PHE-degraders (Shannon index) supported the hypothesis that cooperation between strains led to a more efficient PAH degradation.
Collapse
Affiliation(s)
- Florian Lemmel
- Université de Lorraine, CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-les-Nancy, France
| | - Florence Maunoury-Danger
- Université de Lorraine, CNRS, LIEC UMR7360, Campus Bridoux, Avenue du général Delestraint, 57070 Metz, France
| | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-les-Nancy, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
58
|
Han W, He P, Lin Y, Shao L, Lü F. A Methanogenic Consortium Was Active and Exhibited Long-Term Survival in an Extremely Acidified Thermophilic Bioreactor. Front Microbiol 2019; 10:2757. [PMID: 32038509 PMCID: PMC6988822 DOI: 10.3389/fmicb.2019.02757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022] Open
Abstract
Acid crisis characterized by acid accumulation and/or low pH is a common reason for the failure of anaerobic digestion (AD), which is usually applied for wastewater and waste treatment. Acid-tolerant methanogens are rarely reported to be active in the artificial anaerobic digester. In this study, we observed that the thermophilic methanogenesis by a consortium in the form of flocs and not granules could still be recovered during long-term operation at acetate concentration of up to 104 mM and pH 5.5 by adjusting the pH gradually or directly to pH 5.5 or 5.0. The acclimation process involving the gradual decrease in pH could enhance the resistance of the consortium against extreme acidification. The stable isotopic signature analysis of biogas revealed that Methanosarcina, which produced methane through acetoclastic methanogenesis (AM) pathway, was the predominant methane producer when the pH was decreased gradually to 5.0. Meanwhile, the abundance of Coprothermobacter increased with a decrease in pH. Contrastingly, when directly subjected to an environment of pH 5.5 and 104 mM acetate (15.84-mM free acetic acid) after a 42-day lag phase, Methanothermobacter was the predominant methanogen. Methanothermobacter initiated methane production through the hydrogenotrophic pathway and formed syntrophic relationship/consortium with the potential acetate-oxidizing bacteria, Thermacetogenium and Coprothermobacter. Comparative metagenomic and metatranscriptomic analysis on this self-adapted and acid-tolerant consortium revealed that the genes, such as GroEL, DnaK, CheY, and flagellum-related genes (FlaA, FlgE, and FliC) from Anaerobaculum, Thermacetogenium, and Coprothermobacter were highly overexpressed in response to system acidification. Microbial self-adaptation patterns (community structure adjustment, methanogenesis pathway shift, and transcriptional regulation) of thermophilic methanogenic consortium to gradual and sudden acidification were evaluated by integrated stable isotopic signature and comparative meta-omic approaches. The study elucidated the acid-resistant mechanism of thermophilic methanogenic consortium and deepened our knowledge of the function, interaction, and microbial characteristics of Methanosarcina, Methanothermobacter, and Coprothermobacter under extreme acidic environment.
Collapse
Affiliation(s)
- Wenhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Pinjing He
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.,Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Yucheng Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Liming Shao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.,Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China.,Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| |
Collapse
|
59
|
Wang HZ, Lv XM, Yi Y, Zheng D, Gou M, Nie Y, Hu B, Nobu MK, Narihiro T, Tang YQ. Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats. Sci Rep 2019; 9:17396. [PMID: 31758023 PMCID: PMC6874663 DOI: 10.1038/s41598-019-53849-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Propionate is one of the most important intermediates of anaerobic fermentation. Its oxidation performed by syntrophic propionate-oxidizing bacteria coupled with hydrogenotrophic methanogens is considered to be a rate-limiting step for methane production. However, the current understanding of SPOB is limited due to the difficulty of pure culture isolation. In the present study, two anaerobic chemostats fed with propionate as the sole carbon source were operated at different dilution rates (0.05 d-1 and 0.15 d-1). The propionate- and acetate-oxidizing bacteria in the two methanogenic chemostats were investigated combining DNA-stable isotope probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results of DNA-SIP with 13C-propionate/acetate suggested that, Smithella, Syntrophobacter, Cryptanaerobacter, and unclassified Rhodospirillaceae may be putative propionate-oxidizing bacteria; unclassified Spirochaetaceae, unclassified Synergistaceae, unclassified Elusimicrobia, Mesotoga, and Gracilibacter may contribute to acetate oxidation; unclassified Syntrophaceae and Syntrophomonas may be butyrate oxidizers. By DNA-SIP, unclassified OTUs with 16S rRNA gene abundance higher than 62% of total Bacteria in the PL chemostat and 38% in the PH chemostat were revealed to be related to the degradation of propionate. These results suggest that a variety of uncultured bacteria contribute to propionate degradation during anaerobic digestion. The functions and metabolic characteristics of these bacteria require further investigation.
Collapse
Affiliation(s)
- Hui-Zhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Xiao-Meng Lv
- Institute of New Energy and Low-Carbon Technology, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Dan Zheng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Yong Nie
- Department of Energy and Resources, College of Engineering, Peking University, Beijing, 100871, China
| | - Bing Hu
- Department of Energy and Resources, College of Engineering, Peking University, Beijing, 100871, China
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
60
|
García‐Ruíz MJ, Castellano‐Hinojosa A, Armato C, González‐Martínez A, González‐López J, Osorio F. Biogas production and microbial community structure in a stable‐stage of a two‐stage anaerobic digester. AIChE J 2019. [DOI: 10.1002/aic.16807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María J. García‐Ruíz
- Department of Civil Engineering, Campus of Fuentenueva University of Granada Granada Spain
| | | | - Caterina Armato
- Department of Public Health and Pediatrics University of Torino Torino Italy
- Centre for Sustainable Future Technologies (CSFT@PoliTo) Istituto Italiano di Tecnologia Torino Italy
| | | | | | - Francisco Osorio
- Department of Civil Engineering, Campus of Fuentenueva University of Granada Granada Spain
| |
Collapse
|
61
|
Gao M, Guo B, Zhang L, Zhang Y, Liu Y. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. WATER RESEARCH 2019; 160:249-258. [PMID: 31152950 DOI: 10.1016/j.watres.2019.05.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Decentralized wastewater treatment represents a promising sustainable option for future wastewater management. Blackwater collected from toilets contains high concentrations of organic matter, ideal for energy recovery using anaerobic digestion. Up-flow anaerobic sludge blanket (UASB) reactors treating conventional toilet (CT, 9 L water per flush) and vacuum toilet (VT, 1 L water per flush) blackwater with increments of loadings were successfully operated to steady state in three phases. The organic loading rates were maintained at comparable levels between the two reactors. The methanisation rates were 0.23-0.29 and 0.41-0.48 gCH4-COD/gfeedCOD in the CT and VT reactors, and the COD removal rates were 72% and 89%, respectively. The enriched microbial consortia and the community dynamics under different loading phases were compared. The rank abundance distributions and alpha-diversity showed that archaeal communities were predominated by mono-enrichments in both CT and VT reactors, while bacterial communities showed lower diversity in the VT reactor. Through principal coordinates analysis (beta-diversity), clear divergences of archaeal and bacterial communities between the CT and VT reactors were revealed, and the archaeal community developed at a slower rate than the bacterial community. The enriched archaea were hydrogenotrophic methanogens, Methanolinea in the CT reactor (56.6%), and Methanogenium in the VT reactor (62.3%). The enriched bacteria were Porphyromonadaceae in both CT (15.9%) and VT (13.4%) reactors, sulfate-reducing bacteria in the CT reactor, and Fibrobacteraceae in the VT reactor (13.8%). Links between enriched consortia and ammonia stress were discussed. Isotope fraction analysis of the biogas showed a slight shift from acetoclastic methanogenesis to hydrogenotrophic methanogenesis. A closer look into the predicted metagenomic functional profiles showed agreeing results, where hydrogenotrophic methanogenesis and fhs gene abundances were higher in the VT reactor. We demonstrated that different blackwater types enriched different microbial consortia, probably due to ammonia concentrations and sulfate loadings, which should be taken into consideration for practical applications.
Collapse
Affiliation(s)
- Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
62
|
Dyksma S, Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:558-570. [PMID: 30985964 DOI: 10.1111/1758-2229.12759] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Propionate is an important intermediate in the anaerobic mineralization of organic matter. In methanogenic environments, its degradation relies on syntrophic associations between syntrophic propionate-oxidizing bacteria (SPOB) and Archaea. However, only 10 isolated species have been identified as SPOB so far. We report syntrophic propionate oxidation in thermophilic enrichments of Candidatus Syntrophosphaera thermopropionivorans, a novel representative of the candidate phylum Cloacimonetes. In enrichment culture, methane was produced from propionate, while Ca. S. thermopropionivorans contributed 63% to total bacterial cells. The draft genome of Ca. S. thermopropionivorans encodes genes for propionate oxidation via methymalonyl-CoA. Phylogenetically, Ca. S. thermopropionivorans affiliates with the uncultured Cloacimonadaceae W5 and is more distantly related (86.4% 16S rRNA gene identity) to Ca. Cloacimonas acidaminovorans. Although Ca. S. thermopropionivorans was enriched from a thermophilic biogas reactor, Ca. Syntrophosphaera was in particular associated with mesophilic anaerobic digestion systems. 16S rRNA gene amplicon sequencng and a novel genus-specific quantitative PCR assay consistently identified Ca. Syntrophosphaera/Cloacimonadaceae W5 in 9 of 12 tested full-scale biogas reactors thereby outnumbering other SPOB such as Pelotomaculum, Smithella and Syntrophobacter. Taken together the ubiquity and abundance of Ca. Syntrophosphaera, those SPOB might be key players for syntrophic propionate metabolism that have been overlooked before.
Collapse
Affiliation(s)
- Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| |
Collapse
|
63
|
Liu YF, Qi ZZ, Shou LB, Liu JF, Yang SZ, Gu JD, Mu BZ. Anaerobic hydrocarbon degradation in candidate phylum 'Atribacteria' (JS1) inferred from genomics. ISME JOURNAL 2019; 13:2377-2390. [PMID: 31171858 PMCID: PMC6776118 DOI: 10.1038/s41396-019-0448-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
The hydrocarbon-enriched environments, such as oil reservoirs and oil sands tailings ponds, contain a broad diversity of uncultured microorganisms. Despite being one of the few prokaryotic lineages that is consistently detected in both production water from oil reservoirs and stable hydrocarbon-degrading enrichment cultures originated from oil reservoirs, the physiological and ecological roles of candidate phylum “Atribacteria” (OP9/JS1) are not known in deep subsurface environments. Here, we report the expanded metabolic capabilities of Atribacteria as inferred from genomic reconstructions. Seventeen newly assembled medium-to-high-quality metagenomic assembly genomes (MAGs) were obtained either from co-assembly of two metagenomes from an Alaska North Slope oil reservoir or from previous studies of metagenomes coming from different environments. These MAGs comprise three currently known genus-level lineages and four novel genus-level groups of OP9 and JS1, which expands the genomic coverage of the major lineages within the candidate phylum Atribacteria. Genes involved in anaerobic hydrocarbon degradation were found in seven MAGs associated with hydrocarbon-enriched environments, and suggest that some Atribacteria could ferment short-chain n-alkanes into fatty acid while conserving energy. This study expands predicted metabolic capabilities of Atribacteria (JS1) and suggests that they are mediating a key role in subsurface carbon cycling.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Zhen-Zhen Qi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Li-Bin Shou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, P.R. China.
| |
Collapse
|
64
|
Acetotrophic Activity Facilitates Methanogenesis from LCFA at Low Temperatures: Screening from Mesophilic Inocula. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2019; 2019:1751783. [PMID: 31191117 PMCID: PMC6525847 DOI: 10.1155/2019/1751783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/14/2019] [Accepted: 04/03/2019] [Indexed: 12/04/2022]
Abstract
The inoculum source plays a crucial role in the anaerobic treatment of wastewaters. Lipids are present in various wastewaters and have a high methanogenic potential, but their hydrolysis results in the production of long chain fatty acids (LCFAs) that are inhibitory to anaerobic microorganisms. Screening of inoculum for the anaerobic treatment of LCFA-containing wastewaters has been performed at mesophilic and thermophilic conditions. However, an evaluation of inocula for producing methane from LCFA-containing wastewater has not yet been conducted at low temperatures and needs to be undertaken. In this study, three inocula (one granular sludge and two municipal digester sludges) were assessed for methane production from LCFA-containing synthetic dairy wastewater (SDW) at low temperatures (10 and 20°C). A methane yield (based on mL-CH4/g-CODadded) of 86-65% with acetate and 45-20% with SDW was achieved within 10 days using unacclimated granular sludge, whereas the municipal digester sludges produced methane only at 20°C but not at 10°C even after 200 days of incubation. The acetotrophic activity in the inoculum was found to be crucial for methane production from LCFA at low temperatures, highlighting the role of Methanosaeta (acetoclastic archaea) at low temperatures. The presence of bacterial taxa from the family Syntrophaceae (Syntrophus and uncultured taxa) in the inoculum was found to be important for methane production from SDW at 10°C. This study suggests the evaluation of acetotrophic activity and the initial microbial community characteristics by high-throughput amplicon sequencing for selecting the inoculum for producing methane at low temperatures (up to 10°C) from lipid-containing wastewaters.
Collapse
|
65
|
Lv Z, Liang J, Chen X, Chen Z, Jiang J, Loake GJ. Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13275-13285. [PMID: 30895553 DOI: 10.1007/s11356-019-04703-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate how the microbial community structure adapts during the start-up phase and how the 13C fractionation of biogas reflects the microbial population dynamics in two parallel swine manure-fed anaerobic digesters. Two swine manure-fed reactors for the start-up of continuously stirred tank reactors at mesophilic condition were evaluated. Changes in community structure were monitored using 16S rRNA high-throughput sequencing to measure the abundance of fermenting bacteria and methanogens. Digesters with relatively stable Methanosarcinaceae started up successfully and contained high gas production and low levels of propionate. In contrast, the digester that experienced a difficult start-up period had reduced Methanosarcinaceae along with accumulated propionate and low gas production. Specific gas production, specific methane production, and 13C fractionation of biogas were influenced significantly by Methanosarcinaceae, Methanobacteriaceae, and Clostridiaceae, indicating that the 13C fractionation of biogas had significant potential to reflect microbial population changes and digester performance during the start-up period.
Collapse
Affiliation(s)
- Zuopeng Lv
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China.
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China.
| | - Jiazhuo Liang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China
| | - Xin Chen
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China
| | - Gary J Loake
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China.
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JH, UK.
| |
Collapse
|
66
|
Zhu X, Campanaro S, Treu L, Kougias PG, Angelidaki I. Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. WATER RESEARCH 2019; 151:271-279. [PMID: 30612083 DOI: 10.1016/j.watres.2018.12.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 05/10/2023]
Abstract
In typical anaerobic digestion (AD) systems, the microbial functional assertion is hampered by synchronised versatile metabolism required for heterogeneous substrates degradation. Thus, the intricate methanogenic process from organic compounds remains an enigma after decades of empirical operation. In this study, simplified AD microbial communities were obtained with substrate specifications and continuous reactor operation. Genome-centric metagenomic approach was followed to holistically investigate the metabolic pathways of the AD and the microbial synergistic networks. In total, 63 metagenome assembled genomes (MAGs) were assembled from 8 metagenomes acquired in specific methanogenic niches. The metabolic pathways were reconstructed from the annotated genes and their dynamicity under experimental conditions. The results show that the methanogenic niches nourish unique metabolism beyond current knowledge acquired from cultivation-based methods. A novel glucose mineralization model without acetate formation was proposed and asserted in a pair of syntrophs: Clostridiaceae sp. and Methanoculleus thermophilus. Moreover, the catabolic pathway was elucidated in uncharacterized syntrophic acetate oxidizers, Synergistaceae spp. A remarkable evolutionary insight is the discovery that electron transport and energy conservation mechanisms impose selective pressure on syntrophic partners. Overall, the functional roles of the individual microbes tightly rely on the catabolic pathways and cannot always be physiologically defined in accordance with conventional four-step AD concept. The substrate-specific systems provided a traceable microbial community to dissecting the AD process. The genome-centric metagenomics successfully constructed genomes of microbes that have not been previously isolated and illustrated metabolic pathways that beyond the current knowledge of AD process. This study provides new perspectives to unravel the AD microbial ecology and suggests more attention should be paid on uncharacterized metabolism specifically harboured by AD microbial communities.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padova, Italy
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padova, Italy
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
67
|
Lee TH, Tsang DCW, Chen WH, Verpoort F, Sheu YT, Kao CM. Application of an emulsified polycolloid substrate biobarrier to remediate petroleum-hydrocarbon contaminated groundwater. CHEMOSPHERE 2019; 219:444-455. [PMID: 30551111 DOI: 10.1016/j.chemosphere.2018.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Emulsified polycolloid substrate (EPS) was developed and applied in situ to form a biobarrier for the containment and enhanced bioremediation of a petroleum-hydrocarbon plume. EPS had a negative zeta potential (-35.7 mv), which promoted its even distribution after injection. Batch and column experiments were performed to evaluate the effectiveness of EPS on toluene containment and biodegradation. The EPS-to-water partition coefficient for toluene (target compound) was 943. Thus, toluene had a significant sorption affinity to EPS, which caused reduced toluene concentration in water phase in the EPS/water system. Groundwater containing toluene (18 mg/L) was pumped into the three-column system at a flow rate of 0.28 mL/min, while EPS was injected into the second column to form a biobarrier. A significant reduction of toluene concentration to 0.1 mg/L was observed immediately after EPS injection. This indicates that EPS could effectively contain toluene plume and prevent its further migration to farther downgradient zone. Approximately 99% of toluene was removed after 296 PVs of operation via sorption, natural attenuation, and EPS-enhanced biodegradation. Increase in total organic carbon and bacteria were also observed after EPS supplement. Supplement of EPS resulted in a growth of petroleum-hydrocarbon degrading bacteria, which enhanced the toluene biodegradation.
Collapse
Affiliation(s)
- T H Lee
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - D C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - W H Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - F Verpoort
- Department of Applied Chemistry, Wuhan University of Technology, Wuhan, China
| | - Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
68
|
Fischer MA, Güllert S, Refai S, Künzel S, Deppenmeier U, Streit WR, Schmitz RA. Long-term investigation of microbial community composition and transcription patterns in a biogas plant undergoing ammonia crisis. Microb Biotechnol 2019; 12:305-323. [PMID: 30381904 PMCID: PMC6390037 DOI: 10.1111/1751-7915.13313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 02/01/2023] Open
Abstract
Ammonia caused disturbance of biogas production is one of the most frequent incidents in regular operation of biogas reactors. This study provides a detailed insight into the microbial community of a mesophilic, full-scale biogas reactor (477 kWh h-1 ) fed with maize silage, dried poultry manure and cow manure undergoing initial process disturbance by increased ammonia concentration. Over a time period of 587 days, the microbial community of the reactor was regularly monitored on a monthly basis by high-throughput amplicon sequencing of the archaeal and bacterial 16S rRNA genes. During this sampling period, the total ammonia concentrations varied between 2.7 and 5.8 g l-1 [NH4 + -N]. To gain further inside into the active metabolic pathways, for selected time points metatranscriptomic shotgun analysis was performed allowing the quantification of marker genes for methanogenesis, hydrolysis and syntrophic interactions. The results obtained demonstrated a microbial community typical for a mesophilic biogas plant. However in response to the observed changing process conditions (e.g. increasing NH4 + levels, changing feedstock composition), the microbial community reacted highly flexible by changing and adapting the community composition. The Methanosarcina-dominated archaeal community was shifted to a Methanomicrobiales-dominated archaeal community in the presence of increased ammonia conditions. A similar trend as in the phylogenetic composition was observed in the transcription activity of genes coding for enzymes involved in acetoclastic methanogenesis and syntrophic acetate oxidations (Codh/Acs and Fthfs). In accordance, Clostridia simultaneously increased under elevated ammonia concentrations in abundance and were identified as the primary syntrophic interaction partner with the now Methanomicrobiales-dominated archaeal community. In conclusion, overall stable process performance was maintained during increased ammonia concentration in the studied reactor based on the microbial communities' ability to flexibly respond by reorganizing the community composition while remaining functionally stable.
Collapse
MESH Headings
- Ammonia/metabolism
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biofuels/microbiology
- Bioreactors/microbiology
- Cluster Analysis
- Culture Media/chemistry
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Longitudinal Studies
- Microbiota
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Martin Alexander Fischer
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
| | - Simon Güllert
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
- Institute of Microbiology & BiotechnologyUniversity HamburgBiozentrum Klein FlottbekHamburgGermany
| | - Sarah Refai
- Institute of Microbiology & BiotechnologyUniversity BonnMeckenheimer Allee 16853115BonnGermany
| | - Sven Künzel
- Max‐Planck‐Institute of Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
| | - Uwe Deppenmeier
- Institute of Microbiology & BiotechnologyUniversity BonnMeckenheimer Allee 16853115BonnGermany
| | - Wolfgang R. Streit
- Institute of Microbiology & BiotechnologyUniversity HamburgBiozentrum Klein FlottbekHamburgGermany
| | - Ruth Anne Schmitz
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
| |
Collapse
|
69
|
Lv Z, Leite AF, Harms H, Glaser K, Liebetrau J, Kleinsteuber S, Nikolausz M. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition. Appl Microbiol Biotechnol 2018; 103:519-533. [DOI: 10.1007/s00253-018-9444-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
70
|
Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. MICROBIOME 2018; 6:169. [PMID: 30231929 PMCID: PMC6147125 DOI: 10.1186/s40168-018-0546-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/31/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The expected increase in global surface temperature due to climate change may have a tremendous effect on the structure and function of the anaerobic food web in flooded rice field soil. Here, we used the metatranscriptomic analysis of total RNA to gain a system-level understanding of this temperature effect on the methanogenic food web. RESULTS Mesophilic (30 °C) and thermophilic (45 °C) food web communities had a modular structure. Family-specific rRNA dynamics indicated that each network module represents a particular function within the food webs. Temperature had a differential effect on all the functional activities, including polymer hydrolysis, syntrophic oxidation of key intermediates, and methanogenesis. This was further evidenced by the temporal expression patterns of total bacterial and archaeal mRNA and of transcripts encoding carbohydrate-active enzymes (CAZymes). At 30 °C, various bacterial phyla contributed to polymer hydrolysis, with Firmicutes decreasing and non-Firmicutes (e.g., Bacteroidetes, Ignavibacteriae) increasing with incubation time. At 45 °C, CAZyme expression was solely dominated by the Firmicutes but, depending on polymer and incubation time, varied on family level. The structural and functional community dynamics corresponded well to process measurements (acetate, propionate, methane). At both temperatures, a major change in food web functionality was linked to the transition from the early to late stage. The mesophilic food web was characterized by gradual polymer breakdown that governed acetoclastic methanogenesis (Methanosarcinaceae) and, with polymer hydrolysis becoming the rate-limiting step, syntrophic propionate oxidation (Christensenellaceae, Peptococcaceae). The thermophilic food web had two activity stages characterized first by polymer hydrolysis and followed by syntrophic oxidation of acetate (Thermoanaerobacteraceae, Heliobacteriaceae, clade OPB54). Hydrogenotrophic Methanocellaceae were the syntrophic methanogen partner, but their population structure differed between the temperatures. Thermophilic temperature promoted proliferation of a new Methanocella ecotype. CONCLUSIONS Temperature had a differential effect on the structural and functional continuum in which the methanogenic food web operates. This temperature-induced change in food web functionality may not only be a near-future scenario for rice paddies but also for natural wetlands in the tropics and subtropics.
Collapse
Affiliation(s)
- Jingjing Peng
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Carl-Eric Wegner
- Institute of Ecology, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Str. 159, 07749, Jena, Germany
| | - Qicheng Bei
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Pengfei Liu
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Werner Liesack
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
71
|
Campanaro S, Treu L, Kougias PG, Luo G, Angelidaki I. Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. WATER RESEARCH 2018; 140:123-134. [PMID: 29704757 DOI: 10.1016/j.watres.2018.04.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
The aim of this work was to elucidate the microbial ecology in twelve mesophilic and thermophilic full-scale biogas plants using a genome-centric metagenomic approach. In this study both biogas plants treating manure and those treating sludge from waste water treatment plants were considered. The identification of 132 Metagenome-Assembled Genomes (MAGs) and analysis of their abundance profile in different samples allowed the identification of the most abundant core members of the anaerobic digestion microbiome. Canonical correspondence analysis was used to determine the influence of biotic and environmental factors on MAGs abundance and to investigate the methanogenic performance of the biogas plants. Prediction of the functional properties of MAGs was obtained analyzing their KEGG pathways and their carbohydrate active domains. Network analysis allowed investigation of species-species associations and shed light on syntrophic interactions between members belonging to the anaerobic digestion dark matter (phylum Fermentibacteria). By stratifying and comparing different levels of information, it was predicted that some MAGs have a crucial role in the manure-supplemented thermophilic biogas plants and it was highlighted the importance of the glycine cleavage system in complementing the "truncated" Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
72
|
Gonzalez-Fernandez C, Barreiro-Vescovo S, de Godos I, Fernandez M, Zouhayr A, Ballesteros M. Biochemical methane potential of microalgae biomass using different microbial inocula. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:184. [PMID: 29988471 PMCID: PMC6025826 DOI: 10.1186/s13068-018-1188-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Microalgae biomass is regarded as a potential feedstock for bioenergy purposes through anaerobic digestion (AD). Even though AD is a well-proven technology, the use of new feedstocks requires in-depth studies. A lot of research has been conducted assessing methane yield without paying attention to the anaerobic microbiome and their activities. For such a goal, the present investigation was designed to link methane yield to those two later sludge characteristics. In this sense, different anaerobic sources were tested, namely adapted to microalgae biomass and adapted to sewage sludge. RESULTS Despite the registered differences for the anaerobic microbiome analysis and specific methane activities towards model substrates, sludge adapted to digest sewage sludge did not affect the methane yield of Chlorella sorokiniana and Scenedesmus sp. Opposite to that, sludge samples adapted to digest microalgae exhibited a concomitant increase in methane yield together with increasing digestion temperatures. More specifically, the values attained were 63.4 ± 1.5, 79.2 ± 3.1 and 108.2 ± 1.9 mL CH4 g COD in-1 for psychrophilic, mesophilic and thermophilic digestions, respectively. While psycro- and mesophilic digestion supported similar yields (most probably linked to their anaerobic microbiome resemblance), the values attained for thermophilic digestion evidenced the usefulness of having a highly specific microbiome. The relative abundance of Firmicutes, particularly Clostridia, and Proteobacteria together with an important abundance of hydrogenotrophic methanogens was highlighted in this inoculum. CONCLUSION Overall, this study showed that working with tailored anaerobic microbiome could help avoiding pretreatments devoted to methane yield enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | - Mercedes Ballesteros
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Biofuels Unit, CIEMAT, Madrid, Spain
| |
Collapse
|
73
|
Schmidt A, Sturm G, Lapp CJ, Siebert D, Saravia F, Horn H, Ravi PP, Lemmer A, Gescher J. Development of a production chain from vegetable biowaste to platform chemicals. Microb Cell Fact 2018; 17:90. [PMID: 29898726 PMCID: PMC6001048 DOI: 10.1186/s12934-018-0937-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A future bioeconomy relies on the development of technologies to convert waste into valuable compounds. We present here an attempt to design a biotechnological cascade for the conversion of vegetable waste into acetoin and electrical energy. RESULTS A vegetable waste dark fermentation effluent containing mainly acetate, butyrate and propionate was oxidized in a bioelectrochemical system. The achieved average current at a constant anode potential of 0 mV against standard hydrogen electrode was 177.5 ± 52.5 µA/cm2. During this step, acetate and butyrate were removed from the effluent while propionate was the major remaining component of the total organic carbon content comprising on average 75.6%. The key players with regard to carbon oxidation and electrode reduction were revealed using amplicon sequencing and metatranscriptomic analysis. Using nanofiltration, it was possible to concentrate the propionate in the effluent. The effluent was revealed to be a suitable medium for biotechnological production strains. As a proof of principle, the propionate in the effluent of the bioelectrochemical system was converted into the platform chemical acetoin with a carbon recovery of 86%. CONCLUSIONS To the best of our knowledge this is the first report on a full biotechnological production chain leading from vegetable waste to the production of a single valuable platform chemical that integrates carbon elimination steps leading to the production of the valuable side product electrical energy.
Collapse
Affiliation(s)
- Annemarie Schmidt
- Department Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gunnar Sturm
- Department Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christian Jonas Lapp
- Department Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Siebert
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Florencia Saravia
- Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Institut, Karlsruhe, Germany
| | - Harald Horn
- Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Institut, Karlsruhe, Germany
| | - Padma Priya Ravi
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart, Germany
| | - Andreas Lemmer
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart, Germany
| | - Johannes Gescher
- Department Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany. .,Institute for Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
74
|
Fontana A, Campanaro S, Treu L, Kougias PG, Cappa F, Morelli L, Angelidaki I. Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. WATER RESEARCH 2018; 134:181-191. [PMID: 29427960 DOI: 10.1016/j.watres.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 05/25/2023]
Abstract
The present research is the first comprehensive study regarding the thermophilic anaerobic degradation of cheese wastewater, which combines the evaluation of different reactor configurations (i.e. single and two-stage continuous stirred tank reactors) on the process efficiency and the in-depth characterization of the microbial community structure using genome-centric metagenomics. Both reactor configurations showed acidification problems under the tested organic loading rates (OLRs) of 3.6 and 2.4 g COD/L-reactor day and the hydraulic retention time (HRT) of 15 days. However, the two-stage design reached a methane yield equal to 95% of the theoretical value, in contrast with the single stage configuration, which reached a maximum of 33% of the theoretical methane yield. The metagenomic analysis identified 22 new population genomes and revealed that the microbial compositions between the two configurations were remarkably different, demonstrating a higher methanogenic biodiversity in the two-stage configuration. In fact, the acidogenic reactor of the serial configuration was almost solely composed by the lactose degrader Bifidobacterium crudilactis UC0001. The predictive functional analyses of the main population genomes highlighted specific metabolic pathways responsible for the AD process and the mechanisms of main intermediates production. Particularly, the acetate accumulation experienced by the single stage configuration was mainly correlated to the low abundant syntrophic acetate oxidizer Tepidanaerobacter acetatoxydans UC0018 and to the absence of aceticlastic methanogens.
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy; Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Fabrizio Cappa
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
75
|
Conductive Particles Enable Syntrophic Acetate Oxidation between Geobacter and Methanosarcina from Coastal Sediments. mBio 2018; 9:mBio.00226-18. [PMID: 29717006 PMCID: PMC5930305 DOI: 10.1128/mbio.00226-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Coastal sediments are rich in conductive particles, possibly affecting microbial processes for which acetate is a central intermediate. In the methanogenic zone, acetate is consumed by methanogens and/or syntrophic acetate-oxidizing (SAO) consortia. SAO consortia live under extreme thermodynamic pressure, and their survival depends on successful partnership. Here, we demonstrate that conductive particles enable the partnership between SAO bacteria (i.e., Geobacter spp.) and methanogens (Methanosarcina spp.) from the coastal sediments of the Bothnian Bay of the Baltic Sea. Baltic methanogenic sediments were rich in conductive minerals, had an apparent isotopic fractionation characteristic of CO2-reductive methanogenesis, and were inhabited by Geobacter and Methanosarcina. As long as conductive particles were delivered, Geobacter and Methanosarcina persisted, whereas exclusion of conductive particles led to the extinction of Geobacter. Baltic Geobacter did not establish a direct electric contact with Methanosarcina, necessitating conductive particles as electrical conduits. Within SAO consortia, Geobacter was an efficient [13C]acetate utilizer, accounting for 82% of the assimilation and 27% of the breakdown of acetate. Geobacter benefits from the association with the methanogen, because in the absence of an electron acceptor it can use Methanosarcina as a terminal electron sink. Consequently, inhibition of methanogenesis constrained the SAO activity of Geobacter as well. A potential benefit for Methanosarcina partnering with Geobacter is that together they competitively exclude acetoclastic methanogens like Methanothrix from an environment rich in conductive particles. Conductive particle-mediated SAO could explain the abundance of acetate oxidizers like Geobacter in the methanogenic zone of sediments where no electron acceptors other than CO2 are available. Acetate-oxidizing bacteria are known to thrive in mutualistic consortia in which H2 or formate is shuttled to a methane-producing Archaea partner. Here, we discovered that such bacteria could instead transfer electrons via conductive minerals. Mineral SAO (syntrophic acetate oxidation) could be a vital pathway for CO2-reductive methanogenesis in the environment, especially in sediments rich in conductive minerals. Mineral-facilitated SAO is therefore of potential importance for both iron and methane cycles in sediments and soils. Additionally, our observations imply that agricultural runoff or amendments with conductive chars could trigger a significant increase in methane emissions.
Collapse
|
76
|
Zhao J, Westerholm M, Qiao W, Yin D, Bi S, Jiang M, Dong R. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure. BIORESOURCE TECHNOLOGY 2018; 256:44-52. [PMID: 29428613 DOI: 10.1016/j.biortech.2018.01.150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature.
Collapse
Affiliation(s)
- Jing Zhao
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China.
| | - Dongmin Yin
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Shaojie Bi
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Mengmeng Jiang
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| |
Collapse
|
77
|
Abstract
Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering.
Collapse
|
78
|
Amha YM, Anwar MZ, Brower A, Jacobsen CS, Stadler LB, Webster TM, Smith AL. Inhibition of anaerobic digestion processes: Applications of molecular tools. BIORESOURCE TECHNOLOGY 2018; 247:999-1014. [PMID: 28918349 DOI: 10.1016/j.biortech.2017.08.210] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 05/25/2023]
Abstract
Inhibition of anaerobic digestion (AD) due to perturbation caused by substrate composition and/or operating conditions can significantly reduce performance. Such perturbations could be limited by elucidating microbial community response to inhibitors and devising strategies to increase community resilience. To this end, advanced molecular methods are increasingly being applied to study the AD microbiome, a diverse community of microbial populations with complex interactions. This literature review of AD inhibition studies indicates that inhibitory concentrations are highly variable, likely stemming from differences in community structure or activity profile and previous exposure to inhibitors. More recent molecular methods such as 'omics' tools, substrate mapping, and real-time sequencing are helping to unravel the complexity of AD inhibition by elucidating physiological and ecological significance of key microbial populations. The AD community must strive towards developing predictive abilities to avoid system failure (e.g., real-time tracking of an indicator species) to improve resilience of AD systems.
Collapse
Affiliation(s)
- Yamrot M Amha
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Muhammad Zohaib Anwar
- mBioInform ApS, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark; Department of Environmental Sciences, Aarhus University, Frederiksborgvej, 399, 4000 Roskilde, Denmark
| | - Andrew Brower
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, TX 77005, USA
| | - Carsten S Jacobsen
- mBioInform ApS, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark; Department of Environmental Sciences, Aarhus University, Frederiksborgvej, 399, 4000 Roskilde, Denmark
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, TX 77005, USA
| | - Tara M Webster
- Soil and Crop Sciences Section, Cornell University, 306 Tower Road, Ithaca, NY 14853, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
79
|
Mulat DG, Huerta SG, Kalyani D, Horn SJ. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:19. [PMID: 29422947 PMCID: PMC5787918 DOI: 10.1186/s13068-018-1025-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/13/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). RESULTS Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. CONCLUSION Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Silvia Greses Huerta
- Department of Chemical Engineering, University of Valencia, P.O.Box 46100, Valencia, Spain
| | - Dayanand Kalyani
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| |
Collapse
|
80
|
Ziels RM, Sousa DZ, Stensel HD, Beck DAC. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies. THE ISME JOURNAL 2018; 12:112-123. [PMID: 28895946 PMCID: PMC5737908 DOI: 10.1038/ismej.2017.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
Fats, oils and greases (FOG) are energy-dense wastes that can be added to anaerobic digesters to substantially increase biomethane recovery via their conversion through long-chain fatty acids (LCFAs). However, a better understanding of the ecophysiology of syntrophic LCFA-degrading microbial communities in anaerobic digesters is needed to develop operating strategies that mitigate inhibitory LCFA accumulation from FOG. In this research, DNA stable isotope probing (SIP) was coupled with metagenomic sequencing for a genome-centric comparison of oleate (C18:1)-degrading populations in two anaerobic codigesters operated with either a pulse feeding or continuous-feeding strategy. The pulse-fed codigester microcosms converted oleate into methane at over 20% higher rates than the continuous-fed codigester microcosms. Differential coverage binning was demonstrated for the first time to recover population genome bins (GBs) from DNA-SIP metagenomes. About 70% of the 13C-enriched GBs were taxonomically assigned to the Syntrophomonas genus, thus substantiating the importance of Syntrophomonas species to LCFA degradation in anaerobic digesters. Phylogenetic comparisons of 13C-enriched GBs showed that phylogenetically distinct Syntrophomonas GBs were unique to each codigester. Overall, these results suggest that syntrophic populations in anaerobic digesters can have different adaptive capacities, and that selection for divergent populations may be achieved by adjusting reactor operating conditions to maximize biomethane recovery.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - H David Stensel
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - David A C Beck
- eScience Institute, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
81
|
Westerholm M, Müller B, Singh A, Karlsson Lindsjö O, Schnürer A. Detection of novel syntrophic acetate-oxidizing bacteria from biogas processes by continuous acetate enrichment approaches. Microb Biotechnol 2017; 11:680-693. [PMID: 29239113 PMCID: PMC6011928 DOI: 10.1111/1751-7915.13035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022] Open
Abstract
To enrich syntrophic acetate‐oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)‐dominated systems and continuously supplied with acetate (0.4 or 7.5 g l−1) at high‐ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64–69% and effluent acetate level of 0.4–1.0 g l−1 were recorded in chemostats fed high acetate. Low methane production in the low‐acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high‐acetate chemostats. In line with the restricted methane production in the low‐acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Bettina Müller
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Abhijeet Singh
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Oskar Karlsson Lindsjö
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| | - Anna Schnürer
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| |
Collapse
|
82
|
Anaerobic digestion of pig manure supernatant at high ammonia concentrations characterized by high abundances of Methanosaeta and non-euryarchaeotal archaea. Sci Rep 2017; 7:15077. [PMID: 29118356 PMCID: PMC5678120 DOI: 10.1038/s41598-017-14527-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of ammonium and temperature on methane production in high rate upflow anaerobic sludge bed reactors treating pig manure supernatant. We operated four reactors at two ammonium concentrations (‘low’ at 1.9, ‘high’ at 3.7 g L−1, termed LA and HA reactors, respectively) and at variable temperatures over 358 days. Archaeal and bacterial communities were characterized by Illumina sequencing of 16S rRNA amplicons. Ammonium was a major selective factor for bacterial and archaeal community structure. After ~200 days of adaptation to high ammonium levels, acetate and propionate removal and methane production improved substantially in HA reactors. Aceticlastic Methanosaeta was abundant and positively correlated to methane yield in the HA reactors, whereas Methanosarcina was more abundant in LA reactors. Furthermore, a group of monophyletic OTUs that was related to Thaumarchaeota in phylogenetic analysis was highly abundant in the archaeal communities, particularly in the HA reactors. The most abundant bacterial OTU in LA reactors, representing Syntrophomonadaceae, was also positively correlated to methane yield in the HA reactors, indicating its importance in methane production under ammonia stress. In conclusion, efficient methane production, involving aceticlastic methanogenesis by Methanosaeta took place in the reactors at free ammonia concentrations as high as 1 g L−1.
Collapse
|
83
|
Amha YM, Sinha P, Lagman J, Gregori M, Smith AL. Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste. WATER RESEARCH 2017; 123:277-289. [PMID: 28672212 DOI: 10.1016/j.watres.2017.06.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Despite growing interest in co-digestion and demonstrated process improvements (e.g., enhanced stability and biogas production), few studies have evaluated how co-digestion impacts the anaerobic digestion (AD) microbiome. Three sequential bench-scale respirometry experiments were conducted at thermophilic temperature (50 °C) with various combinations of primary sludge (PS); thickened waste activated sludge (TWAS); fats, oils, and grease (FOG); and food waste (FW). Two additional runs were then performed to evaluate microbial inhibition at higher organic fractions of FOG (30-60% volatile solids loading (VSL; v/v)). Co-digestion of PS, TWAS, FOG, and FW resulted in a 26% increase in methane production relative to digestion of PS and TWAS. A substantial lag time was observed in biogas production for vessels with FOG addition that decreased by more than half in later runs, likely due to adaptation of the microbial community. 30% FOG with 10% FW showed the highest increase in methane production, increasing 53% compared to digestion of PS and TWAS. FOG addition above 50% VSL was found to be inhibitory with and without FW addition and resulted in volatile fatty acid (VFA) accumulation. Methane production was linked with high relative activity and abundance of syntrophic fatty-acid oxidizers alongside hydrogenotrophic methanogens, signaling the importance of interspecies interactions in AD. Specifically, relative activity of Syntrophomonas was significantly correlated with methane production. Further, methane production increased over subsequent runs along with methyl coenzyme M reductase (mcrA) gene expression, a functional gene in methanogens, suggesting temporal adaptation of the microbial community to co-digestion substrate mixtures. The study demonstrated the benefits of co-digestion in terms of performance enhancement and enrichment of key active microbial populations.
Collapse
Affiliation(s)
- Yamrot M Amha
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Pooja Sinha
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Jewls Lagman
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Matt Gregori
- Divert, Inc., 23 Bradford Street, Concord, MA 01742, USA; Southern California Gas Company, 555 West Fifth Street, Los Angeles, CA 90013, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
84
|
Zhao X, Liu J, Liu J, Yang F, Zhu W, Yuan X, Hu Y, Cui Z, Wang X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. BIORESOURCE TECHNOLOGY 2017; 241:349-359. [PMID: 28577484 DOI: 10.1016/j.biortech.2017.03.183] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Silage processing has a crucial positive impact on the methane yield of anaerobic treated substrates. Changes in the characteristics of switchgrass after ensiling with different additives and their effects on methane production and microbial community changes during anaerobic digestion were investigated. After ensiling (CK), methane yield was increased by 33.59% relative to that of fresh switchgrass (FS). In comparison with the CK treatment, methane production was improved by 17.41%, 13.08% and 8.72% in response to ensiling with LBr+X, LBr and X, respectively. A modified Gompertz model predicted that the optimum treatment was LBr+X, with a potential cumulative methane yield of 178.31mL/g total solids (TS) and a maximum biogas production rate of 44.39mL/g TS·d. Firmicutes and Bacteroidetes were the predominant bacteria in FS and silage switchgrass; however, the switchgrass treated with LBr+X was rich in Synergistetes, which was crucial for methane production.
Collapse
Affiliation(s)
- Xiaoling Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinhuan Liu
- Daxing District Bureau of Statistics of Beijing Municipality, Beijing 102600, China
| | - Jingjing Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fuyu Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanbin Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuegao Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
85
|
Mulat DG, Mosbæk F, Ward AJ, Polag D, Greule M, Keppler F, Nielsen JL, Feilberg A. Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017. [PMID: 28623019 DOI: 10.1016/j.wasman.2017.05.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological reduction of CO2 into CH4 by exogenous addition of H2 is a promising technology for upgrading biogas into higher CH4 content. The aim of this work was to study the feasibility of exogenous H2 addition for an in situ biogas upgrading through biological conversion of the biogas CO2 into CH4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H2 into the headspace resulted in a completely consumption of CO2 and a concomitant increase in CH4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH4 content. Excess H2 was also supplied to evaluate its effect on overall process performance. The results show that excess H2 addition resulted in accumulation of H2, depletion of CO2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H2 supply led to an increase in dissolved H2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO2 and H2. The inhibition was a temporary effect and acetate degradation resumed when the excess H2 was removed as well as in the presence of stoichiometric amount of H2 and CO2. This inhibition mechanism underlines the importance of carefully regulating the H2 addition rate and gas retention time to the CO2 production rate, H2-uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH4 content without the accumulation of acetate and other VFA.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark
| | - Freya Mosbæk
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Alastair James Ward
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark
| | - Daniela Polag
- Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
| | - Markus Greule
- Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
| | - Frank Keppler
- Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Anders Feilberg
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark.
| |
Collapse
|
86
|
Investigation on the anaerobic co-digestion of food waste with sewage sludge. Appl Microbiol Biotechnol 2017; 101:7755-7766. [DOI: 10.1007/s00253-017-8499-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
|
87
|
Kirkegaard RH, McIlroy SJ, Kristensen JM, Nierychlo M, Karst SM, Dueholm MS, Albertsen M, Nielsen PH. The impact of immigration on microbial community composition in full-scale anaerobic digesters. Sci Rep 2017; 7:9343. [PMID: 28839166 PMCID: PMC5571154 DOI: 10.1038/s41598-017-09303-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/25/2017] [Indexed: 01/04/2023] Open
Abstract
Anaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. Hence, we investigated microbial communities of thirty-two full-scale anaerobic digesters over a six-year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider immigration will interfere with correlation analysis and give an inaccurate picture of the growing microbial community. Furthermore, several abundant OTUs could not be classified to genus level with commonly applied taxonomies, making inference of their function unreliable and comparison to other studies problematic. As such, the existing MiDAS taxonomy was updated to include these abundant phylotypes. The communities of individual digesters surveyed were remarkably similar - with only 300 OTUs representing 80% of the total reads across all plants, and 15% of these identified as non-growing and possibly inactive immigrating microbes. By identifying abundant and growing taxa in anaerobic digestion, this study paves the way for targeted characterisation of the process-important organisms towards an in-depth understanding of the microbiology.
Collapse
Affiliation(s)
- Rasmus H Kirkegaard
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Simon J McIlroy
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Jannie M Kristensen
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Marta Nierychlo
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Søren M Karst
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Morten S Dueholm
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Mads Albertsen
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Per H Nielsen
- Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark.
| |
Collapse
|
88
|
Kouzuma A, Tsutsumi M, Ishii S, Ueno Y, Abe T, Watanabe K. Non-autotrophic methanogens dominate in anaerobic digesters. Sci Rep 2017; 7:1510. [PMID: 28473726 PMCID: PMC5431450 DOI: 10.1038/s41598-017-01752-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Anaerobic digesters are man-made habitats for fermentative and methanogenic microbes, and are characterized by extremely high concentrations of organics. However, little is known about how microbes adapt to such habitats. In the present study, we report phylogenetic, metagenomic, and metatranscriptomic analyses of microbiomes in thermophilic packed-bed digesters fed acetate as the major substrate, and we have shown that acetoclastic and hydrogenotrophic methanogens that utilize acetate as a carbon source dominate there. Deep sequencing and precise binning of the metagenomes reconstructed complete genomes for two dominant methanogens affiliated with the genera Methanosarcina and Methanothermobacter, along with 37 draft genomes. The reconstructed Methanosarcina genome was almost identical to that of a thermophilic acetoclastic methanogen Methanosarcina thermophila TM-1, indicating its cosmopolitan distribution in thermophilic digesters. The reconstructed Methanothermobacter (designated as Met2) was closely related to Methanothermobacter tenebrarum, a non-autotrophic hydrogenotrophic methanogen that grows in the presence of acetate. Met2 lacks the Cdh complex required for CO2 fixation, suggesting that it requires organic molecules, such as acetate, as carbon sources. Although the metagenomic analysis also detected autotrophic methanogens, they were less than 1% in abundance of Met2. These results suggested that non-autotrophic methanogens preferentially grow in anaerobic digesters containing high concentrations of organics.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Maho Tsutsumi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shun'ichi Ishii
- R&D Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Yoshiyuki Ueno
- Kajima Technical Research Institute, Chofu, Tokyo, 182-0036, Japan
| | - Takashi Abe
- Graduate School of Science and Technology, Niigata University, Niigata, Niigata, 950-2181, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
89
|
de Jonge N, Moset V, Møller HB, Nielsen JL. Microbial population dynamics in continuous anaerobic digester systems during start up, stable conditions and recovery after starvation. BIORESOURCE TECHNOLOGY 2017; 232:313-320. [PMID: 28242388 DOI: 10.1016/j.biortech.2017.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
The evolution and population dynamics of complex anaerobic microbial communities in anaerobic digesters were investigated during stable operation and recovery after prolonged starvation. Three thermophilic reactor systems fed with cattle manure were operated continuously in parallel for 167days. Significant changes in the microbial communities were observed for both the bacterial and archaeal populations as the reactor systems were subjected to changing feeding regimes. The ecosystems developed from being relatively similar in structure to more specialised communities, with large population shifts within the acetogenic and methanogenic communities, which appeared to shift towards the hydrogenotrophic methanogenesis pathway. All reactor systems showed signs of adaptation to a harsher environment under high VFA, H2S and ammonia concentrations, but remained at a lower degree of stability after 45days of recovery compared to stable period of operation before starvation.
Collapse
Affiliation(s)
- Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Veronica Moset
- Department of Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Henrik Bjarne Møller
- Department of Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
90
|
Hagen LH, Frank JA, Zamanzadeh M, Eijsink VGH, Pope PB, Horn SJ, Arntzen MØ. Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester. Appl Environ Microbiol 2017; 83:e01955-16. [PMID: 27815274 PMCID: PMC5203625 DOI: 10.1128/aem.01955-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023] Open
Abstract
In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.
Collapse
Affiliation(s)
- Live H Hagen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mirzaman Zamanzadeh
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Phillip B Pope
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Svein J Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
91
|
Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome. mSystems 2016; 1:mSystems00092-16. [PMID: 27822555 PMCID: PMC5080403 DOI: 10.1128/msystems.00092-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates. Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.
Collapse
|