51
|
Kwon N, Baek K, Kim D, Yun H. Leucine-rich glioma inactivated 3: Integrative analyses reveal its potential prognostic role in cancer. Mol Med Rep 2017; 17:3993-4002. [DOI: 10.3892/mmr.2017.8279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nyoun Kwon
- Department of Biochemistry, Chung‑Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Kwang Baek
- Department of Biochemistry, Chung‑Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Dong‑Seok Kim
- Department of Biochemistry, Chung‑Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Hye‑Young Yun
- Department of Biochemistry, Chung‑Ang University, College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
52
|
Cohen-Solal KA, Kaufman HL, Lasfar A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res 2017; 31:241-252. [DOI: 10.1111/pcmr.12666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Karine A. Cohen-Solal
- Rutgers Cancer Institute of New Jersey; New Brunswick NJ USA
- Section of Surgical Oncology Research; Department of Surgery; Rutgers Robert Wood Johnson Medical School; Rutgers, The State University of New Jersey; New Brunswick NJ USA
| | - Howard L. Kaufman
- Department of Surgery; Rutgers University; New Brunswick NJ USA
- Department of Medicine; Rutgers University; New Brunswick NJ USA
| | - Ahmed Lasfar
- Rutgers Cancer Institute of New Jersey; New Brunswick NJ USA
- Department of Pharmacology and Toxicology; Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
53
|
Reddy BY, Miller DM, Tsao H. Somatic driver mutations in melanoma. Cancer 2017; 123:2104-2117. [PMID: 28543693 DOI: 10.1002/cncr.30593] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Melanoma has one of the highest somatic mutational burdens among solid malignancies. Although the rapid progress in genomic research has contributed immensely to our understanding of the pathogenesis of melanoma, the clinical significance of the vast array of genomic alterations discovered by next-generation sequencing is far from being fully characterized. Most mutations prevalent in melanoma are simply neutral "passengers," which accompany functionally significant "drivers" under transforming conditions. The delineation of driver mutations from passenger mutations is critical to the development of targeted therapies. Novel advances in genomic data analysis have aided in distinguishing true driver mutations involved in tumor progression. Here, the authors review the current literature on important somatic driver mutations in melanoma, along with the implications for treatment. Cancer 2017;123:2104-17. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Bobby Y Reddy
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David M Miller
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
54
|
Smith MP, Rowling EJ, Miskolczi Z, Ferguson J, Spoerri L, Haass NK, Sloss O, McEntegart S, Arozarena I, von Kriegsheim A, Rodriguez J, Brunton H, Kmarashev J, Levesque MP, Dummer R, Frederick DT, Andrews MC, Cooper ZA, Flaherty KT, Wargo JA, Wellbrock C. Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med 2017; 9:1011-1029. [PMID: 28606996 PMCID: PMC5538298 DOI: 10.15252/emmm.201607156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF-induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re-activation in a paracrine manner. Most importantly, EDN1 not only supports MITF-high populations through the endothelin receptor B (EDNRB), but also AXL-high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL-high-expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL-high cells.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Loredana Spoerri
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Nikolas K Haass
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Olivia Sloss
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Navarrabiomed-Fundación Miguel Servet-Idisna, Pamplona, Spain
| | | | - Javier Rodriguez
- Systems Biology Ireland, School of Medicine, UCD, Dublin 4, Ireland
| | - Holly Brunton
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jivko Kmarashev
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Miles C Andrews
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
55
|
The Slow Cycling Phenotype: A Growing Problem for Treatment Resistance in Melanoma. Mol Cancer Ther 2017; 16:1002-1009. [DOI: 10.1158/1535-7163.mct-16-0535] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022]
|
56
|
Kwon NS, Kim DS, Yun HY. Leucine-rich glioma inactivated 3: integrative analyses support its prognostic role in glioma. Onco Targets Ther 2017; 10:2721-2728. [PMID: 28579810 PMCID: PMC5449096 DOI: 10.2147/ott.s138912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 was expressed in brain, adipose tissues and skin, where it played roles as a multifunctional cytokine. We postulated that LGI3 may be involved in cytokine network in cancers. Aim This study aimed to analyze differentially expressed genes in glioma tissues and glioma cohort data to investigate the prognostic role of LGI3 and its receptors. Materials and methods Expression microarray data from Gene Expression Omnibus and glioma cohort data were analyzed using bioinformatic tools for statistical analysis, protein–protein interactions, functional enrichment and pathway analyses and prognostic association analysis. Results We found that LGI3 and its receptors, ADAM22 and ADAM23, were significantly downregulated in glioma tissues. Eleven upregulated genes and two downregulated genes in glioma tissues were found to be the previously reported LGI3-regulated genes. Protein–protein interaction network analysis showed that 85% of the LGI3-regulated and glioma-altered genes formed a cluster of interaction network. Functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed the association of these genes with hypoxia responses, p53 and Akt signaling and various cancer-related pathways including glioma. Analysis of expression microarray data of glioma cohorts demonstrated that low expression levels of LGI3, ADAM22 and ADAM23 were significantly associated with poor prognosis of glioma. Conclusion These results propose that LGI3 and its receptors may play a prognostic role in glioma.
Collapse
Affiliation(s)
- Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
57
|
de Polo A, Luo Z, Gerarduzzi C, Chen X, Little JB, Yuan ZM. AXL receptor signalling suppresses p53 in melanoma through stabilization of the MDMX-MDM2 complex. J Mol Cell Biol 2017; 9:154-165. [PMID: 27927748 PMCID: PMC5907837 DOI: 10.1093/jmcb/mjw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
Deregulation of the tyrosine kinase signalling is often associated with tumour progression and drug resistance, but its underlying mechanisms are only partly understood. In this study, we investigated the effects of the receptor tyrosine kinase AXL on the stability of the MDMX-MDM2 heterocomplex and the activity of p53 in melanoma cells. Our data demonstrated that AXL overexpression or activation through growth arrest-specific 6 (Gas6) ligand stimulation increases MDMX and MDM2 protein levels and decreases p53 activity. Upon activation, AXL stabilizes MDMX through a post-translational modification that involves phosphorylation of MDMX on the phosphosite Ser314, leading to increased affinity between MDMX and MDM2 and favouring MDMX nuclear translocation. Ser314 phosphorylation can also protect MDMX from MDM2-mediated degradation, leading to stabilization of the MDMX-MDM2 complex. We identified CDK4/6 and p38 MAPK as the two kinases mediating AXL-induced modulation of the MDMX-MDM2 complex, and demonstrated that suppression of AXL, either through siRNA silencing or pharmacological inhibition, increases expression levels of p53 target genes P21, MDM2, and PUMA, improves p53 pathway response to chemotherapy, and sensitizes cells to both Cisplatin and Vemurafenib. Our findings offer an insight into a novel signalling axis linking AXL to p53 and provide a potentially druggable pathway to restore p53 function in melanoma.
Collapse
Affiliation(s)
- Anna de Polo
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhongling Luo
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Casimiro Gerarduzzi
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - John B. Little
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhi-Min Yuan
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Correspondence to: Zhi-Min Yuan, E-mail:
| |
Collapse
|
58
|
Mikula H, Stapleton S, Kohler RH, Vinegoni C, Weissleder R. Design and Development of Fluorescent Vemurafenib Analogs for In Vivo Imaging. Am J Cancer Res 2017; 7:1257-1265. [PMID: 28435463 PMCID: PMC5399591 DOI: 10.7150/thno.18238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/17/2016] [Indexed: 12/30/2022] Open
Abstract
Herein we describe fluorescent derivatives of vemurafenib to probe therapeutic BRAF inhibition in live cells and in vivo. The compounds were evaluated and compared by determining target binding, inhibition of mutant BRAF melanoma cell lines and live cell imaging. We show that vemurafenib-BODIPY is a superior imaging drug to visualize the targets of vemurafenib in live cells and in vivo in non-resistant and resistant melanoma tumors.
Collapse
|
59
|
miR-579-3p controls melanoma progression and resistance to target therapy. Proc Natl Acad Sci U S A 2016; 113:E5005-13. [PMID: 27503895 DOI: 10.1073/pnas.1607753113] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Therapy of melanoma patients harboring activating mutations in the BRAF (V-raf murine sarcoma viral oncogene homolog B1) oncogene with a combination of BRAF and MEK inhibitors is plagued by the development of drug resistance. Mutational events, as well as adaptive mechanisms, contribute to the development of drug resistance. In this context we uncover here the role of a miRNA, miR-579-3p. We first show that low expression of miR-579-3p is a negative prognostic factor correlating with poor survival. Expression levels of miR-579-3p decrease from nevi to stage III/IV melanoma samples and even further in cell lines resistant to BRAF/MEK inhibitors. Mechanistically, we demonstrate that miR-579-3p acts as an oncosuppressor by targeting the 3'UTR of two oncoproteins: BRAF and an E3 ubiquitin protein ligase, MDM2. Moreover miR-579-3p ectopic expression impairs the establishment of drug resistance in human melanoma cells. Finally, miR-579-3p is strongly down-regulated in matched tumor samples from patients before and after the development of resistance to targeted therapies.
Collapse
|
60
|
Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene 2016; 36:84-96. [PMID: 27181209 PMCID: PMC5112150 DOI: 10.1038/onc.2016.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/18/2016] [Accepted: 04/03/2016] [Indexed: 12/14/2022]
Abstract
Melanoma progression is associated with increased invasion and, often, decreased levels of microphthalmia-associated transcription factor (MITF). Accordingly, downregulation of MITF induces invasion in melanoma cells, however little is known about the underlying mechanisms. Here, we report for the first time that depletion of MITF results in elevation of intracellular GTP levels and increased amounts of active (GTP-bound) RAC1, RHO-A and RHO-C. Concomitantly, MITF-depleted cells display larger number of invadopodia and increased invasion. We further demonstrate that the gene for guanosine monophosphate reductase (GMPR) is a direct MITF target, and that the partial repression of GMPR accounts mostly for the above phenotypes in MITF-depleted cells. Reciprocally, transactivation of GMPR is required for MITF-dependent suppression of melanoma cell invasion, tumorigenicity, and lung colonization. Moreover, loss of GMPR accompanies downregulation of MITF in vemurafenib-resistant BRAFV600E-melanoma cells and underlies the increased invasion in these cells. Our data uncover novel mechanisms linking MITF-dependent inhibition of invasion to suppression of guanylate metabolism.
Collapse
|
61
|
Wojciechowska S, van Rooijen E, Ceol C, Patton EE, White RM. Generation and analysis of zebrafish melanoma models. Methods Cell Biol 2016; 134:531-49. [PMID: 27312504 DOI: 10.1016/bs.mcb.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rapid emergence of the zebrafish as a cancer model has been aided by advances in genetic, chemical, and imaging technologies. Melanoma in particular highlights both the power and challenges associated with cancer modeling in zebrafish. This chapter focuses on the lessons that have emerged from the melanoma models as paradigmatic of what will apply to nearly all cancer models in the zebrafish system. We specifically focus on methodologies related to germline and mosaic transgenic melanoma generation, and how these can be used to deeply interrogate additional cooperating oncogenes or tumor suppressors. These transgenic tumors can in turn be used to generate zebrafish-specific, stable melanoma cell lines which can be fluorescently labeled, modified by cDNA/CRISPR techniques, and used for detailed in vivo imaging of cancer progression in real time. These zebrafish melanoma models are beginning to elucidate both cell intrinsic and microenvironmental factors in melanoma that have broader implications for human disease. We envision that nearly all of the techniques described here can be applied to other zebrafish cancer models, and likely expanded beyond what we describe here.
Collapse
Affiliation(s)
- S Wojciechowska
- MRC Human Genetics Unit, and The University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - E van Rooijen
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, MA, United States; Harvard Medical School, Boston, MA, United States
| | - C Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - E E Patton
- MRC Human Genetics Unit, and The University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - R M White
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
62
|
Smith MP, Brunton H, Rowling EJ, Ferguson J, Arozarena I, Miskolczi Z, Lee JL, Girotti MR, Marais R, Levesque MP, Dummer R, Frederick DT, Flaherty KT, Cooper ZA, Wargo JA, Wellbrock C. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell 2016; 29:270-284. [PMID: 26977879 PMCID: PMC4796027 DOI: 10.1016/j.ccell.2016.02.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023]
Abstract
Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Holly Brunton
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jessica L Lee
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Maria R Girotti
- Molecular Oncology Group, CRUK Manchester Institute for Cancer Research, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Marais
- Molecular Oncology Group, CRUK Manchester Institute for Cancer Research, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4BX, UK
| | - Mitchell P Levesque
- Department of Dermatology, UniversitätsSpital Zürich, University of Zürich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, UniversitätsSpital Zürich, University of Zürich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114-2696, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114-2696, USA
| | - Zachary A Cooper
- Divison of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Divison of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
63
|
Affiliation(s)
- Warren Fiskus
- Department of Medicine; Department of Molecular and Cellular Biology; Dan L. Duncan Cancer Center; and Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030;
| | - Nicholas Mitsiades
- Department of Medicine; Department of Molecular and Cellular Biology; Dan L. Duncan Cancer Center; and Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
64
|
Ferretti R, Bhutkar A, McNamara MC, Lees JA. BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev 2016; 30:18-33. [PMID: 26679841 PMCID: PMC4701976 DOI: 10.1101/gad.267757.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023]
Abstract
Melanoma can switch between proliferative and invasive states, which have identifying gene expression signatures that correlate with good and poor prognosis, respectively. However, the mechanisms controlling these signatures are poorly understood. In this study, we identify BMI1 as a key determinant of melanoma metastasis by which its overexpression enhanced and its deletion impaired dissemination. Remarkably, in this tumor type, BMI1 had no effect on proliferation or primary tumor growth but enhanced every step of the metastatic cascade. Consistent with the broad spectrum of effects, BMI1 activated widespread gene expression changes, which are characteristic of melanoma progression and also chemoresistance. Accordingly, we showed that up-regulation or down-regulation of BMI1 induced resistance or sensitivity to BRAF inhibitor treatment and that induction of noncanonical Wnt by BMI1 is required for this resistance. Finally, we showed that our BMI1-induced gene signature encompasses all of the hallmarks of the previously described melanoma invasive signature. Moreover, our signature is predictive of poor prognosis in human melanoma and is able to identify primary tumors that are likely to become metastatic. These data yield key insights into melanoma biology and establish BMI1 as a compelling drug target whose inhibition would suppress both metastasis and chemoresistance of melanoma.
Collapse
Affiliation(s)
- Roberta Ferretti
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | - Molly C McNamara
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
65
|
Martinez-Cardús A, Vizoso M, Moran S, Manzano JL. Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:209. [PMID: 26488005 DOI: 10.3978/j.issn.2305-5839.2015.06.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of highly recurrent mutations in melanoma, such as BRAF(V600E), completely changed the clinical management including therapy of melanoma patients. In the era of Personalized Medicine targeted melanoma therapies showed high response rates, currently evidenced by BRAF inhibitors or immune-stimulating therapies. In addition to genetic biomarkers, epigenetic knowledge in melanoma has undergone a major step forward in recent years. In particular, epigenetics is unveiling new perspectives to fight this disease, providing an encouraging number of DNA methylation based biomarkers that will likely improve patient stratification for prognosis and treatment. In this regard, putative targetable biomarkers or those with predictive value for the outcome of currently applied therapies are promising tools for future precision oncology strategies. In addition, the progress made in genetic and epigenetic profiling technologies and their reconfiguration to real-time clinical screening approaches makes personalized medicine in melanoma an achievable objective in upcoming years.
Collapse
Affiliation(s)
- Anna Martinez-Cardús
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Miguel Vizoso
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Sebastian Moran
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Jose Luis Manzano
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| |
Collapse
|
66
|
Capaldo BJ, Roller D, Axelrod MJ, Koeppel AF, Petricoin EF, Slingluff CL, Weber MJ, Mackey AJ, Gioeli D, Bekiranov S. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma. PLoS One 2015; 10:e0138210. [PMID: 26405815 PMCID: PMC4583389 DOI: 10.1371/journal.pone.0138210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK) mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes.
Collapse
Affiliation(s)
- Brian J. Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Devin Roller
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mark J. Axelrod
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alex F. Koeppel
- Bioinfomatics Core Facility, University of Virginia, Charlottesville, Virginia, United States of America
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, Virginia, United States of America
| | - Craig L. Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J. Weber
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aaron J. Mackey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
67
|
Prasad CP, Mohapatra P, Andersson T. Therapy for BRAFi-Resistant Melanomas: Is WNT5A the Answer? Cancers (Basel) 2015; 7:1900-24. [PMID: 26393652 PMCID: PMC4586801 DOI: 10.3390/cancers7030868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
In recent years, scientists have advocated the use of targeted therapies in the form of drugs that modulate genes and proteins that are directly associated with cancer progression and metastasis. Malignant melanoma is a dreadful cancer type that has been associated with the rapid dissemination of primary tumors to multiple sites, including bone, brain, liver and lungs. The discovery that approximately 40%–50% of malignant melanomas contain a mutation in BRAF at codon 600 gave scientists a new approach to tackle this disease. However, clinical studies on patients have shown that although BRAFi (BRAF inhibitors) trigger early anti-tumor responses, the majority of patients later develop resistance to the therapy. Recent studies have shown that WNT5A plays a key role in enhancing the resistance of melanoma cells to BRAFi. The focus of the current review will be on melanoma development, signaling pathways important to acquired resistance to BRAFi, and why WNT5A inhibitors are attractive candidates to be included in combinatorial therapies for melanoma.
Collapse
Affiliation(s)
- Chandra Prakash Prasad
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö SE-20502, Sweden.
| | - Purusottam Mohapatra
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö SE-20502, Sweden.
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö SE-20502, Sweden.
| |
Collapse
|