51
|
Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013; 501:426-9. [PMID: 23955152 PMCID: PMC3893107 DOI: 10.1038/nature12447] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 07/11/2013] [Indexed: 02/07/2023]
Abstract
Mammals harbour a complex gut microbiome, comprising bacteria that confer immunological, metabolic and neurological benefits. Despite advances in sequence-based microbial profiling and myriad studies defining microbiome composition during health and disease, little is known about the molecular processes used by symbiotic bacteria to stably colonize the gastrointestinal tract. We sought to define how mammals assemble and maintain the Bacteroides, one of the most numerically prominent genera of the human microbiome. Here we find that, whereas the gut normally contains hundreds of bacterial species, germ-free mice mono-associated with a single Bacteroides species are resistant to colonization by the same, but not different, species. To identify bacterial mechanisms for species-specific saturable colonization, we devised an in vivo genetic screen and discovered a unique class of polysaccharide utilization loci that is conserved among intestinal Bacteroides. We named this genetic locus the commensal colonization factors (ccf). Deletion of the ccf genes in the model symbiont, Bacteroides fragilis, results in colonization defects in mice and reduced horizontal transmission. The ccf genes of B. fragilis are upregulated during gut colonization, preferentially at the colonic surface. When we visualize microbial biogeography within the colon, B. fragilis penetrates the colonic mucus and resides deep within crypt channels, whereas ccf mutants are defective in crypt association. Notably, the CCF system is required for B. fragilis colonization following microbiome disruption with Citrobacter rodentium infection or antibiotic treatment, suggesting that the niche within colonic crypts represents a reservoir for bacteria to maintain long-term colonization. These findings reveal that intestinal Bacteroides have evolved species-specific physical interactions with the host that mediate stable and resilient gut colonization, and the CCF system represents a novel molecular mechanism for symbiosis.
Collapse
|
52
|
Diverse pathological implications of YKL-40: Answers may lie in ‘outside-in’ signaling. Cell Signal 2013; 25:1567-73. [DOI: 10.1016/j.cellsig.2013.03.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/28/2013] [Indexed: 12/24/2022]
|
53
|
Cabrera S, Fernández AF, Mariño G, Aguirre A, Suárez MF, Español Y, Vega JA, Laurà R, Fueyo A, Fernández-García MS, Freije JMP, Kroemer G, López-Otín C. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy 2013; 9:1188-200. [PMID: 23782979 DOI: 10.4161/auto.24797] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b (-/-) mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b (-/-) mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.
Collapse
Affiliation(s)
- Sandra Cabrera
- Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Instituto Universitario de Oncología (IUOPA); Universidad de Oviedo; Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ. Bacterial chitinases and chitin-binding proteins as virulence factors. MICROBIOLOGY (READING, ENGLAND) 2013; 159:833-847. [PMID: 23519157 DOI: 10.1099/mic.0.051839-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial chitinases (EC 3.2.1.14) and chitin-binding proteins (CBPs) play a fundamental role in the degradation of the ubiquitous biopolymer chitin, and the degradation products serve as an important nutrient source for marine- and soil-dwelling bacteria. However, it has recently become clear that representatives of both Gram-positive and Gram-negative bacterial pathogens encode chitinases and CBPs that support infection of non-chitinous mammalian hosts. This review addresses this biological role of bacterial chitinases and CBPs in terms of substrate specificities, regulation, secretion and involvement in cellular and animal infection.
Collapse
Affiliation(s)
- Rikki F Frederiksen
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| | - Dafni K Paspaliari
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| | - Tanja Larsen
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| | - Birgit G Storgaard
- Carlsberg Laboratory, Gamle Carlsbergvej 10, 1799 Copenhagen V., Denmark
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| | - Marianne H Larsen
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| | - Monica M Palcic
- Carlsberg Laboratory, Gamle Carlsbergvej 10, 1799 Copenhagen V., Denmark
| | - Jørgen J Leisner
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Grønnegaardsvej 15, 1870 Frederiksberg C., Denmark
| |
Collapse
|
55
|
The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. mBio 2013; 4:e00617-12. [PMID: 23512964 PMCID: PMC3604766 DOI: 10.1128/mbio.00617-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Environmental pathogens survive and replicate within the outside environment while maintaining the capacity to infect mammalian hosts. For some microorganisms, mammalian infection may be a relatively rare event. Understanding how environmental pathogens retain their ability to cause disease may provide insight into environmental reservoirs of disease and emerging infections. Listeria monocytogenes survives as a saprophyte in soil but is capable of causing serious invasive disease in susceptible individuals. The bacterium secretes virulence factors that promote cell invasion, bacterial replication, and cell-to-cell spread. Recently, an L. monocytogenes chitinase (ChiA) was shown to enhance bacterial infection in mice. Given that mammals do not synthesize chitin, the function of ChiA within infected animals was not clear. Here we have demonstrated that ChiA enhances L. monocytogenes survival in vivo through the suppression of host innate immunity. L. monocytogenes ΔchiA mutants were fully capable of establishing bacterial replication within target organs during the first 48 h of infection. By 72 to 96 h postinfection, however, numbers of ΔchiA bacteria diminished, indicative of an effective immune response to contain infection. The ΔchiA-associated virulence defect could be complemented in trans by wild-type L. monocytogenes, suggesting that secreted ChiA altered a target that resulted in a more permissive host environment for bacterial replication. ChiA secretion resulted in a dramatic decrease in inducible nitric oxide synthase (iNOS) expression, and ΔchiA mutant virulence was restored in NOS2−/− mice lacking iNOS. This work is the first to demonstrate modulation of a specific host innate immune response by a bacterial chitinase. Bacterial chitinases have traditionally been viewed as enzymes that either hydrolyze chitin as a food source or serve as a defense mechanism against organisms containing structural chitin (such as fungi). Recent evidence indicates that bacterial chitinases and chitin-binding proteins contribute to pathogenesis, primarily via bacterial adherence to chitin-like molecules present on the surface of mammalian cells. In contrast, mammalian chitinases have been linked to immunity via inflammatory immune responses that occur outside the context of infection, and since mammals do not produce chitin, the targets of these mammalian chitinases have remained elusive. This work demonstrates that a Listeria monocytogenes-secreted chitinase has distinct functional roles that include chitin hydrolysis and suppression of host innate immunity. The established link between chitinase and the inhibition of host inducible nitric oxide synthase (iNOS) expression may help clarify the thus far elusive relationship observed between mammalian chitinase enzymes and host inflammatory responses occurring in the absence of infection.
Collapse
|
56
|
Abstract
This report explains how our studies of asthma and Th2 inflammation led us to investigate the roles of chitinase-like proteins (CLPs) in lung injury and repair and puts forth an overall hypothesis that can explain the roles that these moieties play in biology and a hypothesis regarding the ways that dysregulated CLP expression may contribute to the pathogenesis of a variety of diseases. We test this hypothesis by assessing the contributions of the CLP breast regression protein (BRP)-39 in the pathogenesis of malignant melanoma metastasis to the lung.
Collapse
|
57
|
Nagatani K, Wang S, Llado V, Lau CW, Li Z, Mizoguchi A, Nagler CR, Shibata Y, Reinecker HC, Mora JR, Mizoguchi E. Chitin microparticles for the control of intestinal inflammation. Inflamm Bowel Dis 2012; 18:1698-710. [PMID: 22241684 PMCID: PMC3586600 DOI: 10.1002/ibd.22874] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/12/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chitin is a polymer of N-acetylglucosamine with the ability to regulate innate and adaptive immune responses. However, the detailed mechanisms of chitin-mediated regulation of intestinal inflammation are only partially known. METHODS In this study chitin microparticles (CMPs) or phosphate-buffered saline (PBS) were orally administered to acute and chronic colitis models every 3 days for 6 consecutive weeks beginning at weaning age. The effects of this treatment were evaluated by histology, cytokine production, coculture study, and enteric bacterial analysis in dextran sodium sulfate (DSS)-induced colitis or T-cell receptor alpha (TCRα) knockout chronic colitis models. RESULTS Histologically, chitin-treated mice showed significantly suppressed colitis as compared with PBS-treated mice in both animal models. The production of interferon-gamma (IFN-γ) was upregulated in the mucosa of chitin-treated mice compared with control mice. The major source of IFN-γ-producing cells was CD4+ T cells. In mouse dendritic cells (DCs) we found that CMPs were efficiently internalized and processed within 48 hours. Mesenteric lymph nodes (MLNs) CD4+ T cells isolated from chitin-treated mice produced a 7-fold higher amount of IFN-γ in the culture supernatant after being cocultured with DCs and chitin as compared with the control. Proliferation of carboxyfluorescein succinimidyl ester (CFSE)(low) CD4+ T cells in MLNs and enteric bacterial translocation rates were significantly reduced in chitin-treated mice when compared with the control. In addition, CMPs improved the imbalance of enteric bacterial compositions and significantly increased interleukin (IL)-10-producing cells in noninflamed colon, indicating the immunoregulatory effects of CMPs in intestinal mucosa. CONCLUSIONS CMPs significantly suppress the development of inflammation by modulating cytokine balance and microbial environment in colon.
Collapse
Affiliation(s)
- Katsuya Nagatani
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sen Wang
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Victoria Llado
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cindy W. Lau
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zongxi Li
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department of Immunology, China Medical University, Shenyang, Liaoning, China
| | - Atsushi Mizoguchi
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Cathryn R. Nagler
- Department of Pathology, Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Yoshimi Shibata
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Hans-Christian Reinecker
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - J. Rodrigo Mora
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
58
|
Sánchez B, Urdaci MC. Extracellular proteins from Lactobacillus plantarum BMCM12 prevent adhesion of enteropathogens to mucin. Curr Microbiol 2012; 64:592-6. [PMID: 22461079 DOI: 10.1007/s00284-012-0115-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/14/2012] [Indexed: 11/26/2022]
Abstract
The aim of this study was to study the interference of the extracellular proteins produced by Lactobacillus plantarum BMCM12 with the adhesion of some well-known gut pathogens. The extracellular proteins secreted by L. plantarum BMCM12 in MRS broth were precipitated, resolved by SDS-PAGE, and identified by tandem mass spectrometry. Discordances between the observed and the theoretical molecular masses of several proteins suggested the presence of protein glycosylation, corroborated with specific glycoprotein staining after protein de-glycosylation using trifluoromethanesulfonic acid. Experiments of exclusion, competition, or prevention of the pathogen adhesion to mucin were performed using BMCM12 extracellular proteins, using Escherichia coli LMG2092 and Salmonella enterica subsp. enterica LMG15860. Extracellular proteins from BMCM12 reduced significantly the adhesion of the pathogens when they were added prior to adhesion assays. These proteins play thus important roles in preventing pathogen adhesion to the mucin layer.
Collapse
Affiliation(s)
- Borja Sánchez
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain.
| | | |
Collapse
|
59
|
Tran HT, Barnich N, Mizoguchi E. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. Histol Histopathol 2012; 26:1453-64. [PMID: 21938682 DOI: 10.14670/hh-26.1453] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent-Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like 1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions.
Collapse
Affiliation(s)
- H T Tran
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
60
|
Kanneganti M, Kamba A, Mizoguchi E. Role of chitotriosidase (chitinase 1) under normal and disease conditions. ACTA ACUST UNITED AC 2012; 5:1-9. [PMID: 23439988 DOI: 10.2174/1875044301205010001] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian chitinases belong to the glycosyl hydrolase 18 family based on structural homology and the family includes a large number of bacterial and eukaryotic chitinases. Among the mammalian chitinases, chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are capable of hydrolyzing the β-(1, 4)-linkage between the adjacent N-acetyl glucosamine residues of chitin. CHIT1 is one of the most abundantly secreted proteins, being mainly produced by activated macrophages and epithelial cells. CHIT1 plays a pivotal role in the context of infectious disease including malaria and fungi infections as a host defense towards chitin in pathogen's cell structure and as a diagnostic marker of disease. In contrast, CHI1 released by activated Kupffer cells in liver could induce hepatic fibrosis and cirrhosis. Increased serum levels of CHIT1 were observed in patients with many disorders, including Gaucher's disease, bronchial asthma, and atherosclerosis. Therefore, CHIT1 seems to have dual (regulatory and pathogenic) roles depending on the disease and producing cell types during the inflammatory conditions.
Collapse
Affiliation(s)
- Manasa Kanneganti
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
61
|
Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E, Chiba T. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 2011; 31:3111-23. [PMID: 22056877 PMCID: PMC3290745 DOI: 10.1038/onc.2011.498] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like 1 (CHI3L1), one of mammalian members of the chitinase family, is expressed in several types of human cancer, and elevated serum level of CHI3L1 is suggested to be a biomarker of poor prognosis in advanced cancer patients. However, the overall biological function of CHI3L1 in human cancers still remains unknown. Studies were performed to characterize the role of CHI3L1 in cancer pathophysiology utilizing human colorectal cancer samples and human cell lines. Plasma protein and tissue mRNA expression levels of CHI3L1 in colorectal cancer were strongly upregulated. Immunohistochemical analysis showed that CHI3L1 was expressed in cancer cells and CHI3L1 expression had a significant association with the number of infiltrated macrophages and microvessel density. By utilizing trans-well migration and tube formation assays, overexpression of CHI3L1 in SW480 cells (human colon cancer cells) enhanced the migration of THP-1 cells (human macrophage cells) and HUVECs (human endothelial cells), and the tube formation of HUVECs. The knockdown of CHI3L1 by RNA interference or the neutralization of CHI3L1 by anti-CHI3L1 antibody displayed strong suppression of CHI3L1-induced migration and tube formation. Cell proliferation assay showed that CHI3L1 overexpression significantly enhanced the proliferation of SW480 cells. ELISA analysis showed that CHI3L1 increased the secretion of inflammatory chemokines, IL-8 and MCP-1, from SW480 cells through mitogen-activated protein kinase (MAPK) signaling pathway. Both neutralization of IL-8 or MCP-1 and inhibition or knockdown of MAPK in SW480 cells significantly inhibited CHI3L1-induced migration and tube formation. In a xenograft mouse model, overexpression of CHI3L1 in HCT116 cells (human colon cancer cells) enhanced the tumor growth as well as macrophage infiltration and microvessel density. In conclusion, CHI3L1 expressed in colon cancer cells promotes cancer cell proliferation, macrophage recruitment and angiogenesis. Thus, the inhibition of CHI3L1 activity may be a novel therapeutic strategy for human colorectal cancer.
Collapse
Affiliation(s)
- M Kawada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Aomatsu T, Imaeda H, Matsumoto K, Kimura E, Yoden A, Tamai H, Fujiyama Y, Mizoguchi E, Andoh A. Faecal chitinase 3-like-1: a novel biomarker of disease activity in paediatric inflammatory bowel disease. Aliment Pharmacol Ther 2011; 34:941-8. [PMID: 21848856 DOI: 10.1111/j.1365-2036.2011.04805.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chitinase 3-like-1 (CHI3L1) is up-regulated in the inflamed mucosa of inflammatory bowel disease (IBD). AIM To evaluate the usefulness of a faecal CHI3L1 assay, as a reliable marker for predicting the severity of paediatric IBD. METHODS Faecal samples were obtained from ulcerative colitis (UC, n = 94), Crohn's disease (CD, n = 87), and healthy individuals (n = 56). The faecal CHI3L1 and calprotectin levels were determined by ELISA. For endoscopic evaluation, the sum of the Matts' score for UC and the simple endoscopic score for CD (SES-CD) were used. Ileal lesions were evaluated by ultrasonography. RESULTS Faecal CHI3L1 levels were significantly elevated in active UC (median 366.6 ng/g, n = 44) and active CD (median 632.7 ng/g, n = 48) patients, as compared with healthy individuals (median 2.2 ng/g, n = 56). In UC patients, the faecal CHI3L1 levels were positively correlated with the sum of the Matts' score (r = 0.73, P < 0.01, n = 42). In CD patients, there was a significant correlation between faecal CHI3L1 levels and endoscopic activity as determined by the SES-CD scoring system (r = 0.61, P < 0.01, n = 25). The faecal CHI3L1 levels of patients with wall thickening of their small intestine were significantly higher than those of healthy controls or patients without wall thickening. The cutoff value of 13.7 ng/g for fecal CHI3L1(the 95th percentile of the control value) predicted active lesions in IBD patients with a sensitivity of 84.7% and a specificity of 88.9%. CONCLUSION Faecal CHI3L1 assays may be useful for predicting the severity and activity of mucosal inflammation in IBD.
Collapse
Affiliation(s)
- T Aomatsu
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Clostridium difficile is an important human pathogen and one where the primary cause of disease is due to the transmission of spores. We have investigated the proteins found in the outer coat layers of C. difficile spores of pathogenic strain 630 (CD630). Five coat proteins, CotA, CotB, CotCB, CotD, and CotE, were shown to be expressed on the outer coat layers of the spore. We demonstrate that purified spores carry catalase, peroxiredoxin, and chitinase activity and that this activity correlates with the predicted functions of three spore coat proteins identified here, CotCB, CotD, and CotE. CotCB and CotD are putative manganese catalases, and CotE is a novel bifunctional protein with peroxiredoxin activity at its amino terminus and chitinase activity at its carboxy terminus. These enzymes could play an important role in coat assembly by polymerizing protein monomers in the coat. CotE, in addition to a role in macromolecular degradation, could play an important role in inflammation, and this may be of direct relevance to the development of the gastrointestinal symptoms that accompany C. difficile infection. Although specific enzyme activity has not yet been assigned to the proteins identified here, this work provides the first detailed study of the C. difficile spore coat.
Collapse
|
64
|
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73:479-501. [PMID: 21054166 DOI: 10.1146/annurev-physiol-012110-142250] [Citation(s) in RCA: 626] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Carbohydrate-binding motif in chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells. Clin Immunol 2011; 140:268-75. [PMID: 21546314 DOI: 10.1016/j.clim.2011.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/26/2011] [Accepted: 04/09/2011] [Indexed: 01/27/2023]
Abstract
Host-microbial interactions play a key role during the development of colitis. We have previously shown that chinase 3-like 1 (CHI3L1) is an inducible molecule overexpressed in colonic epithelial cells (CECs) under inflammatory conditions. In this study, we found that chitin-binding motif (CBM) of CHI3L1 is specifically associated with the CHI3L1-mediated activation of the Akt-signaling in CEC by transfecting the CBM-mutant CHI3L1 vectors in SW480 CECs. Downstream, CHI3L1 enhanced the secretion of IL-8 and TNFα in a dose-dependent manner. We previously show that 325 through 339 amino-acids in CBM are crucial for the biological function of CHI3L1. Here we demonstrated that 325th-339th residues of CBM in CHI3L1 is a critical region for the activation of Akt, IL-8 production, and for a specific cellular localization of CHI3L1. In conclusion, CBM region of CHI3L1 is critical in activating Akt signaling in CECs, and the activation may be associated with the development of chronic colitis.
Collapse
|
66
|
Lactobacillus plantarum extracellular chitin-binding protein and its role in the interaction between chitin, Caco-2 cells, and mucin. Appl Environ Microbiol 2010; 77:1123-6. [PMID: 21131525 DOI: 10.1128/aem.02080-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the present work, we describe the adhesion capabilities of a recombinant Lactococcus lactis strain producing an extracellular protein from Lactobacillus plantarum. Our results show that this protein may offer the bacterium a mechanism to bind to N-acetylglucosamine-containing polymers, such as human mucins, present in different environments.
Collapse
|
67
|
Abstract
Listeria monocytogenes secretes two chitinases and one chitin binding protein. Mutants lacking chiA, chiB, or lmo2467 exhibited normal growth in cultured cells but were defective for growth in the livers and spleens of mice. Mammals lack chitin; thus, L. monocytogenes may have adapted chitinases to recognize alternative substrates to enhance pathogenesis.
Collapse
|
68
|
Abstract
AbstractThe human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.
Collapse
|
69
|
YKL-40-A Protein in the Field of Translational Medicine: A Role as a Biomarker in Cancer Patients? Cancers (Basel) 2010; 2:1453-91. [PMID: 24281168 PMCID: PMC3837317 DOI: 10.3390/cancers2031453] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/01/2010] [Accepted: 07/09/2010] [Indexed: 02/07/2023] Open
Abstract
YKL-40 is a 40 kDa glycoprotein produced by cancer cells, inflammatory cells and stem cells. It probably has a role in cell proliferation and differentiation, inflammation, protection against apoptosis, stimulation of angiogenesis, and regulation of extracellular tissue remodelling. Plasma levels of YKL-40 are often elevated in patients with localized or advanced cancer compared to age-matched healthy subjects. Several studies have demonstrated that high plasma YKL-40 is an independent prognostic biomarker of short survival in patients with different types of cancer. However, there is not yet sufficient data to support determination of plasma YKL-40 outside research projects as a biomarker for screening of gastrointestinal cancer and determination of treatment response and poor prognosis before or during treatment and follow-up. Plasma YKL-40 is also elevated in patients with other diseases than cancer, e.g., severe infections, cardiovascular disease, diabetes, chronic obstructive lung disease, asthma, liver fibrosis and rheumatoid arthritis. Co-morbidity should therefore always be considered in patients with cancer, since other sources than cancer cells can increase plasma YKL-40 levels. Future focused translational research projects combining basic and clinical research are needed in a joint effort to answer questions of the complex function and regulation of YKL-40 and the question if plasma YKL-40 is a clinical useful biomarker in patients with cancer.
Collapse
|
70
|
Areshkov PA, Kavsan VM. Chitinase 3-like protein 2 (CHI3L2, YKL-39) activates phosphorylation of extracellular signal-regulated kinases ERK1/ERK2 in human embryonic kidney (HEK293) and human glioblastoma (U87 MG) cells. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Muzzarelli RAA. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 2010; 8:292-312. [PMID: 20390107 PMCID: PMC2852840 DOI: 10.3390/md8020292] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/20/2010] [Indexed: 12/22/2022] Open
Abstract
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-beta-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.
Collapse
|
72
|
Johansen JS, Schultz NA, Jensen BV. Plasma YKL-40: a potential new cancer biomarker? Future Oncol 2009; 5:1065-82. [PMID: 19792974 DOI: 10.2217/fon.09.66] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
YKL-40, a 40-kDa secreted glycoprotein, with its gene located on chromosome 1q32.1, is produced by cancer cells and inflammatory cells and has a role in inflammation, cell proliferation, differentiation, protection against apoptosis, stimulation of angiogenesis and regulation of extracellular tissue remodeling. Plasma levels of YKL-40 are elevated in a subgroup of patients with primary or advanced cancer compared with age-matched healthy subjects, but also in patients with many different diseases characterized by inflammation. Elevated plasma YKL-40 levels are an independent prognostic biomarker of short survival. There is still insufficient evidence to support its value outside of clinical trials as a screening tool, prognosticator of survival, predictor of treatment response and as a monitoring tool in the routine management of individual patients with cancer or diseases characterized by inflammation. Large prospective, longitudinal clinical cancer studies are needed to determine if plasma YKL-40 is a new cancer biomarker, or is mainly a biomarker of inflammation.
Collapse
Affiliation(s)
- Julia S Johansen
- Department of Medicine O, Herlev Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | | | | |
Collapse
|
73
|
Eurich K, Segawa M, Toei-Shimizu S, Mizoguchi E. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World J Gastroenterol 2009; 15:5249-59. [PMID: 19908331 PMCID: PMC2776850 DOI: 10.3748/wjg.15.5249] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The family of mammalian chitinases includes members both with and without glycohydrolase enzymatic activity against chitin, a polymer of N-acetylglucosamine. Chitin is the structural component of fungi, crustaceans, insects and parasitic nematodes, but is completely absent in mammals. Exposure to antigens containing chitin- or chitin-like structures sometimes induces strong T helper type-I responses in mammals, which may be associated with the induction of mammalian chitinases. Chitinase 3-like-1 (CHI3L1), a member of the mammalian chitinase family, is induced specifically during the course of inflammation in such disorders as inflammatory bowel disease, hepatitis and asthma. In addition, CHI3L1 is expressed and secreted by several types of solid tumors including glioblastoma, colon cancer, breast cancer and malignant melanoma. Although the exact function of CHI3L1 in inflammation and cancer is still largely unknown, CHI3L1 plays a pivotal role in exacerbating the inflammatory processes and in promoting angiogenesis and remodeling of the extracellular matrix. CHI3L1 may be highly involved in the chronic engagement of inflammation which potentiates development of epithelial tumorigenesis presumably by activating the mitogen-activated protein kinase and the protein kinase B signaling pathways. Anti-CHI3L1 antibodies or pan-chitinase inhibitors may have the potential to suppress CHI3L1-mediated chronic inflammation and the subsequent carcinogenic change in epithelial cells.
Collapse
|
74
|
Rajagopalan G, Tilahun AY, Asmann YW, David CS. Early gene expression changes induced by the bacterial superantigen staphylococcal enterotoxin B and its modulation by a proteasome inhibitor. Physiol Genomics 2009; 37:279-93. [PMID: 19336531 DOI: 10.1152/physiolgenomics.90385.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Toxic shock syndrome (TSS) is an acute, serious systemic illness caused by bacterial superantigens. Nonavailability of a suitable animal model until recently has hampered an in-depth understanding of the pathogenesis of TSS. In the current study, we characterized the early molecular events underlying TSS using our HLA-DR3 transgenic mouse model. Gene expression profiling using DNA microarrays identified a rapid and significant upregulation of several pro- as well as anti-inflammatory mediators, many of which have never been previously described in TSS. In vivo administration of staphylococcal enterotoxin B (SEB) led to an increase in the expression of Th0- (IL-2, 240-fold); Th1- (IFN-gamma, 360-fold; IL-12, 8-fold); Th2- (IL-4, 53-fold; IL-5, 4-fold) as well as Th17-type cytokines (IL-21, 19-fold; IL-17, 5-fold). The immunoregulatory cytokines (IL-6, 700-fold; IL-10, 18-fold); CC chemokines (such as CCL 2, 11, 3, 24, 17, 12, 7), CXC chemokines (such as CXCL 1, 2, 5, 11, 10, 19); and several proteases (matrix metalloproteinases 13, 8, 3, and 9) were also upregulated. Serum levels of several of these cytokines/chemokines were also significantly elevated. Pathway analyses revealed significant modulation in a variety of biochemical and cellular functions, providing molecular insights into the pathogenesis of TSS. Administration of bortezomib, a clinically approved proteasome inhibitor capable of blocking NF-kappaB pathway, was able to significantly modulate the expression of a variety of genes induced by SEB. Thus, our study showed that TSS is a complex process and emphasized the potential of use of bortezomib in the therapy of superantigen-induced TSS.
Collapse
|
75
|
Johansen JS, Bojesen SE, Mylin AK, Frikke-Schmidt R, Price PA, Nordestgaard BG. Elevated Plasma YKL-40 Predicts Increased Risk of Gastrointestinal Cancer and Decreased Survival After Any Cancer Diagnosis in the General Population. J Clin Oncol 2009; 27:572-8. [DOI: 10.1200/jco.2008.18.8367] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeElevated plasma YKL-40 is a biomarker of poor prognosis in cancer patients. We tested the hypotheses that elevated plasma YKL-40 predicts risk of cancer as well as survival after a cancer diagnosis in the general population.Patients and MethodsA prospective cohort study of 8,899 subjects (20 to 95 years) from the Danish general population, the Copenhagen City Heart Study, observed for 11 years for cancer incidence and 14 years for death: 1,432 participants had a first incident cancer, 968 of these died. Hazard ratios (HRs) for cancer events and death after events according to plasma YKL-40 in sex and 10 years age percentile categories: 0% to 33%, 34% to 66%, 67% to 90%, 91% to 95%, and 96% to 100%.ResultsThe cumulative incidence of gastrointestinal cancer increased with increasing YKL-40 (trend P < .0001). Multifactorially adjusted HRs for gastrointestinal cancer were 1.0 (95% CI, 0.7 to 1.5) for YKL-40 in category 34% to 66%, 1.5 for 67% to 90% (95% CI, 1.0 to 2.3), 2.4 for 91% to 95%, (95% CI, 1.3 to 4.6), and 3.4 for 96% to 100% (95% CI, 1.9 to 6.1) versus YKL-40 category 0% to 33% (P < .0001). Participants with any cancer event and YKL-40 category 91% to 100% had a median survival time after the diagnosis of 1 year versus 4 years in participants with YKL-40 category 0% to 33% (P < .0001). Corresponding values for gastrointestinal cancer were 6 months versus 1 year (P = .007). Multifactorially adjusted HRs for early death were 1.8 (95% CI, 1.3 to 2.5; P < .0001) after any cancer and 2.4 (95% CI, 1.3 to 4.3; P = .005) after gastrointestinal cancer in participants with YKL-40 category 91% to 100% versus 0% to 33%.ConclusionIn the general population, elevated plasma YKL-40 predicts increased risk of gastrointestinal cancer and decreased survival after any cancer diagnosis.
Collapse
Affiliation(s)
- Julia S. Johansen
- From the Departments of Rheumatology and Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, University of Copenhagen; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, University of Copenhagen; and the Department of Biology, University of California San Diego, La Jolla, CA
| | - Stig E. Bojesen
- From the Departments of Rheumatology and Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, University of Copenhagen; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, University of Copenhagen; and the Department of Biology, University of California San Diego, La Jolla, CA
| | - Anne K. Mylin
- From the Departments of Rheumatology and Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, University of Copenhagen; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, University of Copenhagen; and the Department of Biology, University of California San Diego, La Jolla, CA
| | - Ruth Frikke-Schmidt
- From the Departments of Rheumatology and Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, University of Copenhagen; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, University of Copenhagen; and the Department of Biology, University of California San Diego, La Jolla, CA
| | - Paul A. Price
- From the Departments of Rheumatology and Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, University of Copenhagen; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, University of Copenhagen; and the Department of Biology, University of California San Diego, La Jolla, CA
| | - Børge G. Nordestgaard
- From the Departments of Rheumatology and Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, University of Copenhagen; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, University of Copenhagen; and the Department of Biology, University of California San Diego, La Jolla, CA
| |
Collapse
|
76
|
Berres ML, Papen S, Pauels K, Schmitz P, Zaldivar MM, Hellerbrand C, Mueller T, Berg T, Weiskirchen R, Trautwein C, Wasmuth HE. A functional variation in CHI3L1 is associated with severity of liver fibrosis and YKL-40 serum levels in chronic hepatitis C infection. J Hepatol 2009; 50:370-6. [PMID: 19070929 DOI: 10.1016/j.jhep.2008.09.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/02/2008] [Accepted: 09/16/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS YKL-40 is a chitinase-like protein involved in matrix remodelling and a non-invasive fibrosis marker. We assessed whether a functional promoter polymorphism in CHI3L1, encoding YKL-40, is associated with HCV-induced liver fibrosis and influences YKL-40 serum concentrations. METHODS The CHI3L1 -131G-->C promoter polymorphism was genotyped in two cohorts of HCV infected patients (n=440) by 5'-endonuclease assays. Histological fibrosis scores and YKL-40 serum levels (ELISA) were associated with CHI3L1 -131G-->C by quantitative and qualitative genetic analyses and corrected by multivariate analysis. RESULTS CHI3L1 -131G-->C genotype was strongly associated with the stage of liver fibrosis in the screening (n=265, P=0.001) and validation cohort (n=175, P=0.009). Homozygous carriers of the G allele were protected from severe fibrosis (F3/F4). This association was confirmed after correction for age and gender. Functionally, the G allele was associated with reduced serum levels of YKL-40 in HCV infected patients (P=0.002). CONCLUSIONS The CHI3L1 promoter polymorphism -131G-->C determines YKL-40 serum levels and is associated with the severity of HCV-induced liver fibrosis. These results suggest a functional role of YKL-40 in liver fibrogenesis and should be taken into account when using YKL-40 as a non-invasive fibrosis marker.
Collapse
Affiliation(s)
- Marie-Luise Berres
- Department of Internal Medicine III, University Hospital Aachen, RWTH Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|