51
|
Brennen WN, Denmeade SR, Isaacs JT. Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocr Relat Cancer 2013; 20:R269-90. [PMID: 23975882 PMCID: PMC3994592 DOI: 10.1530/erc-13-0151] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have an inherent tropism for sites of inflammation, which are frequently present in sites of cancer, including prostatic lesions. MSCs have been defined as CD73/CD90/CD105 triple-positive cells in the absence of hematopoietic lineage markers with the ability to differentiate into multiple mesodermal lineages, including osteoblasts, adipocytes, and chondrocytes. Our group has previously demonstrated that MSCs represent between 0.01 and 1.1% of the total cells present in human prostatectomy tissue. In addition to their multi-lineage differentiation potential, MSCs are immunoprivileged in nature and have a range of immunomodulatory effects on both the innate and adaptive arms of the immune system. MSCs have been detected in an increasing array of tissues, and evidence suggests that they are likely present in perivascular niches throughout the body. These observations suggest that MSCs represent critical mediators of the overall immune response during physiological homeostasis and likely contribute to pathophysiological conditions as well. Chronic inflammation has been suggested as an initiating event and progression factor in prostate carcinogenesis, a process in which the immunosuppressive properties of MSCs may play a role. MSCs have also been shown to influence malignant progression through a variety of other mechanisms, including effects on tumor proliferation, angiogenesis, survival, and metastasis. Additionally, human bone marrow-derived MSCs have been shown to traffic to human prostate cancer xenografts in immunocompromised murine hosts. The trafficking properties and immunoprivileged status of MSCs suggest that they can be exploited as an allogeneic cell-based vector to deliver cytotoxic or diagnostic agents for therapy.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
52
|
Knoop K, Schwenk N, Dolp P, Willhauck MJ, Zischek C, Zach C, Hacker M, Göke B, Wagner E, Nelson PJ, Spitzweg C. Stromal targeting of sodium iodide symporter using mesenchymal stem cells allows enhanced imaging and therapy of hepatocellular carcinoma. Hum Gene Ther 2013; 24:306-16. [PMID: 23402366 DOI: 10.1089/hum.2012.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The tumor-homing property of mesenchymal stem cells (MSC) has lead to their use as delivery vehicles for therapeutic genes. The application of the sodium iodide symporter (NIS) as therapy gene allows noninvasive imaging of functional transgene expression by (123)I-scintigraphy or PET-imaging, as well as therapeutic application of (131)I or (188)Re. Based on the critical role of the chemokine RANTES (regulated on activation, normal T-cell expressed and presumably secreted)/CCL5 secreted by MSCs in the course of tumor stroma recruitment, use of the RANTES/CCL5 promoter should allow tumor stroma-targeted expression of NIS after MSC-mediated delivery. Using a human hepatocellular cancer (HCC) xenograft mouse model (Huh7), we investigated distribution and tumor recruitment of RANTES-NIS-engineered MSCs after systemic injection by gamma camera imaging. (123)I-scintigraphy revealed active MSC recruitment and CCL5 promoter activation in the tumor stroma of Huh7 xenografts (6.5% ID/g (123)I, biological half-life: 3.7 hr, tumor-absorbed dose: 44.3 mGy/MBq). In comparison, 7% ID/g (188)Re was accumulated in tumors with a biological half-life of 4.1 hr (tumor-absorbed dose: 128.7 mGy/MBq). Administration of a therapeutic dose of (131)I or (188)Re (55.5 MBq) in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved survival without significant differences between (131)I and (188)Re. These data demonstrate successful stromal targeting of NIS in HCC tumors by selective recruitment of NIS-expressing MSCs and by use of the RANTES/CCL5 promoter. The resulting tumor-selective radionuclide accumulation was high enough for a therapeutic effect of (131)I and (188)Re opening the exciting prospect of NIS-mediated radionuclide therapy of metastatic cancer using genetically engineered MSCs as gene delivery vehicles.
Collapse
Affiliation(s)
- Kerstin Knoop
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Brennen WN, Chen S, Denmeade SR, Isaacs JT. Quantification of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer. Oncotarget 2013; 4:106-17. [PMID: 23362217 PMCID: PMC3702211 DOI: 10.18632/oncotarget.805] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating bone marrow-derived Mesenchymal Stem Cells (BM-MSCs) have an innate tropism for tumor tissue in response to the inflammatory microenvironment present in malignant lesions. The prostate is bombarded by numerous infectious & inflammatory insults over a lifetime. Chronic inflammation is associated with CXCL12, CCL5, and CCL2, which are highly overexpressed in prostate cancer. Among other cell types, these chemoattractant stimuli recruit BM-MSCs to the tumor. MSCs are minimally defined as plastic-adhering cells characterized by the expression of CD90, CD73, and CD105 in the absence of hematopoietic markers, which can differentiate into osteoblasts, chondrocytes, and adipocytes. MSCs are immunoprivileged and have been implicated in tumorigenesis through multiple mechanisms, including promoting proliferation, angiogenesis, and metastasis, in addition to the generation of an immunosuppressive microenvironment. We have demonstrated that MSCs represent 0.01-1.1% of the total cells present in core biopsies from primary human prostatectomies. Importantly, these analyses were performed on samples prior to expansion in tissue culture. MSCs in these prostatectomy samples are FAP-, CD90-, CD73-, and CD105-positive, and CD14-, CD20-, CD34-, CD45-, and HLA-DR-negative. Additionally, like BM-MSCs, these prostate cancer-derived stromal cells (PrCSCs) were shown to differentiate into osteoblasts, adipocytes, & chondrocytes. In contrast to primary prostate cancer-derived epithelial cells, fluorescently-labeled PrCSCs & BM-MSCs were both shown to home to CWR22RH prostate cancer xenografts following IV injection. These studies demonstrate that not only are MSCs present in sites of prostate cancer where they may contribute to carcinogenesis, but these cells may also potentially be used to deliver cytotoxic or imaging agents for therapeutic and/or diagnostic purposes.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | | | |
Collapse
|
54
|
Abstract
Development of antitumor preparations with low toxicity and high selectivity of action is one of the top priorities of cancer gene therapy. Mesenchymal stem cells possess natural tropism towards tumors, a property that makes possible their use as a vehicle for targeted delivery of therapeutic genes into tumors of various etiologies. At present, genes encoding enzymes (cytosine deaminase, thymidine kinase, carboxyl esterase), cytokines (IL-2, IL-4, IL-12, IFN-beta) and apoptosis inducing factors (TRAIL) are used as therapeutic genes. Mesenchymal stem cells, as demonstrated using experimental models of tumors of various etiologies as well as animals with metastases in brain and lungs, are able to successfully deliver therapeutic genes into tumors and produce significant antitumor effect. However, to effectively use this therapeutic strategy in clinic, one still has to solve a number of technical problems.
Collapse
|
55
|
Wang J, Liu S, Wang J, Zhang Y, Li B, Cai C, Wang S. Study on molecular imaging and radionuclide therapy of human nasopharyngeal carcinoma cells transfected with baculovirus-mediated sodium/iodine symporter gene. Int J Oncol 2013; 43:177-84. [PMID: 23670584 DOI: 10.3892/ijo.2013.1936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/19/2013] [Indexed: 11/05/2022] Open
Abstract
The non-invasive imaging and radiotherapy by sodium/iodine symporter (NIS) gene transfer have been widely used for many experiments and some clinical studies. Baculovirus is an efficient tool for gene delivery into mammalian cells in vitro and in vivo. However, the applications of NIS and/or baculovirus in nasopharyngeal carcinoma (NPC) cells have not been reported yet. In this study, two recombinant baculoviruses expressing, respectively, NIS and green fluorescent protein (GFP), both under the control of the cytomegalovirus promoter (Bac-NIS and Bac-GFP) were successfully constructed. The infection efficiency and GFP fluorescence intensity of the human NPC cell line CNE-2Z infected by Bac-GFP at different setting of multiplicity of infection (MOI) were determined by flow cytometry. NIS protein expression was detected by indirect immunofluorescence. The 125I uptake and efflux of infected CNE-2Z cells by Bac-NIS were measured by a γ-counter. The cytotoxicity of baculovirus and sodium butyrate and inhibition of iodine uptake by NaClO4 were examined. The radioactivity and GFP fluorescence intensity in co-infected CNE-2Z cells by Bac-NIS and Bac-GFP were measured. Cell colony formation tests were conducted to evaluate the killing effect of Bac-NIS-mediated 131I. Based on the results, the transduction efficiency of Bac-GFP at the MOI of 200 or 400 reached 91.16 and 94.79%, respectively. NIS protein was expressed accurately on transfected CNE-2Z cell membranes and performed its normal function in iodine transport. Baculovirus had hardly any cytotoxic effects on infected cells, while relatively high concentration of sodium butyrate generated cytotoxicity. The correlation coefficient between the GFP fluorescence intensity and radioactivity in co-infected CNE-2Z cells was 0.917. Treatment coupled Bac-NIS with 131I killed the infected tumour cells dramatically in vitro. These results suggest that baculovirus is an effective vector of the gene delivery into CNE-2Z cells and NIS-mediated iodine transport is a potential approach for molecular imaging and radionuclide therapy of NPC.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Otolaryngology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | | | | | | | | | | | | |
Collapse
|
56
|
Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene 2013; 525:208-16. [PMID: 23542073 DOI: 10.1016/j.gene.2013.03.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 01/14/2023]
Abstract
Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, cedex 2, France.
| | | | | | | |
Collapse
|
57
|
Luo D, Yan X, Liu D, Zhou X, Liu G. Differential effects of mesenchymal stem cells on a heterogeneous cell population within lung cancer cell lines. Mol Cell Biochem 2013; 378:107-16. [PMID: 23456479 DOI: 10.1007/s11010-013-1600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/23/2013] [Indexed: 12/19/2022]
Abstract
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1-3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.
Collapse
Affiliation(s)
- Dan Luo
- Department of Respiratory, Southwest Hospital, Third Military Medical University of PLA, Shapingba District, Chongqing, China
| | | | | | | | | |
Collapse
|
58
|
Keung EZ, Nelson PJ, Conrad C. Concise Review: Genetically Engineered Stem Cell Therapy Targeting Angiogenesis and Tumor Stroma in Gastrointestinal Malignancy. Stem Cells 2013; 31:227-35. [DOI: 10.1002/stem.1269] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/11/2012] [Indexed: 12/13/2022]
|
59
|
Quach CHT, Jung KH, Paik JY, Park JW, Lee EJ, Lee KH. Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging. Nucl Med Biol 2012; 39:1251-60. [DOI: 10.1016/j.nucmedbio.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/27/2012] [Accepted: 08/03/2012] [Indexed: 01/01/2023]
|
60
|
Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. Gene Ther 2012; 20:625-33. [PMID: 23038026 DOI: 10.1038/gt.2012.79] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we determined the in vitro and in vivo efficacy of sodium iodide symporter (NIS) gene transfer and the therapeutic potential of oncolytic virotherapy combined with radioiodine therapy using a conditionally replicating oncolytic adenovirus. For this purpose, we used a replication-selective adenovirus in which the E1a gene is driven by the mouse alpha-fetoprotein (AFP) promoter and the human NIS gene is inserted in the E3 region (Ad5-E1/AFP-E3/NIS). Human hepatocellular carcinoma cells (HuH7) infected with Ad5-E1/AFP-E3/NIS concentrated radioiodine at a level that was sufficiently high for a therapeutic effect in vitro. In vivo experiments demonstrated that 3 days after intratumoral (i.t.) injection of Ad5-E1/AFP-E3/NIS HuH7 xenograft tumors accumulated approximately 25% ID g(-1) (percentage of the injected dose per gram tumor tissue) (123)I as shown by (123)I gamma camera imaging. A single i.t. injection of Ad5-E1/AFP-E3/NIS (virotherapy) resulted in a significant reduction of tumor growth and prolonged survival, as compared with injection of saline. Combination of oncolytic virotherapy with radioiodine treatment (radiovirotherapy) led to an additional reduction of tumor growth that resulted in markedly improved survival as compared with virotherapy alone. In conclusion, local in vivo NIS gene transfer using a replication-selective oncolytic adenovirus is able to induce a significant therapeutic effect, which can be enhanced by additional (131)I application.
Collapse
|
61
|
Kogai T, Brent GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 2012; 135:355-70. [PMID: 22750642 DOI: 10.1016/j.pharmthera.2012.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023]
Abstract
Expression of the sodium iodide symporter (NIS) is required for efficient iodide uptake in thyroid and lactating breast. Since most differentiated thyroid cancer expresses NIS, β-emitting radioactive iodide is routinely utilized to target remnant thyroid cancer and metastasis after total thyroidectomy. Stimulation of NIS expression by high levels of thyroid-stimulating hormone is necessary to achieve radioiodide uptake into thyroid cancer that is sufficient for therapy. The majority of breast cancer also expresses NIS, but at a low level insufficient for radioiodine therapy. Retinoic acid is a potent NIS inducer in some breast cancer cells. NIS is also modestly expressed in some non-thyroidal tissues, including salivary glands, lacrimal glands and stomach. Selective induction of iodide uptake is required to target tumors with radioiodide. Iodide uptake in mammalian cells is dependent on the level of NIS gene expression, but also successful translocation of NIS to the cell membrane and correct insertion. The regulatory mechanisms of NIS expression and membrane insertion are regulated by signal transduction pathways that differ by tissue. Differential regulation of NIS confers selective induction of functional NIS in thyroid cancer cells, as well as some breast cancer cells, leading to more efficient radioiodide therapy for thyroid cancer and a new strategy for breast cancer therapy. The potential for systemic radioiodide treatment of a range of other cancers, that do not express endogenous NIS, has been demonstrated in models with tumor-selective introduction of exogenous NIS.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
62
|
Bao Q, Zhao Y, Niess H, Conrad C, Schwarz B, Jauch KW, Huss R, Nelson PJ, Bruns CJ. Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 2012; 21:2355-63. [PMID: 22530882 DOI: 10.1089/scd.2012.0060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host.
Collapse
Affiliation(s)
- Qi Bao
- Department of Surgery, University of Munich, Campus Großhadern, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64:739-48. [PMID: 21740940 DOI: 10.1016/j.addr.2011.06.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/22/2022]
Abstract
Recent pre-clinical and clinical studies have shown that stem cell-based therapies hold tremendous promise for the treatment of human disease. Mesenchymal stem cells (MSC) are emerging as promising anti-cancer agents which have an enormous potential to be utilized to treat a number of different cancer types. MSC have inherent tumor-trophic migratory properties, which allows them to serve as vehicles for delivering effective, targeted therapy to isolated tumors and metastatic disease. MSC have been readily engineered to express anti-proliferative, pro-apoptotic, anti-angiogenic agents that specifically target different cancer types. Many of these strategies have been validated in a wide range of studies evaluating treatment feasibility or efficacy, as well as establishing methods for real-time monitoring of stem cell migration in vivo for optimal therapy surveillance and accelerated development. This review aims to provide an in depth status of current MSC-based cancer therapies, as well as the prospects for their clinical translation.
Collapse
|