51
|
Adeno-Associated Virus Gene Therapy: Translational Progress and Future Prospects in the Treatment of Heart Failure. Heart Lung Circ 2018; 27:1285-1300. [PMID: 29703647 DOI: 10.1016/j.hlc.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in treatment over the past decade, heart failure remains a significant public health burden and a leading cause of death in the developed world. Gene therapy provides a promising approach for preventing and reversing cardiac abnormalities, however, clinical application has shown limited success to date. A substantial effort is being invested into the development of recombinant adeno-associated viruses (AAVs) for cardiac gene therapy as AAV gene therapy offers a high safety profile and provides sustained and efficient transgene expression following a once-off administration. Due to the physiological, anatomical and genetic similarities between large animals and humans, preclinical studies using large animal models for AAV gene therapy are crucial stepping stones between the laboratory and the clinic. Many molecular targets selected to treat heart failure using AAV gene therapy have been chosen because of their potential to regulate and restore cardiac contractility. Other genes targeted with AAV are involved with regulating angiogenesis, beta-adrenergic sensitivity, inflammation, physiological signalling and metabolism. While significant progress continues to be made in the field of AAV cardiac gene therapy, challenges remain in overcoming host neutralising antibodies, improving AAV vector cardiac-transduction efficiency and selectivity, and optimising the dose, route and method of delivery.
Collapse
|
52
|
Abstract
In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective "therapeutic products" is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Giuseppe Ronzitti
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Federico Mingozzi
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
- University Pierre and Marie Curie-Paris 6 and INSERM U974, 75651 Paris, France
| |
Collapse
|
53
|
Ellsworth JL, OCallaghan M, Rubin H, Seymour A. Low Seroprevalence of Neutralizing Antibodies Targeting Two Clade F AAV in Humans. HUM GENE THER CL DEV 2018. [DOI: 10.1089/hum.2017.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jeff L Ellsworth
- Homology Medicines, Inc., 45 Wiggins Ave, Bedford, Massachusetts, United States, 01730,
| | | | - Hillard Rubin
- Homology Medicines, Inc., Bedford, Massachusetts, United States,
| | - Albert Seymour
- Homology Medicines, Inc., Bedford, Massachusetts, United States,
| |
Collapse
|
54
|
Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Adv 2017; 1:2019-2031. [PMID: 29296848 DOI: 10.1182/bloodadvances.2017010181] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
Results from clinical trials of liver gene transfer for hemophilia demonstrate the potential of the adeno-associated virus (AAV) vector platform. However, to achieve therapeutic transgene expression, in some cases high vector doses are required, which are associated with a higher risk of triggering anti-capsid cytotoxic T-cell responses. Additionally, anti-AAV preexisting immunity can prevent liver transduction even at low neutralizing antibody (NAb) titers. Here, we describe the use of exosome-associated AAV (exo-AAV) vectors as a robust liver gene delivery system that allows the therapeutic vector dose to be decreased while protecting from preexisting humoral immunity to the capsid. The in vivo efficiency of liver targeting of standard AAV8 or AAV5 and exo-AAV8 or exo-AAV5 vectors expressing human coagulation factor IX (hF.IX) was evaluated. A significant enhancement of transduction efficiency was observed, and in hemophilia B mice treated with 4 × 1010 vector genomes per kilogram of exo-AAV8 vectors, a staggering ∼1 log increase in hF.IX transgene expression was observed, leading to superior correction of clotting time. Enhanced liver expression was also associated with an increase in the frequency of regulatory T cells in lymph nodes. The efficiency of exo- and standard AAV8 vectors in evading preexisting NAbs to the capsid was then evaluated in a passive immunization mouse model and in human sera. Exo-AAV8 gene delivery allowed for efficient transduction even in the presence of moderate NAb titers, thus potentially extending the proportion of subjects eligible for liver gene transfer. Exo-AAV vectors therefore represent a platform to improve the safety and efficacy of liver-directed gene transfer.
Collapse
|
55
|
Mingozzi F, High KA. Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu Rev Virol 2017; 4:511-534. [PMID: 28961410 DOI: 10.1146/annurev-virology-101416-041936] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune responses in gene therapy with adeno-associated virus (AAV) vectors have been the object of almost two decades of study. Although preclinical models helped to define and predict certain aspects of interactions between the vector and the host immune system, most of our current knowledge has come from clinical trials. These studies have allowed development of effective interventions for modulating immunotoxicities associated with vector administration, resulting in therapeutic advances. However, the road to full understanding and effective modulation of immune responses in gene therapy is still long; the determinants of the balance between tolerance and immunogenicity in AAV vector-mediated gene transfer are not fully understood, and effective solutions for overcoming preexisting neutralizing antibodies are still lacking. However, despite these challenges, the goal of reliably delivering effective gene-based treatments is now in sight.
Collapse
Affiliation(s)
- Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; .,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651 Paris, France
| | | |
Collapse
|
56
|
Selot R, Arumugam S, Mary B, Cheemadan S, Jayandharan GR. Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Front Pharmacol 2017; 8:441. [PMID: 28769791 PMCID: PMC5511854 DOI: 10.3389/fphar.2017.00441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27-64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans.
Collapse
Affiliation(s)
- Ruchita Selot
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sathyathithan Arumugam
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sabna Cheemadan
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| |
Collapse
|
57
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
58
|
Successful Repeated Hepatic Gene Delivery in Mice and Non-human Primates Achieved by Sequential Administration of AAV5 ch and AAV1. Mol Ther 2017; 25:1831-1842. [PMID: 28596114 DOI: 10.1016/j.ymthe.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
In the gene therapy field, re-administration of adeno-associated virus (AAV) is an important topic because a decrease in therapeutic protein expression might occur over time. However, an efficient re-administration with the same AAV serotype is impossible due to serotype-specific, anti-AAV neutralizing antibodies (NABs) that are produced after initial AAV treatment. To address this issue, we explored the feasibility of using chimeric AAV serotype 5 (AAV5ch) and AAV1 for repeated liver-targeted gene delivery. To develop a relevant model, we immunized animals with a high dose of AAV5ch-human secreted embryonic alkaline phosphatase (hSEAP) that generates high levels of anti-AAV5ch NAB. Secondary liver transduction with the same dose of AAV1-human factor IX (hFIX) in the presence of high levels of anti-AAV5ch NAB proved to be successful because expression/activity of both reporter transgenes was observed. This is the first time that two different transgenes are shown to be produced by non-human primate (NHP) liver after sequential administration of clinically relevant doses of both AAV5ch and AAV1. The levels of transgene proteins achieved after delivery with AAV5ch and AAV1 illustrate the possibility of both serotypes for liver targeting. Furthermore, transgene DNA and RNA biodistribution patterns provided insight into the potential cause of decrease or loss of transgene protein expression over time in NHPs.
Collapse
|
59
|
Effective Depletion of Pre-existing Anti-AAV Antibodies Requires Broad Immune Targeting. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:159-168. [PMID: 28345001 PMCID: PMC5363314 DOI: 10.1016/j.omtm.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Abstract
Pre-existing antibodies (Abs) to AAV pose a critical challenge for the translation of gene therapies. No effective approach is available to overcome pre-existing Abs. Given the complexity of Ab production, overcoming pre-existing Abs will require broad immune targeting. We generated a mouse model of pre-existing AAV9 Abs to test multiple immunosuppressants, including bortezomib, rapamycin, and prednisolone, individually or in combination. We identified an effective approach combining rapamycin and prednisolone, reducing serum AAV9 Abs by 70%–80% at 4 weeks and 85%–93% at 8 weeks of treatment. The rapamycin plus prednisolone treatment resulted in significant decreases in the frequency of B cells, plasma cells, and IgG-secreting and AAV9-specific Ab-producing plasma cells in bone marrow. The rapamycin plus prednisolone treatment also significantly reduced frequencies of IgD−IgG+ class-switched/FAS+CL7+ germinal center B cells, and of activated CD4+ T cells expressing PD1 and GL7, in spleen. These data suggest that rapamycin plus prednisolone has selective inhibitory effects on both T helper type 2 support of B cell activation in spleen and on bone marrow plasma cell survival, leading to effective AAV9 Abs depletion. This promising immunomodulation approach is highly translatable, and it poses minimal risk in the context of therapeutic benefits promised by gene therapy for severe monogenetic diseases, with a single or possibly a few treatments over a lifetime.
Collapse
|
60
|
Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 2016; 21:16-25. [PMID: 27459604 PMCID: PMC5138077 DOI: 10.1016/j.coviro.2016.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
For diseases like muscular dystrophy, an effective gene therapy requires bodywide correction. Systemic viral vector delivery has been attempted since early 1990s. Yet a true success was not achieved until mid-2000 when adeno-associated virus (AAV) serotype-6, 8 and 9 were found to result in global muscle transduction in rodents following intravenous injection. The simplicity of the technique immediately attracts attention. Marvelous whole body amelioration has been achieved in rodent models of many diseases. Scale-up in large mammals also shows promising results. Importantly, the first systemic AAV-9 therapy was initiated in patients in April 2014. Recent studies have now begun to reveal molecular underpinnings of systemic AAV delivery and to engineer new AAV capsids with superior properties for systemic gene therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, The University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
61
|
Wang Q, Firrman J, Wu Z, Pokiniewski KA, Valencia CA, Wang H, Wei H, Zhuang Z, Liu L, Wunder SL, Chin MPS, Xu R, Diao Y, Dong B, Xiao W. High-Density Recombinant Adeno-Associated Viral Particles are Competent Vectors for In Vivo Transduction. Hum Gene Ther 2016; 27:971-981. [PMID: 27550145 DOI: 10.1089/hum.2016.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed, heavier particles found in rAAV preparations have traditionally been ignored due to their reported low in vitro transduction efficiency. In this study, the biological properties of regular and high-density rAAV serotype 8 vectors, rAAVRD and rAAVHD, were systemically compared. Results demonstrated that both rAAVRD and rAAVHD exhibited similar DNA packaging profiles, while rAAVHD capsids contained fewer VP1 and VP2 proteins, indicating that the rAAVHD particles contained a higher DNA/protein ratio than that of rAAVRD particles. Dynamic light scattering and transmission electron microscopy data revealed that the diameter of rAAVHD was smaller than that of rAAVRD. In vitro, rAAVHD was two- to fourfold less efficient in transduction compared with rAAVRD. However, the transduction performance of rAAVHD and rAAVRD was similar in vivo. No significant difference in neutralizing antibody formation against rAAVRD and rAAVHD was observed, suggesting that the surface epitopes of rAAVRD and rAAVHD are congruent. In summary, the results of this study demonstrate that rAAVRD and rAAVHD are equally competent for in vivo transduction, despite their difference in vitro. Therefore, the use of rAAVHD vectors in human gene therapy should be further evaluated.
Collapse
Affiliation(s)
- Qizhao Wang
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China.,2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Jenni Firrman
- 3 Department of Microbiology and Immunology, Temple University , Philadelphia, Pennsylvania.,4 United States Department of Agriculture, ARS , ERRC, Wyndmoor, Pennyslvania
| | - Zhongren Wu
- 2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Katie A Pokiniewski
- 3 Department of Microbiology and Immunology, Temple University , Philadelphia, Pennsylvania
| | - C Alexander Valencia
- 5 Division of Human Genetics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,6 Department of Pediatrics, University of Cincinnati School of Medicine , Cincinnati, Ohio
| | - Hairong Wang
- 7 Department of Chemistry, Temple University , Philadelphia, Pennsylvania
| | - Hongying Wei
- 2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Zhenjing Zhuang
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China.,2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - LinShu Liu
- 4 United States Department of Agriculture, ARS , ERRC, Wyndmoor, Pennyslvania
| | - Stephanie L Wunder
- 7 Department of Chemistry, Temple University , Philadelphia, Pennsylvania
| | - Mario P S Chin
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China
| | - Ruian Xu
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China
| | - Yong Diao
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China
| | - Biao Dong
- 2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Weidong Xiao
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China.,2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania.,3 Department of Microbiology and Immunology, Temple University , Philadelphia, Pennsylvania.,4 United States Department of Agriculture, ARS , ERRC, Wyndmoor, Pennyslvania.,8 Cardiovascular Research Center, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16052. [PMID: 27525291 PMCID: PMC4972090 DOI: 10.1038/mtm.2016.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023]
Abstract
Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.
Collapse
|
63
|
Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol 2016; 89:8334-45. [PMID: 26041300 DOI: 10.1128/jvi.00908-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 g/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled.
Collapse
|
64
|
Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Ther 2015; 23:313-9. [PMID: 26699914 DOI: 10.1038/gt.2015.109] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 01/16/2023]
Abstract
Adeno-associated virus serotype 1 (AAV1) has many advantages as a gene therapy vector, but the presence of pre-existing neutralizing antibodies (NAbs) is an important limitation. This study was designed to determine: (1) characteristics of AAV NAbs in human subjects, (2) prevalence of AAV1 NAbs in heart failure patients and (3) utility of aggressive immunosuppressive therapy in reducing NAb seroconversion in an animal model. NAb titers were assessed in a cohort of heart failure patients and in patients screened for a clinical trial of gene therapy with AAV1 carrying the sarcoplasmic reticulum calcium ATPase gene (AAV1/SERCA2a). AAV1 NAbs were found in 59.5% of 1552 heart failure patients. NAb prevalence increased with age (P=0.001) and varied geographically. The pattern of NAb titers suggested that exposure is against AAV2, with AAV1 NAb seropositivity due to crossreactivity. The effects of immunosuppression on NAb formation were tested in mini-pigs treated with immunosuppressant therapy before, during and after a single AAV1/SERCA2a infusion. Aggressive immunosuppression did not prevent formation of AAV1 NAbs. We conclude that immunosuppression is unlikely to be a viable solution for repeat AAV1 dosing. Strategies to reduce NAbs in heart failure patients are needed to increase eligibility for gene transfer using AAV vectors.
Collapse
|
65
|
Tse LV, Moller-Tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 2015; 15:845-55. [PMID: 25985812 DOI: 10.1517/14712598.2015.1035645] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing. AREAS COVERED In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV. EXPERT OPINION Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches.
Collapse
Affiliation(s)
- Longping V Tse
- University of North Carolina, Gene Therapy Center , CB#7352, Thurston Building, Chapel Hill, NC 27599 , USA
| | | | | |
Collapse
|
66
|
Brimble MA, Reiss UM, Nathwani AC, Davidoff AM. New and improved AAVenues: current status of hemophilia B gene therapy. Expert Opin Biol Ther 2015; 16:79-92. [DOI: 10.1517/14712598.2015.1106475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
67
|
Han SO, Li S, Brooks ED, Masat E, Leborgne C, Banugaria S, Bird A, Mingozzi F, Waldmann H, Koeberl D. Enhanced efficacy from gene therapy in Pompe disease using coreceptor blockade. Hum Gene Ther 2015; 26:26-35. [PMID: 25382056 DOI: 10.1089/hum.2014.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Enzyme replacement therapy (ERT) is the standard-of-care treatment of Pompe disease, a lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA). One limitation of ERT with recombinant human (rh) GAA is antibody formation against GAA. Similarly, in adeno-associated virus (AAV) vector-mediated gene transfer for Pompe disease, development of antibodies against the GAA transgene product and the AAV vector prevents therapeutic efficacy and vector readministration, respectively. Here a nondepleting anti-CD4 monoclonal antibody (mAb) was administrated intravenously prior to administration of an AAV2/9 vector encoding GAA to suppress anti-GAA responses, leading to a substantial reduction of anti-GAA immunoglobulins, including IgG1, IgG2a, IgG2b, IgG2c, and IgG3. Transduction efficiency in liver with a subsequent AAV2/8 vector was massively improved by the administration of anti-CD4 mAb with the initial AAV2/9 vector, indicating a spread of benefit derived from control of the immune response to the first AAV2/9 vector. Anti-CD4 mAb along with AAV2/9-CBhGAApA significantly increased GAA activity in heart and skeletal muscles along with a significant reduction of glycogen accumulation. Taken together, these data demonstrated that the addition of nondepleting anti-CD4 mAb with gene therapy controls humoral immune responses to both vector and transgene, resulting in clear therapeutic benefit in mice with Pompe disease.
Collapse
Affiliation(s)
- Sang-oh Han
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, NC 27710
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Qu W, Wang M, Wu Y, Lv Y, Wang Q, Xu R. Calcium-ion-modulated ceramic hydroxyapatite resin for the scalable purification of recombinant Adeno-Associated Virus serotype 9. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 990:15-22. [DOI: 10.1016/j.jchromb.2015.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/28/2022]
|
69
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
70
|
Chuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, Nair N, Willems J, Evens H, Rincon MY, Matrai J, Di Matteo M, Samara-Kuko E, Yan B, Acosta-Sanchez A, Meliani A, Cherel G, Blouin V, Christophe O, Moullier P, Mingozzi F, VandenDriessche T. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther 2014; 22:1605-13. [PMID: 24954473 PMCID: PMC4435486 DOI: 10.1038/mt.2014.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
The robustness and safety of liver-directed gene therapy can be substantially
improved by enhancing expression of the therapeutic transgene in the liver. To
achieve this, we developed a new approach of rational in silico vector
design. This approach relies on a genome-wide bio-informatics strategy to
identify cis-acting regulatory modules (CRMs) containing
evolutionary conserved clusters of transcription factor binding site motifs that
determine high tissue-specific gene expression. Incorporation of these
CRMs into adeno-associated viral (AAV) and non-viral vectors
enhanced gene expression in mice liver 10 to 100-fold, depending on the promoter
used. Furthermore, these CRMs resulted in robust and sustained
liver-specific expression of coagulation factor IX (FIX), validating their
immediate therapeutic and translational relevance. Subsequent translational
studies indicated that therapeutic FIX expression levels could be attained
reaching 20–35% of normal levels after AAV-based liver-directed gene
therapy in cynomolgus macaques. This study underscores the potential of rational
vector design using computational approaches to improve their robustness and
therefore allows for the use of lower and thus safer vector doses for gene
therapy, while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Marinee K Chuah
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Inge Petrus
- Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Pieter De Bleser
- Department for Molecular Biomedical Research (DMBR), VIB - Ghent University, Ghent, Belgium
| | - Caroline Le Guiner
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Gwladys Gernoux
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Oumeya Adjali
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Jessica Willems
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Hanneke Evens
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Melvin Y Rincon
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Janka Matrai
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Vesalius Research Center, VIB, Leuven, Belgium [3] University of Leuven, Leuven, Belgium
| | - Mario Di Matteo
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Bing Yan
- 1] Vesalius Research Center, VIB, Leuven, Belgium [2] University of Leuven, Leuven, Belgium
| | - Abel Acosta-Sanchez
- 1] Vesalius Research Center, VIB, Leuven, Belgium [2] University of Leuven, Leuven, Belgium
| | - Amine Meliani
- 1] Genethon, Evry, France [2] University Pierre and Marie Curie, Paris, France
| | - Ghislaine Cherel
- 1] INSERM, U770, Le Kremlin Bicêtre, France [2] Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Véronique Blouin
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Olivier Christophe
- 1] INSERM, U770, Le Kremlin Bicêtre, France [2] Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Philippe Moullier
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Federico Mingozzi
- 1] Genethon, Evry, France [2] University Pierre and Marie Curie, Paris, France
| | - Thierry VandenDriessche
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
71
|
Rocca CJ, Ur SN, Harrison F, Cherqui S. rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther 2014; 21:618-28. [PMID: 24784447 PMCID: PMC4047163 DOI: 10.1038/gt.2014.35] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Effective gene therapy strategies for the treatment of kidney disorders remain elusive. We report an optimized kidney-targeted gene delivery strategy using recombinant adeno-associated virus (rAAV) administered via retrograde renal vein injection in mice. Renal vein injection of rAAV consistently resulted in superior kidney transduction compared with tail vein injection using as little as half the tail vein dose. We compared rAAV5, 6, 8 and 9, containing either green fluorescent protein (GFP) or luciferase reporter genes driven by the Cytomegalovirus promoter. We demonstrated that although rAAV6 and 8 injected via renal vein transduced the kidney, transgene expression was mainly restricted to the medulla. Transgene expression was systematically low after rAAV5 injection, attributed to T-cell immune response, which could be overcome by transient immunosuppression. However, rAAV9 was the only serotype that permitted high-transduction efficiency of both the cortex and medulla. Moreover, both the glomeruli and tubules were targeted, with a higher efficiency within the glomeruli. To improve the specificity of kidney-targeted gene delivery with rAAV9, we used the parathyroid hormone receptor 'kidney-specific' promoter. We obtained a more efficient transgene expression within the kidney, and a significant reduction in other tissues. Our work represents the first comprehensive and clinically relevant study for kidney gene delivery.
Collapse
Affiliation(s)
- Céline J. Rocca
- Department of Pediatrics, Division of Genetics, University of California, San Diego, 9500 Gilman drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Sarah N. Ur
- Department of Pediatrics, Division of Genetics, University of California, San Diego, 9500 Gilman drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Frank Harrison
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, 9500 Gilman drive, MC 0734, La Jolla, California 92093-0734, USA
| |
Collapse
|
72
|
Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, Yazicioglu M, Elkouby L, Hinderer CJ, Faella A, Howard C, Tai A, Podsakoff GM, Zhou S, Basner-Tschakarjan E, Wright JF, High KA. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med 2014; 5:194ra92. [PMID: 23863832 DOI: 10.1126/scitranslmed.3005795] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.
Collapse
Affiliation(s)
- Federico Mingozzi
- Department of Pediatrics and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Murrey DA, Naughton BJ, Duncan FJ, Meadows AS, Ware TA, Campbell KJ, Bremer WG, Walker CM, Goodchild L, Bolon B, La Perle K, Flanigan KM, McBride KL, McCarty DM, Fu H. Feasibility and safety of systemic rAAV9-hNAGLU delivery for treating mucopolysaccharidosis IIIB: toxicology, biodistribution, and immunological assessments in primates. HUM GENE THER CL DEV 2014; 25:72-84. [PMID: 24720466 DOI: 10.1089/humc.2013.208] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
No treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease caused by autosomal recessive defect in α-N-acetylglucosaminidase (NAGLU). In anticipation of a clinical gene therapy treatment for MPS IIIB in humans, we tested the rAAV9-CMV-hNAGLU vector administration to cynomolgus monkeys (n=8) at 1E13 vg/kg or 2E13 vg/kg via intravenous injection. No adverse events or detectable toxicity occurred over a 6-month period. Gene delivery resulted in persistent global central nervous system and broad somatic transduction, with NAGLU activity detected at 2.9-12-fold above endogenous levels in somatic tissues and 1.3-3-fold above endogenous levels in the brain. Secreted rNAGLU was detected in serum. Low levels of preexisting anti-AAV9 antibodies (Abs) did not diminish vector transduction. Importantly, high-level preexisting anti-AAV9 Abs lead to reduced transduction in liver and other somatic tissues, but had no detectable impact on transgene expression in the brain. Enzyme-linked immunoabsorbent assay showed Ab responses to both AAV9 and rNAGLU in treated animals. Serum anti-hNAGLU Abs, but not anti-AAV9 Abs, correlated with the loss of circulating rNAGLU enzyme. However, serum Abs did not affect tissue rNAGLU activity levels. Weekly or monthly peripheral blood interferon-γ enzyme-linked immunospot assays detected a CD4(+) T-cell (Th-1) response to rNAGLU only at 4 weeks postinjection in one treated subject, without observable correlation to tissue transduction levels. The treatment did not result in detectable CTL responses to either AAV9 or rNAGLU. Our data demonstrate an effective and safe profile for systemic rAAV9-hNAGLU vector delivery in nonhuman primates, supporting its clinical potential in humans.
Collapse
Affiliation(s)
- Darren A Murrey
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, OH 43205
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Murrey DA, Naughton BJ, Duncan FJ, Meadows AS, Ware TA, Campbell K, Bremer WG, Walker C, Goodchild L, Bolon B, La Perle K, Flanigan K, McBride KL, McCarty DM, Fu H. Feasibility and Safety of Systemic rAAV9-hNAGLU Delivery for Treating MPS IIIB: Toxicology, Bio-distribution and Immunological Assessments in Primates. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2013.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
75
|
Basner-Tschakarjan E, Bijjiga E, Martino AT. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front Immunol 2014; 5:28. [PMID: 24570676 PMCID: PMC3916775 DOI: 10.3389/fimmu.2014.00028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also been explored.
Collapse
Affiliation(s)
| | - Enoch Bijjiga
- Department of Pharmaceutical Sciences, St. John's University , Queens, NY , USA
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, St. John's University , Queens, NY , USA
| |
Collapse
|
76
|
Abstract
INTRODUCTION Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. AREAS COVERED In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). EXPERT OPINION We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE).
Collapse
Affiliation(s)
- Maria C Scimia
- Temple University, Translational Medicine/Pharmacology , 3500 N. Broad Street, Philadelphia, 19140 , USA
| | | | | |
Collapse
|
77
|
Liu CL, Ye P, Lin J, Butts CL, Miao CH. Anti-CD20 as the B-Cell Targeting Agent in a Combined Therapy to Modulate Anti-Factor VIII Immune Responses in Hemophilia a Inhibitor Mice. Front Immunol 2014; 4:502. [PMID: 24432019 PMCID: PMC3881000 DOI: 10.3389/fimmu.2013.00502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/19/2013] [Indexed: 01/19/2023] Open
Abstract
Neutralizing antibody formation against transgene products can represent a major complication following gene therapy with treatment of genetic diseases, such as hemophilia A. Although successful approaches have been developed to prevent the formation of anti-factor VIII (FVIII) antibodies, innovative strategies to overcome pre-existing anti-FVIII immune responses in FVIII-primed subjects are still lacking. Anti-FVIII neutralizing antibodies circulate for long periods in part due to persistence of memory B-cells. Anti-CD20 targets a variety of B-cells (pre-B-cells to mature/memory cells); therefore, we investigated the impact of B-cell depletion on anti-FVIII immune responses in hemophilia A mice using anti-CD20 combined with regulatory T (Treg) cell expansion using IL-2/IL-2mAb complexes plus rapamycin. We found that anti-CD20 alone can partially modulate anti-FVIII immune responses in both unprimed and FVIII-primed hemophilia A mice. Moreover, in mice treated with anti-CD20+IL-2/IL-2mAb complexes+rapamycin+FVIII, anti-FVIII antibody titers were significantly reduced in comparison to mice treated with regimens targeting only B or T cells. In addition, titers remained low after a second challenge with FVIII plasmid. Treg cells and activation markers were transiently and significantly increased in the groups treated with IL-2/IL-2mAb complexes; however, significant B-cell depletion was obtained in anti-CD20-treated groups. Importantly, both FVIII-specific antibody-secreting cells and memory B-cells were significantly reduced in mice treated with combination therapy. This study demonstrates that a combination regimen is highly promising as a treatment option for modulating anti-FVIII antibodies and facilitating induction of long-term tolerance to FVIII in hemophilia A mice.
Collapse
Affiliation(s)
- Chao Lien Liu
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Peiqing Ye
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jacqueline Lin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | | | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
78
|
Abstract
Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | | |
Collapse
|
79
|
Markusic DM, Hoffman BE, Perrin GQ, Nayak S, Wang X, LoDuca PA, High KA, Herzog RW. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies. EMBO Mol Med 2013; 5:1698-709. [PMID: 24106230 PMCID: PMC3840486 DOI: 10.1002/emmm.201302859] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/30/2022] Open
Abstract
Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors (‘inhibitors’) seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno-associated virus (AAV) serotype 8 vector expressing FIX (at levels of ≥4% of normal) rapidly reversed pre-existing high-titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long-term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer-based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Willett K, Bennett J. Immunology of AAV-Mediated Gene Transfer in the Eye. Front Immunol 2013; 4:261. [PMID: 24009613 PMCID: PMC3757345 DOI: 10.3389/fimmu.2013.00261] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022] Open
Abstract
The eye has been at the forefront of translational gene therapy largely owing to suitable disease targets, anatomic accessibility, and well-studied immunologic privilege. These advantages have fostered research culminating in several clinical trials and adeno-associated virus (AAV) has emerged as the vector of choice for many ocular therapies. Pre-clinical and clinical investigations have assessed the humoral and cellular immune responses to a variety of naturally occurring and engineered AAV serotypes as well as their delivered transgenes and these data have been correlated to potential clinical sequelae. Encouragingly, AAV appears safe and effective with clinical follow-up surpassing 5 years in some studies. As disease targets continue to expand for AAV in the eye, thorough and deliberate assessment of immunologic safety is critical. With careful study, the development of these technologies should concurrently inform the biology of the ocular immune response.
Collapse
Affiliation(s)
- Keirnan Willett
- Department of Ophthalmology, Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania , Philadelphia, PA , USA
| | | |
Collapse
|
81
|
Robust Long-term Transduction of Common Marmoset Neuromuscular Tissue With rAAV1 and rAAV9. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e95. [PMID: 23715217 PMCID: PMC4817936 DOI: 10.1038/mtna.2013.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Profiles of recombinant adeno-associated virus (rAAV)-mediated transduction show interspecies differences for each AAV serotype. Robust long-term transgene expression is generally observed in rodents, whereas insufficient transduction is seen in animals with more advanced immune systems. Non-human primates, including the common marmoset, could provide appropriate models for neuromuscular diseases because of their higher brain functions and physiological resemblance to humans. Strategies to induce pathologies in the neuromuscular tissues of non-human primates by rAAV-mediated transduction are promising; however, transgene expression patterns with rAAV transduction have not been elucidated in marmosets. In this study, transduction of adult marmoset skeletal muscle with rAAV9 led to robust and persistent enhanced green fluorescent protein (EGFP) expression that was independent of the muscle fiber type, although lymphocyte infiltration was recognized. Systemic rAAV injection into pregnant marmosets led to transplacental fetal transduction. Surprisingly, the intraperitoneal injection of rAAV1 and rAAV9 into the neonatal marmoset resulted in systemic transduction and persistent transgene expression without lymphocyte infiltration. Skeletal and cardiac muscle were effectively transduced with rAAV1 and rAAV9, respectively. Interestingly, rAAV9 transduction led to intense EGFP signaling in the axons of the corpus callosum. These transduction protocols with rAAV will be useful for investigating gene functions in the neuromuscular tissues and developing gene therapy strategies.
Collapse
|
82
|
Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013; 24:59-67. [PMID: 23442094 DOI: 10.1089/hgtb.2012.243] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV)-based vectors are promising tools for gene therapeutic applications, in part because AAVs are nonpathogenic viruses, and vectors derived from them can drive long-term transgene expression without integration of the vector DNA into the host genome. AAVs are not strongly immunogenic, but they can, nonetheless, give rise to both a cellular and humoral immune response. As a result, a significant fraction of potential patients for AAV-based gene therapy harbors pre-existing antibodies against AAV. Because even very low levels of antibodies can prevent successful transduction, antecedent anti-AAV antibodies pose a serious obstacle to the universal application of AAV gene therapy. In this review, we discuss the current knowledge of the role of anti-AAV antibodies in AAV-based gene therapy with a particular emphasis on approaches to overcome the hurdle that they pose.
Collapse
Affiliation(s)
- Vedell Louis Jeune
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | |
Collapse
|
83
|
Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl Res 2013; 161:355-64. [PMID: 23313629 DOI: 10.1016/j.trsl.2012.12.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023]
Abstract
The field of oncolytic virus therapy, the use of live, replicating viruses for the treatment of cancer, has expanded rapidly over the past decade. Preclinical models have clearly demonstrated anticancer activity against a number of different cancer types. Several agents have entered clinical trials and promising results have led to late stage clinical development for some viruses. The early clinical trials have demonstrated that oncolytic viruses by themselves have potential to result in tumor regression. Engineering of viruses to express novel genes have also led to the use of these vectors as a novel form of gene therapy. As a result, interest in oncolytic virus therapy has gained traction. The following review will focus on the first wave of clinical translation of oncolytic virus therapy, what has been learned so far, and potential challenges ahead for advancing the field.
Collapse
|
84
|
Abstract
AbstractSince the isolation and characterization of the genes for FVIII and FIX some 30 years ago, a longstanding goal of the field has been development of successful gene therapy for the hemophilias. In a landmark study published in 2011, Nathwani et al demonstrated successful conversion of severe hemophilia B to mild or moderate disease in 6 adult males who underwent intravenous infusion of an adeno-associated viral (AAV) vector expressing factor IX. These 6 subjects have now exhibited expression of FIX at levels ranging from 1% to 6% of normal for periods of > 2 years. This review discusses obstacles that were overcome to reach this goal and the next steps in clinical investigation. Safety issues that will need to be addressed before more widespread use of this approach are discussed. Efforts to extend AAV-mediated gene therapy to hemophilia A, and alternate approaches that may be useful for persons with severe liver disease, who may not be candidates for gene transfer to liver, are also discussed.
Collapse
|
85
|
Abstract
Since the isolation and characterization of the genes for FVIII and FIX some 30 years ago, a longstanding goal of the field has been development of successful gene therapy for the hemophilias. In a landmark study published in 2011, Nathwani et al demonstrated successful conversion of severe hemophilia B to mild or moderate disease in 6 adult males who underwent intravenous infusion of an adeno-associated viral (AAV) vector expressing factor IX. These 6 subjects have now exhibited expression of FIX at levels ranging from 1% to 6% of normal for periods of > 2 years. This review discusses obstacles that were overcome to reach this goal and the next steps in clinical investigation. Safety issues that will need to be addressed before more widespread use of this approach are discussed. Efforts to extend AAV-mediated gene therapy to hemophilia A, and alternate approaches that may be useful for persons with severe liver disease, who may not be candidates for gene transfer to liver, are also discussed.
Collapse
|
86
|
Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue. Gene Ther 2012; 20:417-24. [PMID: 22786533 PMCID: PMC3473155 DOI: 10.1038/gt.2012.55] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibodies against adeno-associated viral (AAV) vectors are highly prevalent in humans. Both preclinical and clinical studies showed that antibodies against AAV block transduction even at low titers, particularly when the vector is introduced into the bloodstream. Here we measured the neutralizing antibody (NAb) titer against AAV serotypes 2, 5, 6 and 8 in the serum and matched synovial fluid (SF) from rheumatoid arthritis patients. The titer in the SF was lower than that in the matched plasma samples, indicating a difference in distribution of NAb to AAV depending on the body fluid compartment. This difference was more evident for AAV2, against which higher titers were measured. Of all serotypes, anti-AAV5 antibodies were the least prevalent in both the serum and SF. We next evaluated the impact of B-cell depletion on anti-AAV antibodies in rheumatoid arthritis patients who received one or two courses of the anti-CD20 antibody rituximab as part of their disease management. A drop of NAb titer was observed in a subset of those subjects carrying NAb titers ≤1:1000; however, only in a minority of subjects titers dropped below 1:5. This work provides insights into strategies to overcome the limitation of pre-existing humoral immunity to AAV vectors.
Collapse
|