51
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
52
|
D. Murray R, D. Lederer E, J. Khundmiri S. Role of PTH in the Renal Handling of Phosphate. AIMS MEDICAL SCIENCE 2015. [DOI: 10.3934/medsci.2015.3.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
53
|
Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant 2014; 29:iv45-iv54. [DOI: 10.1093/ndt/gfu217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
54
|
G protein-coupled receptors: what a difference a 'partner' makes. Int J Mol Sci 2014; 15:1112-42. [PMID: 24441568 PMCID: PMC3907859 DOI: 10.3390/ijms15011112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.
Collapse
|
55
|
Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF. Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6946-2-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
56
|
Shobeiri N, Adams MA, Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 2014; 77:39-54. [PMID: 23506202 PMCID: PMC3895346 DOI: 10.1111/bcp.12117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Phosphate handling in the body is complex and involves hormones produced by the bone, the parathyroid gland and the kidneys. Phosphate is mostly found in hydroxyapatite. however recent evidence suggests that phosphate is also a signalling molecule associated with bone formation. Phosphate balance requires careful regulation of gut and kidney phosphate transporters, SLC34 transporter family, but phosphate signalling in osteoblasts and vascular smooth muscle cells is likely mediated by the SLC20 transporter family (PiT1 and PiT2). If not properly regulated, phosphate imblanace could lead to mineral disorders as well as vascular calcification. In chronic kidney disease-mineral bone disorder, hyperphosphataemia has been consistently associated with extra-osseous calcification and cardiovascular disease. This review focuses on the physiological mechanisms involved in phosphate balance and cell signalling (i.e. osteoblasts and vascular smooth muscle cells) as well as pathological consequences of hyperphosphataemia. Finally, conventional as well as new and experimental therapeutics in the treatment of hyperphosphataemia are explored.
Collapse
Affiliation(s)
- Navid Shobeiri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
57
|
The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch 2013; 466:139-53. [PMID: 24352629 DOI: 10.1007/s00424-013-1418-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/27/2022]
Abstract
The SLC34 family of sodium-driven phosphate cotransporters comprises three members: NaPi-IIa (SLC34A1), NaPi-IIb (SLC34A2), and NaPi-IIc (SLC34A3). These transporters mediate the translocation of divalent inorganic phosphate (HPO4 (2-)) together with two (NaPi-IIc) or three sodium ions (NaPi-IIa and NaPi-IIb), respectively. Consequently, phosphate transport by NaPi-IIa and NaPi-IIb is electrogenic. NaPi-IIa and NaPi-IIc are predominantly expressed in the brush border membrane of the proximal tubule, whereas NaPi-IIb is found in many more organs including the small intestine, lung, liver, and testis. The abundance and activity of these transporters are mostly regulated by changes in their expression at the cell surface and are determined by interactions with proteins involved in scaffolding, trafficking, or intracellular signaling. All three transporters are highly regulated by factors including dietary phosphate status, hormones like parathyroid hormone, 1,25-OH2 vitamin D3 or FGF23, electrolyte, and acid-base status. The physiological relevance of the three members of the SLC34 family is underlined by rare Mendelian disorders causing phosphaturia, hypophosphatemia, or ectopic organ calcifications.
Collapse
|
58
|
Abstract
The receptor for parathyroid hormone (PTH) and PTH-related peptide (PTH1R) belongs to the class II G protein-coupled receptor superfamily. The calpain small subunit encoded by the gene Capns1 is the second protein and the first enzyme identified by a yeast two-hybrid screen using the intracellular C-terminal tail of the rat PTH1R. The calpain regulatory small subunit forms a heterodimer with the calpain large catalytic subunit and modulates various cellular functions as a cysteine protease. To investigate a physiological role of the calpain small subunit in cells of the osteoblast lineage, we generated osteoblast-specific Capns1 knockout mouse models and characterized their bone phenotype. Molecular mechanisms by which calpain modulates cell proliferation of the osteoblast lineage were further examined in vitro. Moreover, we utilized the mutant mice as a disease model of osteoporosis accompanied with impaired bone resorptive function and suggested a possible clinical translation of our basic research finding.
Collapse
|
59
|
Lezcano V, Gentili C, de Boland AR. Role of PTHrP in human intestinal Caco-2 cell response to oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2834-2843. [DOI: 10.1016/j.bbamcr.2013.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022]
|
60
|
Yano F, Saito T, Ogata N, Yamazawa T, Iino M, Chung UI, Kawaguchi H. β-catenin regulates parathyroid hormone/parathyroid hormone-related protein receptor signals and chondrocyte hypertrophy through binding to the intracellular C-terminal region of the receptor. ACTA ACUST UNITED AC 2013; 65:429-35. [PMID: 23124878 DOI: 10.1002/art.37779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate the underlying mechanisms of action and functional relevance of β-catenin in chondrocytes, by examining the role of β-catenin as a novel protein that interacts with the intracellular C-terminal portion of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor type 1 (PTHR-1). METHODS The β-catenin-PTHR-1 binding region was determined with deletion and mutagenesis analyses of the PTHR1 C-terminus, using a mammalian two-hybrid assay. Physical interactions between these 2 molecules were examined with an in situ proximity ligation assay and immunostaining. To assess the effects of gain- and loss-of-function of β-catenin, transfection experiments were performed to induce overexpression of the constitutively active form of β-catenin (ca-β-catenin) and to block β-catenin activity with small interfering RNA, in cells cotransfected with either wild-type PTHR1 or mutant forms (lacking binding to β-catenin). Activation of the G protein α subunits G(αs) and G(αq) in the cells was determined by measurement of the intracellular cAMP accumulation and intracellular Ca(2+) concentration, while activation of canonical Wnt pathways was assessed using a TOPflash reporter assay. RESULTS In differentiated chondrocytes, β-catenin physically interacted and colocalized with the cell membrane-specific region of PTHR-1 (584-589). Binding of β-catenin to PTHR-1 caused suppression of the G(αs)/cAMP pathway and enhancement of the G(αq)/Ca(2+) pathway, without affecting the canonical Wnt pathway. Inhibition of Col10a1 messenger RNA (mRNA) expression by PTH was restored by overexpression of ca-β-catenin, even after blockade of the canonical Wnt pathway, and Col10a1 mRNA expression was further decreased by knockout of β-catenin (via the Cre recombinase) in chondrocytes from β-catenin-floxed mice. Mutagenesis analyses to block the binding of β-catenin to PTHR1 caused an inhibition of chondrocyte hypertrophy markers. CONCLUSION β-catenin binds to the PTHR-1 C-tail and switches the downstream signaling pathway from G(αs)/cAMP to G(αq)/Ca(2+), which is a possible mechanism by which chondrocyte hypertrophy may be regulated through the PTH/PTHrP signal independent of the canonical Wnt pathway.
Collapse
|
61
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
62
|
Hochane M, Raison D, Coquard C, Imhoff O, Massfelder T, Moulin B, Helwig JJ, Barthelmebs M. Parathyroid hormone-related protein is a mitogenic and a survival factor of mesangial cells from male mice: role of intracrine and paracrine pathways. Endocrinology 2013; 154:853-64. [PMID: 23284101 DOI: 10.1210/en.2012-1802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glomerulonephritis is characterized by the proliferation and apoptosis of mesangial cells (MC). The parathyroid-hormone related protein (PTHrP) is a locally active cytokine that affects these phenomena in many cell types, through either paracrine or intracrine pathways. The aim of this study was to evaluate the effect of both PTHrP pathways on MC proliferation and apoptosis. In vitro studies were based on MC from male transgenic mice allowing PTHrP-gene excision by a CreLoxP system. MC were also transfected with different PTHrP constructs: wild type PTHrP, PTHrP devoid of its signal peptide, or of its nuclear localization sequence. The results showed that PTHrP deletion in MC reduced their proliferation even in the presence of serum and increased their apoptosis when serum-deprived. PTH1R activation by PTHrP(1-36) or PTH(1-34) had no effect on proliferation but improved MC survival. Transfection of MC with PTHrP devoid of its signal peptide significantly increased their proliferation and minimally reduced their apoptosis. Overexpression of PTHrP devoid of its nuclear localization sequence protected cells from apoptosis without changing their proliferation. Wild type PTHrP transfection conferred both mitogenic and survival effects, which seem independent of midregion and C-terminal PTHrP fragments. PTHrP-induced MC proliferation was associated with p27(Kip1) down-regulation and c-Myc/E2F1 up-regulation. PTHrP increased MC survival through the activation of cAMP/protein kinase A and PI3-K/Akt pathways. These results reveal that PTHrP is a cytokine of multiple roles in MC, acting as a mitogenic factor only through an intracrine pathway, and reducing apoptosis mainly through the paracrine pathway. Thus, PTHrP appears as a probable actor in MC injuries.
Collapse
Affiliation(s)
- Mazène Hochane
- Institut National de la Santé et de la Recherche Médicale U682, Equipe Cancer du Rein et Physiopathologie Rénale, Faculté de Médecine, 11 rue Humann, F-67085 Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Wang B, Yang Y, Liu L, Blair HC, Friedman PA. NHERF1 regulation of PTH-dependent bimodal Pi transport in osteoblasts. Bone 2013; 52:268-77. [PMID: 23046970 PMCID: PMC3513631 DOI: 10.1016/j.bone.2012.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/18/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
Control of systemic inorganic phosphate (Pi) levels is crucial for osteoid mineralization. Parathyroid hormone (PTH) mediates actions on phosphate homeostasis mostly by regulating the activity of the type 2 sodium-phosphate cotransporter (Npt2), and this action requires the PDZ protein NHERF1. Osteoblasts express Npt2 and in response to PTH enhance osteogenesis by increasing mineralized matrix. The regulation of Pi transport in osteoblasts is poorly understood. To address this gap we characterized PTH-dependent Pi transport and the role of NHERF1 in primary mouse calvarial osteoblasts. Under proliferating conditions osteoblasts express Npt2a, Npt2b, PTH receptor, and NHERF1. Npt2a mRNA expression was lower in calvarial osteoblasts from NHERF1-null mice. Under basal conditions Pi uptake in osteoblasts from wild-type mice was greater than that of knockout mice. PTH inhibited Pi uptake in proliferating osteoblasts from wild-type mice, but not in cells from knockout mice. In vitro induction of mineralization enhanced osteoblast differentiation and increased osterix and osteocalcin expression. Contrary to the results with proliferating osteoblasts, PTH increased Pi uptake and ATP secretion in differentiated osteoblasts from wild-type mice. PTH had no effect on Pi uptake or ATP release in differentiated osteoblasts from knockout mice. NHERF1 regulation of PTH-sensitive Pi uptake in proliferating osteoblasts is mediated by cAMP/PKA and PLC/PKC, while modulation of Pi uptake in differentiated osteoblasts depends only on cAMP/PKA signaling. The results suggest that NHERF1 cooperates with PTH in differentiated osteoblasts to increase matrix mineralization. We conclude that NHERF1 regulates PTH that differentially affects Na-dependent Pi transport at distinct stages of osteoblast proliferation and maturation.
Collapse
Affiliation(s)
- Bin Wang
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA
| | - Yanmei Yang
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA
| | - Li Liu
- Pittsburgh Veterans Affairs Medical Center and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harry C. Blair
- Pittsburgh Veterans Affairs Medical Center and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter A. Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
64
|
Appleton KM, Lee MH, Alele C, Alele C, Luttrell DK, Peterson YK, Morinelli TA, Luttrell LM. Biasing the parathyroid hormone receptor: relating in vitro ligand efficacy to in vivo biological activity. Methods Enzymol 2013; 522:229-62. [PMID: 23374189 DOI: 10.1016/b978-0-12-407865-9.00013-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent advances in our understanding of the pluridimensional nature of GPCR signaling have provided new insights into how orthosteric ligands regulate receptors, and how the phenomenon of functional selectivity or ligand "bias" might be exploited in pharmaceutical design. In contrast to the predictions of simple two-state models of GPCR function, where ligands affect all aspects of GPCR signaling proportionally, current models assume that receptors exist in multiple "active" conformations that differ in their ability to couple to different downstream effectors, and that structurally distinct ligands can bias signaling by preferentially stabilizing different active states. The type 1 parathyroid hormone receptor (PTH(1)R) offers unique insight into both the opportunities and challenges of exploiting ligand bias in pharmaceutical design, not only because numerous "biased" PTH analogs have been described but also because many of them have been characterized for biological activity in vivo. The PTH(1)R has pleiotropic signaling capacity, coupling to G(s), G(q/11), and G(i/o) family heterotrimeric G proteins, and binding arrestins, which mediate receptor desensitization and arrestin-dependent signaling. Here, we compare the activity of six different PTH(1)R ligands in a common HEK293 cell background using three readouts of receptor activation, cAMP production, intracellular calcium influx, and ERK1/2 activation, demonstrating the range of signal bias that can be experimentally observed in a "typical" screening program. When the in vitro activity profiles of these ligands are compared to their reported effects on bone mass in murine models, it is apparent that ligands activating cAMP production produce an anabolic response that does not correlate with the ability to also elicit calcium signaling. Paradoxically, one ligand that exhibits inverse agonism for cAMP production and arrestin-dependent ERK1/2 activation in vitro, (D-Trp(12), Tyr(34))-bPTH(7-34), reportedly produces an anabolic bone response in vivo despite an activity profile that is dramatically different from that of other active ligands. This underscores a major challenge facing efforts to rationally design "biased" GPCR ligands for therapeutic application. While it is clearly plausible to identify functionally selective ligands, the ability to predict how bias will affect drug response in vivo, is often lacking, especially in complex disorders.
Collapse
Affiliation(s)
- Kathryn M Appleton
- Division of Endocrinology, Diabetes & Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Candelario J, Tavakoli H, Chachisvilis M. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids. PLoS One 2012; 7:e52583. [PMID: 23300710 PMCID: PMC3531455 DOI: 10.1371/journal.pone.0052583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/20/2012] [Indexed: 01/22/2023] Open
Abstract
The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA) influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R) are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK). From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA) and docosahexaenoic fatty acids (DHA) caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1–34)) in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA) and C (PKC), reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC), we detected conformational responses to EPA similar to those caused by PTH(1–34). PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1–34) leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt) phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.
Collapse
Affiliation(s)
- Jose Candelario
- La Jolla Bioengineering Institute, San Diego, California, United States of America
| | - Hesam Tavakoli
- La Jolla Bioengineering Institute, San Diego, California, United States of America
| | - Mirianas Chachisvilis
- La Jolla Bioengineering Institute, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Subramanian H, Gupta K, Ali H. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells. PLoS One 2012; 7:e51355. [PMID: 23284683 PMCID: PMC3527443 DOI: 10.1371/journal.pone.0051355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background The anaphylatoxin C3a binds to the G protein coupled receptor (GPCR, C3aR) and activates divergent signaling pathways to induce degranulation and cytokine production in human mast cells. Adapter proteins such as the Na+/H+ exchange regulatory factor (NHERF1 and NHERF2) have been implicated in regulating functions of certain GPCRs by binding to the class I PDZ (PSD-95/Dlg/Zo1) motifs present on their cytoplasmic tails. Although C3aR possesses a class I PDZ motif, the possibility that it interacts with NHERF proteins to modulate signaling in human mast cells has not been determined. Methodology/Principal Findings Using reverse transcription PCR and Western blotting, we found that NHERF1 and NHERF2 are expressed in human mast cell lines (HMC-1, LAD2) and CD34+-derived primary human mast cells. Surprisingly, however, C3aR did not associate with these adapter proteins. To assess the roles of NHERFs on signaling downstream of C3aR, we used lentiviral shRNA to stably knockdown the expression of these proteins in human mast cells. Silencing the expression of NHERF1 and NHERF2 had no effect on C3aR desensitization, agonist-induced receptor internalization, ERK/Akt phosphorylation or chemotaxis. However, loss of NHERF1 and NHERF2 resulted in significant inhibition of C3a-induced mast cell degranulation, NF-κB activation and chemokine production. Conclusion/Significance This study demonstrates that although C3aR possesses a class I PDZ motif, it does not associate with NHERF1 and NHERF2. Surprisingly, these proteins provide stimulatory signals for C3a-induced degranulation, NF-κB activation and chemokine generation in human mast cells. These findings reveal a new level of complexity for the functional regulation of C3aR by NHERFs in human mast cells.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kshitij Gupta
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
67
|
Bhattacharyya N, Chong WH, Gafni RI, Collins MT. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab 2012; 23:610-8. [PMID: 22921867 PMCID: PMC3502714 DOI: 10.1016/j.tem.2012.07.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that regulates and is regulated by blood levels of phosphate and active vitamin D. Post-translational glycosylation by the enzyme GALNT3 and subsequent processing by furin have been demonstrated to be a regulated process that plays a role in regulating FGF23 levels. In physiologic states, FGF23 signaling is mediated by an FGF receptor and the coreceptor, Klotho. Recent work identifying a role for iron/hypoxia pathways in FGF23 physiology and their implications are discussed. Beyond its importance in primary disorders of mineral metabolism, recent work implicates FGF23 in renal disease-associated morbidity, as well as possible roles in cardiovascular disease and skeletal fragility.
Collapse
Affiliation(s)
- Nisan Bhattacharyya
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - William H. Chong
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Rachel I. Gafni
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Michael T. Collins
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
68
|
van der Lee MMC, Verkaar F, Wat JWY, van Offenbeek J, Timmerman M, Voorneveld L, van Lith LHCJ, Zaman GJR. β-Arrestin-biased signaling of PTH analogs of the type 1 parathyroid hormone receptor. Cell Signal 2012; 25:527-38. [PMID: 23159578 DOI: 10.1016/j.cellsig.2012.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 01/08/2023]
Abstract
Parathyroid hormone (PTH) is an anabolic agent that mediates bone formation through activation of the Gα(s)-, Gα(q)- and β-arrestin-coupled parathyroid hormone receptor type 1 (PTH1R). Pharmacological evidence based on the effect of PTH(7-34), a PTH derivative that is said to preferentially activate β-arrestin signaling through PTH1R, suggests that PTH1R-activated β-arrestin signaling mediates anabolic effects on bone. Here, we performed a thorough evaluation of PTH(7-34) signaling behaviour using quantitative assays for β-arrestin recruitment, Gα(s)- and Gα(q)-signaling. We found that PTH(7-34) inhibited PTH-induced cAMP accumulation, but was unable to induce β-arrestin recruitment, PTH1R internalization and ERK1/2 phosphorylation in HEK293, CHO and U2OS cells. Thus, the β-arrestin bias of PTH(7-34) is not apparent in every cell type examined, suggesting that correlating in vivo effects of PTH(7-34) to in vitro pharmacology should be done with caution.
Collapse
|
69
|
Abstract
Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale.
Collapse
Affiliation(s)
- Ganesh Kadamur
- Department of Pharmacology, Molecular Biophysics Graduate Program and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
70
|
Guo J, Song L, Liu M, Mahon MJ. Fluorescent ligand-directed co-localization of the parathyroid hormone 1 receptor with the brush-border scaffold complex of the proximal tubule reveals hormone-dependent changes in ezrin immunoreactivity consistent with inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2243-53. [PMID: 23036889 DOI: 10.1016/j.bbamcr.2012.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023]
Abstract
Through binding to parathyroid hormone (PTH), PTH1R interacts with kidney-specific scaffold proteins, including the sodium hydrogen exchanger regulatory factors 1 and 2 (NHERFs), and ezrin. To facilitate in vivo localization, tetramethylrhodamine-labeled PTH (PTH-TMR) was used as a fluorescent probe. In mice, PTH-TMR localizes to luminal surfaces of tubular S1 segments that overlap PTH1R immunostaining, but does not directly overlap with megalin-specific antibodies. PTH-TMR staining directly overlaps with Npt2a in nascent, endocytic vesicles, marking the location of transporter regulation. PKA substrate antibodies display marked staining increases in segments labeled with PTH-TMR, demonstrating a functional effect. In the presence of secondary hyperparathyroidism, PTH-TMR staining is markedly reduced and shifts to co-localizing with megalin. At 15min post-injection, PTH-TMR-labeled vesicles do not co-localize with either NHERF or ezrin, suggesting PTH1R dissociation from the scaffold complex. At the 5min time point, PTH-TMR stains the base of microvilli where it localizes with both NHERF2 and ezrin, and only partially with NHERF1. Strikingly, the bulk of ezrin protein becomes undetectable with the polyclonal, CS3145 antibody, revealing a PTH-induced conformational change in the scaffold. A second ezrin antibody (3C12) is capable of detecting the altered ezrin protein. The CS3145 antibody only binds to the active form of ezrin and fails to recognize the inactive form, while the 3C12 reagent can detect either active or inactive ezrin. Here we show that the PTH1R is part of the ezrin scaffold complex and that acute actions of PTH suggest a rapid inactivation of ezrin in a spatially defined manner.
Collapse
Affiliation(s)
- Jun Guo
- Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
71
|
Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012; 165:1717-1736. [PMID: 21699508 DOI: 10.1111/j.1476-5381.2011.01552.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GPCRs represent the largest family of integral membrane proteins and were first identified as receptor proteins that couple via heterotrimeric G-proteins to regulate a vast variety of effector proteins to modulate cellular function. It is now recognized that GPCRs interact with a myriad of proteins that not only function to attenuate their signalling but also function to couple these receptors to heterotrimeric G-protein-independent signalling pathways. In addition, intracellular and transmembrane proteins associate with GPCRs and regulate their processing in the endoplasmic reticulum, trafficking to the cell surface, compartmentalization to plasma membrane microdomains, endocytosis and trafficking between intracellular membrane compartments. The present review will overview the functional consequence of β-arrestin, receptor activity-modifying proteins (RAMPS), regulators of G-protein signalling (RGS), GPCR-associated sorting proteins (GASPs), Homer, small GTPases, PSD95/Disc Large/Zona Occludens (PDZ), spinophilin, protein phosphatases, calmodulin, optineurin and Src homology 3 (SH3) containing protein interactions with GPCRs.
Collapse
Affiliation(s)
- Ana C Magalhaes
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Henry Dunn
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Stephen Sg Ferguson
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| |
Collapse
|
72
|
Mangia A, Saponaro C, Malfettone A, Bisceglie D, Bellizzi A, Asselti M, Popescu O, Reshkin SJ, Paradiso A, Simone G. Involvement of nuclear NHERF1 in colorectal cancer progression. Oncol Rep 2012; 28:889-94. [PMID: 22766563 DOI: 10.3892/or.2012.1895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/19/2011] [Indexed: 01/11/2023] Open
Abstract
NHERF1 (Na+/H+ exchanger regulatory factor 1) is expressed in the luminal membrane of many epithelia, and associated with proteins involved in tumor progression. Alterations of NHERF1 expression in different sites of metastatic colorectal cancer (mCRC) suggest a dynamic role of this protein in colon carcinogenesis. We focused on the observation of the altered expression of NHERF1 from non-neoplastic tissues to metastatic sites by immunohistochemistry. Moreover, we studied, by immunofluorescence, the colocalization between NHERF1 and the epidermal growth factor receptor (EGFR), whose overexpression is implicated in CRC progression. NHERF1 showed a different localization and expression in the examined sites. The distant non-neoplastic tissues showed NHERF1 mostly expressed at the apical membrane, while in surrounding non-neoplastic tissue decreased the apical membrane and increased cytoplasmic immunoreactivity. In adenomas a shift from apical membrane to cytoplasmic localization and nuclear expression were observed. Cytoplasmic staining in the tumor, and metastatic sites was stronger than surrounding non-neoplastic tissue. Furthermore, nuclear NHERF1 expression was noted in 80% of all samples and surprisingly, it appeared already in adenoma lesions, suggesting that NHERF1 represents an early marker of pre-morphological triggering of colorectal carcinogenesis. Then, in few tumors a positive direct correlation between membrane NHERF1 and EGFR expression was evidenced by their colocalization. Nuclear NHERF1 expression, present in the early stages of carcinogenesis and related with poor prognosis, may contribute to the onset of malignant phenotype. Specifically, we hypothesize the direct involvement of nuclear NHERF1 in both carcinogenesis and progression and its role as a potential colorectal cancer marker.
Collapse
Affiliation(s)
- Anita Mangia
- Functional Biomorphology Laboratory, Department of Pathology, National Cancer Centre, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
PTHR1 (type 1 parathyroid hormone receptors) mediate the effects of PTH (parathyroid hormone) on bone remodelling and plasma Ca2+ homoeostasis. PTH, via PTHR1, can stimulate both AC (adenylate cyclase) and increases in [Ca2+]i (cytosolic free Ca2+ concentration), although the relationship between the two responses differs between cell types. In the present paper, we review briefly the mechanisms that influence coupling of PTHR1 to different intracellular signalling proteins, including the G-proteins that stimulate AC or PLC (phospholipase C). Stimulus intensity, the ability of different PTH analogues to stabilize different receptor conformations ('stimulus trafficking'), and association of PTHR1 with scaffold proteins, notably NHERF1 and NHERF2 (Na+/H+ exchanger regulatory factor 1 and 2), contribute to defining the interactions between signalling proteins and PTHR1. In addition, cAMP itself can, via Epac (exchange protein directly activated by cAMP), PKA (protein kinase A) or by binding directly to IP3Rs [Ins(1,4,5)P3 receptors] regulate [Ca2+]i. Epac leads to activation of PLCϵ, PKA can phosphorylate and thereby increase the sensitivity of IP3Rs and L-type Ca2+ channels, and cAMP delivered at high concentrations to IP3R2 from AC6 increases the sensitivity of IP3Rs to InsP3. The diversity of these links between PTH and [Ca2+]i highlights the versatility of PTHR1. This versatility allows PTHR1 to evoke different responses when stimulated by each of its physiological ligands, PTH and PTH-related peptide, and it provides scope for development of ligands that selectively harness the anabolic effects of PTH for more effective treatment of osteoporosis.
Collapse
|
74
|
Emami-Nemini A, Gohla A, Urlaub H, Lohse MJ, Klenk C. The Guanine Nucleotide Exchange Factor Vav2 Is a Negative Regulator of Parathyroid Hormone Receptor/Gq Signaling. Mol Pharmacol 2012; 82:217-25. [DOI: 10.1124/mol.112.078824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
75
|
Weinman EJ, Lederer ED. NHERF-1 and the regulation of renal phosphate reabsoption: a tale of three hormones. Am J Physiol Renal Physiol 2012; 303:F321-7. [PMID: 22535796 DOI: 10.1152/ajprenal.00093.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renal excretion of inorganic phosphate is regulated in large measure by three hormones, namely, parathyroid hormone, dopamine, and fibroblast growth factor-23. Recent experiments have indicated that the major sodium-dependent phosphate transporter in the renal proximal tubule, Npt2a, binds to the adaptor protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and in the absence of NHERF-1, the inhibitory effect of these three hormones is absent. From these observations, a new model for the hormonal regulation of renal phosphate transport was developed. The downstream signaling pathways of these hormones results in the phosphorylation of the PDZ 1 domain of NHERF-1 and the dissociation of Npt2a/NHERF-1 complexes. In turn, this dissociation facilitates the endocytosis of Npt2a with a subsequent decrease in the apical membrane abundance of the transporter and a decrease in phosphate reabsorption. The current review outlines the experimental observations supporting the operation of this unique regulatory system.
Collapse
Affiliation(s)
- Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
76
|
Courbebaisse M, Leroy C, Bakouh N, Salaün C, Beck L, Grandchamp B, Planelles G, Hall RA, Friedlander G, Prié D. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism. PLoS One 2012; 7:e34764. [PMID: 22506049 PMCID: PMC3323571 DOI: 10.1371/journal.pone.0034764] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The sodium-hydrogen exchanger regulatory factor 1 (NHERF1) binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH) receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A) located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.
Collapse
Affiliation(s)
- Marie Courbebaisse
- Faculté de Médecine, Université Paris Descartes, Paris, France
- Research Center, Growth and Signaling, INSERM U845, Paris, France
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France
| | - Christine Leroy
- Research Center, Growth and Signaling, INSERM U845, Paris, France
| | - Naziha Bakouh
- Research Center, Growth and Signaling, INSERM U845, Paris, France
| | - Christine Salaün
- Research Center, Growth and Signaling, INSERM U845, Paris, France
| | - Laurent Beck
- Research Center, Growth and Signaling, INSERM U845, Paris, France
| | - Bernard Grandchamp
- Hôpital Bichat Claude Bernard, Institut Fédératif de Recherche 02, INSERM, Université Paris Diderot, Paris, France
| | | | - Randy A. Hall
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Gérard Friedlander
- Faculté de Médecine, Université Paris Descartes, Paris, France
- Research Center, Growth and Signaling, INSERM U845, Paris, France
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Prié
- Faculté de Médecine, Université Paris Descartes, Paris, France
- Research Center, Growth and Signaling, INSERM U845, Paris, France
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
77
|
Mamonova T, Kurnikova M, Friedman PA. Structural basis for NHERF1 PDZ domain binding. Biochemistry 2012; 51:3110-20. [PMID: 22429102 DOI: 10.1021/bi201213w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Na(+)/H(+) exchange regulatory factor-1 (NHERF1) is a scaffolding protein that possesses two tandem PDZ domains and a carboxy-terminal ezrin-binding domain (EBD). The parathyroid hormone receptor (PTHR), type II sodium-dependent phosphate cotransporter (Npt2a), and β2-adrenergic receptor (β2-AR), through their respective carboxy-terminal PDZ-recognition motifs, individually interact with NHERF1 forming a complex with one of the PDZ domains. In the basal state, NHERF1 adopts a self-inhibited conformation, in which its carboxy-terminal PDZ ligand interacts with PDZ2. We applied molecular dynamics (MD) simulations to uncover the structural and biochemical basis for the binding selectivity of NHERF1 PDZ domains. PDZ1 uniquely forms several contacts not present in PDZ2 that further stabilize PDZ1 interactions with target ligands. The binding free energy (ΔG) of PDZ1 and PDZ2 with the carboxy-terminal, five-amino acid residues that form the PDZ-recognition motif of PTHR, Npt2a, and β2-AR was calculated and compared with the calculated ΔG for the self-association of NHERF1. The results suggest that the interaction of the PTHR, β2-adrenergic, and Npt2a involves competition between NHERF1 PDZ domains and the target proteins. The binding of PDZ2 with PTHR may also compete with the self-inhibited conformation of NHERF1, thereby contributing to the stabilization of an active NHERF1 conformation.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
78
|
Weinman EJ, Lederer ED. PTH-mediated inhibition of the renal transport of phosphate. Exp Cell Res 2012; 318:1027-32. [PMID: 22417892 DOI: 10.1016/j.yexcr.2012.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
79
|
Zizak M, Chen T, Bartonicek D, Sarker R, Zachos NC, Cha B, Kovbasnjuk O, Korac J, Mohan S, Cole R, Chen Y, Tse CM, Donowitz M. Calmodulin kinase II constitutively binds, phosphorylates, and inhibits brush border Na+/H+ exchanger 3 (NHE3) by a NHERF2 protein-dependent process. J Biol Chem 2012; 287:13442-56. [PMID: 22371496 DOI: 10.1074/jbc.m111.307256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.
Collapse
Affiliation(s)
- Mirza Zizak
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ardura JA, Wang B, Watkins SC, Vilardaga JP, Friedman PA. Dynamic Na+-H+ exchanger regulatory factor-1 association and dissociation regulate parathyroid hormone receptor trafficking at membrane microdomains. J Biol Chem 2011; 286:35020-9. [PMID: 21832055 PMCID: PMC3186428 DOI: 10.1074/jbc.m111.264978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/05/2011] [Indexed: 12/21/2022] Open
Abstract
Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.
Collapse
Affiliation(s)
- Juan A. Ardura
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Bin Wang
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Simon C. Watkins
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jean-Pierre Vilardaga
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Peter A. Friedman
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| |
Collapse
|
81
|
Mahon MJ. Apical membrane segregation of phosphatidylinositol-4,5-bisphosphate influences parathyroid hormone 1 receptor compartmental signaling and localization via direct regulation of ezrin in LLC-PK1 cells. Cell Signal 2011; 23:1659-68. [PMID: 21672629 PMCID: PMC3148343 DOI: 10.1016/j.cellsig.2011.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/23/2011] [Indexed: 01/30/2023]
Abstract
The parathyroid hormone 1 receptor (PTH1R), a primary regulator of mineral ion homeostasis, is expressed on both the apical and basolateral membranes of kidney proximal tubules and in the LLC-PK1 kidney cell line. In LLC-PK1 cells, apical PTH1R subpopulations are far more effective at signaling via phospholipase (PLC) than basolateral counterparts, revealing the presence of compartmental signaling. Apical PTH1R localization is dependent upon direct interactions with ezrin, an actin-membrane cross-linking scaffold protein. Ezrin undergoes an activation process that is dependent upon phosphorylation and binding to phosphatidylinositol-4,5-bisphosphate (PIP2), a lipid that is selectively concentrated to apical surfaces of polarized epithelia. Consistently, the intracellular probe for PIP2, GFP-PLCδ1-PH, localizes to the apical membranes of LLC-PK1 cells, directly overlapping ezrin and PTH1R expression. Activation of the apical PTH1R shifts the GFP-PLCδ1-PH probe from the apical membrane to the cytosol and basolateral membranes, reflecting domain-specific activation of PLC and hydrolysis of PIP2. This compartmental signaling is likely due to the polarized localization of PIP2, the substrate for PLC. PIP2 degradation using a membrane-directed phosphatase shifts ezrin localization to the cytosol and induces ezrin de-phosphorylation, processes consistent with inactivation. PIP2 degradation also shifts PTH1R expression from brush border microvilli to basolateral membranes and markedly blunts PTH-elicited activation of the MAPK pathway. Transient expression of ezrin in HEK293 cells shifts PTH1R expression from the plasma membrane to microvilli-like surface projections that also contain PIP2. As a result, ezrin enhances PTH mediated activation of the PLC pathway in this cell model with increasing total receptor surface expression. Collectively, these findings demonstrate that the apical segregation of PIP2 to the apical domains not only promotes the activation of ezrin and the subsequent formation of the PTH1R containing scaffold, but also ensures the presence of ample substrate for propagating the PLC pathway.
Collapse
Affiliation(s)
- Matthew J Mahon
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, United States.
| |
Collapse
|
82
|
Gesty-Palmer D, Luttrell LM. 'Biasing' the parathyroid hormone receptor: a novel anabolic approach to increasing bone mass? Br J Pharmacol 2011; 164:59-67. [PMID: 21506957 PMCID: PMC3171860 DOI: 10.1111/j.1476-5381.2011.01450.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023] Open
Abstract
'Functional selectivity' refers to the ability of a ligand to activate and/or inhibit only a subset of the signals capable of emanating from its cognate G-protein-coupled receptor (GPCR). Whereas conventional GPCR agonism and antagonism can be viewed as modulating the quantity of efficacy, functionally selective or 'biased' ligands qualitatively change the nature of information flow across the plasma membrane, raising the prospect of drugs with improved therapeutic efficacy or reduced side effects. Nonetheless, there is little experimental evidence that biased ligands offer advantages over conventional agonists/antagonists in vivo. Recent work with the type I parathyroid hormone receptor (PTH(1) R) suggests that biased ligands that selectively activate G-protein-independent arrestin-mediated signalling pathways may hold promise in the treatment of osteoporosis. Parathyroid hormone (PTH) is a principle regulator of bone and calcium metabolism. In bone, PTH exerts complex effects; promoting new bone formation through direct actions on osteoblasts while simultaneously stimulating bone loss through indirect activation of osteoclastic bone resorption. Although the conventional PTH(1) R agonist teriparatide, PTH(1-34), is effective in the treatment of osteoporosis, its utility is limited by its bone-resorptive effects and propensity to promote hypercalcaemia/hypercalcuria. In contrast, d-Trp(12) ,Tyr(34) -bPTH(7-34) (PTH-βarr), an arrestin pathway-selective agonist for the PTH(1) R, induces anabolic bone formation independent of classic G-protein-coupled signalling mechanisms. Unlike PTH(1-34), PTH-βarr appears to 'uncouple' the anabolic effects of PTH(1) R activation from its catabolic and calcitropic effects. Such findings offer evidence that arrestin pathway-selective GPCR agonists can elicit potentially beneficial effects in vivo that cannot be achieved using conventional agonist or antagonist ligands.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
83
|
Ardura JA, Friedman PA. Regulation of G protein-coupled receptor function by Na+/H+ exchange regulatory factors. Pharmacol Rev 2011; 63:882-900. [PMID: 21873413 DOI: 10.1124/pr.110.004176] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many G protein-coupled receptors (GPCR) exert patterns of cell-specific signaling and function. Mounting evidence now supports the view that cytoplasmic adapter proteins contribute critically to this behavior. Adapter proteins recognize highly conserved motifs such as those for Src homology 3 (SH3), phosphotyrosine-binding (PTB), and postsynaptic density 95/discs-large/zona occludens (PDZ) docking sequences in candidate GPCRs. Here we review the behavior of the Na+/H+ exchange regulatory factor (NHERF) family of PDZ adapter proteins on GPCR signalling, trafficking, and function. Structural determinants of NHERF proteins that allow them to recognize targeted GPCRs are considered. NHERF1 and NHERF2 are capable also of modifying the assembled complex of accessory proteins such as β-arrestins, which have been implicated in regulating GPCR signaling. In addition, NHERF1 and NHERF2 modulate GPCR signaling by altering the G protein to which the receptor binds or affect other regulatory proteins that affect GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the site of NHERF1-GPCR interaction are being developed and may become important and selective drug candidates.
Collapse
Affiliation(s)
- Juan A Ardura
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
84
|
E6 and E7 from human papillomavirus type 16 cooperate to target the PDZ protein Na/H exchange regulatory factor 1. J Virol 2011; 85:8208-16. [PMID: 21680517 DOI: 10.1128/jvi.00114-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na(+)/H(+) exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation. HPV16 E6 associates with and promotes the degradation of NHERF-1, and this property is dependent on the C-terminal PDZ-binding motif of E6. Interestingly, HPV16 E7, via the activation of the cyclin-dependent kinase complexes, promoted the accumulation of a phosphorylated form of NHERF-1, which is preferentially targeted by E6. Thus, both oncoproteins appear to cooperate in targeting NHERF-1. Notably, HPV18 E6 is not able to induce NHERF-1 degradation, indicating that this property is not shared with E6 from all HR HPV types. Downregulation of NHERF-1 protein levels was also observed in HPV16-positive cervical cancer-derived cell lines, such as SiHa and CaSki, as well as HPV16-positive cervical intraepithelial neoplasia (CIN). Finally, our data show that HPV16-mediated NHERF-1 degradation correlates with the activation of the phosphatidylinositol-3'-OH kinase (PI3K)/AKT signaling pathway, which is known to play a key role in carcinogenesis.
Collapse
|
85
|
Sugiura T, Shimizu T, Kijima A, Minakata S, Kato Y. PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci 2011; 100:3620-35. [PMID: 21538352 DOI: 10.1002/jps.22575] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/17/2022]
Abstract
Homeostasis in the body is at least partially maintained by mechanisms that control membrane permeability, and thereby serve to control the uptake of essential substances (e.g., nutrients) and the efflux of unwanted substances (e.g., xenobiotics and metabolites) in epithelial cells. Various transporters play fundamental roles in such bidirectional transport, but little is known about how they are organized on plasma membranes. Protein-protein interactions may play a key role: several transporters in epithelial cells interact with the so-called adaptor proteins, which are membrane anchored and interact with both transporters and other membranous proteins. Although most of the evidences for transporter-adaptor interaction has been obtained in vitro, recent studies suggest that adaptor-mediated transporter regulation does occur in vivo and could be relevant to human diseases. Thus, protein-protein interaction is not only associated with the formation of macromolecular complexes but is also involved in various cellular events, and may provide transporters with additional functionality by forming transporter networks on plasma membranes. Interactions between xenobiotic transporters and PSD95/Dlg/ZO1 (PDZ) adaptors were previously reviewed by Kato and Tsuji (2006. Eur J Pharm Sci 27:487-500); the present review focuses on the latest findings about PDZ adaptors as regulators of transporter networks and their potential role in human diseases.
Collapse
Affiliation(s)
- Tomoko Sugiura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
86
|
Donowitz M, Singh S, Singh P, Chakraborty M, Chen Y, Murtazina R, Gucek M, Cole RN, Zachos NC, Salahuddin FF, Kovbasnjuk O, Broere N, Smalley-Freed WG, Reynolds AB, Hubbard AL, Seidler U, Weinman E, de Jonge HR, Hogema BM, Li X. Alterations in the proteome of the NHERF2 knockout mouse jejunal brush border membrane vesicles. Physiol Genomics 2011; 43:674-84. [PMID: 21427361 DOI: 10.1152/physiolgenomics.00258.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify additional potential functions for the multi-PDZ domain containing protein Na+/H+ exchanger regulatory factor 2 (NHERF2), which is present in the apical domain of intestinal epithelial cells, proteomic studies of mouse jejunal villus epithelial cell brush border membrane vesicles compared wild-type to homozygous NHERF2 knockout FVB mice by a two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS)-iTRAQ approach. Jejunal architecture appeared normal in NHERF2 null in terms of villus length and crypt depth, Paneth cell number, and microvillus structure by electron microscopy. There was also no change in proliferative activity based on BrdU labeling. Four brush border membrane vesicles (BBMV) preparations from wild-type mouse jejunum were compared with four preparations from NHERF2 knockout mice. LC-MS/MS identified 450 proteins in both matched wild-type and NHERF2 null BBMV; 13 proteins were changed in two or more separate BBMV preparations (9 increased and 4 decreased in NHERF2 null mice), while an additional 92 proteins were changed in a single BBMV preparation (68 increased and 24 decreased in NHERF2 null mice). These proteins were categorized as 1) transport proteins (one increased and two decreased in NHERF2 null); 2) signaling molecules (2 increased in NHERF2 null); 3) cytoskeleton/junctional proteins (4 upregulated and 1 downregulated in NHERF2 null); and 4) metabolic proteins/intrinsic BB proteins) (2 upregulated and 1 downregulated in NHERF2 null). Immunoblotting of BBMV was used to validate or extend the findings, demonstrating increase in BBMV of NHERF2 null of MCT1, coronin 3, and ezrin. The proteome of the NHERF2 null mouse small intestinal BB demonstrates up- and downregulation of multiple transport proteins, signaling molecules, cytoskeletal proteins, tight junctional and adherens junction proteins, and proteins involved in metabolism, suggesting involvement of NHERF2 in multiple apical regulatory processes and interactions with luminal contents.
Collapse
Affiliation(s)
- M Donowitz
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Blaine J, Weinman EJ, Cunningham R. The regulation of renal phosphate transport. Adv Chronic Kidney Dis 2011; 18:77-84. [PMID: 21406291 DOI: 10.1053/j.ackd.2011.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 12/17/2022]
Abstract
Renal phosphate transport is mediated by the abundance and activity of the sodium-dependent phosphate transporters, Npt2a, Npt2c, and PiT-2, present within the apical brush border membrane of the proximal tubule. Recent studies have demonstrated differential expression and activity of these sodium-dependent phosphate transporters within the proximal tubule. In general, phosphate transport is regulated by a variety of physiological stimuli, including parathyroid hormone, glucocorticoids, vitamin D3, estrogen, and thyroid hormone. Phosphatonins are now recognized as major regulators of phosphate transport activity. Other factors that affect phosphate transport include dopamine, dietary phosphate, acid-base status, lipid composition, potassium deficiency, circadian rhythm, and hypertension. Studies have shown that the PDZ-containing sodium/hydrogen exchanger regulatory factor (NHERF) proteins, specifically NHERF-1 and NHERF-3, play a critical role in the physiological regulation of phosphate transport, particularly in response to dietary phosphate. In addition, recent studies have found that NHERF-1 is also important in both the parathyroid hormone- and dopamine-mediated inhibition of phosphate transport. This review will detail the various hormones and agents involved in the regulation of phosphate transport as well as provide a brief summary of the signaling pathways and cytoskeletal proteins active in the transport of phosphate in the renal proximal tubule.
Collapse
|
88
|
Vilardaga JP, Romero G, Friedman PA, Gardella TJ. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci 2011; 68:1-13. [PMID: 20703892 PMCID: PMC3568769 DOI: 10.1007/s00018-010-0465-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 12/14/2022]
Abstract
The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems-PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine-to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as G(S) that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
89
|
Abstract
Receptors on the surface of cells function as conduits for information flowing between the external environment and the cell interior. Since signal transduction is based on the physical interaction of receptors with both extracellular ligands and intracellular effectors, ligand binding must produce conformational changes in the receptor that can be transmitted to the intracellular domains accessible to G proteins and other effectors. Classical models of G protein-coupled receptor (GPCR) signaling envision receptor conformations as highly constrained, wherein receptors exist in equilibrium between single "off" and "on" states distinguished by their ability to activate effectors, and ligands act by perturbing this equilibrium. In such models, ligands can be classified based upon two simple parameters; affinity and efficacy, and ligand activity is independent of the assay used to detect the response. However, it is clear that GPCRs assume multiple conformations, any number of which may be capable of interacting with a discrete subset of possible effectors. Both orthosteric ligands, molecules that occupy the natural ligand-binding pocket, and allosteric modulators, small molecules or proteins that contact receptors distant from the site of ligand binding, have the ability to alter the conformational equilibrium of a receptor in ways that affect its signaling output both qualitatively and quantitatively. In this context, efficacy becomes pluridimensional and ligand classification becomes assay dependent. A more complete description of ligand-receptor interaction requires the use of multiplexed assays of receptor activation and screening assays may need to be tailored to detect specific efficacy profiles.
Collapse
|
90
|
Gesty-Palmer D, Luttrell LM. Refining efficacy: exploiting functional selectivity for drug discovery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:79-107. [PMID: 21907907 DOI: 10.1016/b978-0-12-385952-5.00009-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early models of G protein-coupled receptor (GPCR) activation envisioned the receptor in equilibrium between unique "off" and "on" states, wherein ligand binding affected signaling by increasing or decreasing the fraction of receptors in the active conformation. It is now apparent that GPCRs spontaneously sample multiple conformations, any number of which may couple to one or more downstream effectors. Such "multistate" models imply that the receptor-ligand complex, not the receptor alone, defines which active receptor conformations predominate. "Functional selectivity" refers to the ability of a ligand to activate only a subset of its receptor's signaling repertoire. There are now numerous examples of ligands that "bias" receptor coupling between different G protein pools and non-G protein effectors such as arrestins. The type 1 parathyroid hormone receptor (PTH(1)R) is a particularly informative example, not only because of the range of biased effects that have been produced, but also because the actions of many of these ligands have been characterized in vivo. Biased PTH(1)R ligands can selectively couple the PTH(1)R to G(s) or G(q/11) pathways, with or without activating arrestin-dependent receptor desensitization and signaling. These reagents have provided insight into the contribution of different signaling pathways to PTH action in vivo and suggest it may be possible to exploit ligand bias to uncouple the anabolic effects of PTH(1)R from its catabolic and calcitropic effects. Whereas conventional agonists and antagonists only modulate the quantity of efficacy, functionally selective ligands qualitatively change GPCR signaling, offering the prospect of drugs with improved therapeutic efficacy or reduced side effects.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
91
|
Proteins move! Protein dynamics and long-range allostery in cell signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:163-221. [PMID: 21570668 DOI: 10.1016/b978-0-12-381262-9.00005-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging point of view in protein chemistry is that proteins are not the static objects that are displayed in textbooks but are instead dynamic actors. Protein dynamics plays a fundamental role in many diseases, and spans a large hierarchy of timescales, from picoseconds to milliseconds or even longer. Nanoscale protein domain motion on length scales comparable to protein dimensions is key to understanding how signals are relayed through multiple protein-protein interactions. A canonical example is how the scaffolding proteins NHERF1 and ezrin work in coordination to assemble crucial membrane complexes. As membrane-cytoskeleton scaffolding proteins, these provide excellent prototypes for understanding how regulatory signals are relayed through protein-protein interactions between the membrane and the cytoskeleton. Here, we review recent progress in understanding the structure and dynamics of the interaction. We describe recent novel applications of neutron spin echo spectroscopy to reveal the dynamic propagation of allosteric signals by nanoscale protein motion, and present a guide to the future study of dynamics and its application to the cure of disease.
Collapse
|
92
|
Romero G, von Zastrow M, Friedman PA. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:279-314. [PMID: 21907913 DOI: 10.1016/b978-0-12-385952-5.00003-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200-300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein-protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates.
Collapse
Affiliation(s)
- Guillermo Romero
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
93
|
Sarker R, Valkhoff VE, Zachos NC, Lin R, Cha B, Chen TE, Guggino S, Zizak M, de Jonge H, Hogema B, Donowitz M. NHERF1 and NHERF2 are necessary for multiple but usually separate aspects of basal and acute regulation of NHE3 activity. Am J Physiol Cell Physiol 2010; 300:C771-82. [PMID: 21191106 DOI: 10.1152/ajpcell.00119.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border (BB) of intestinal epithelial cells and accounts for the majority of neutral NaCl absorption. It has been shown that the Na(+)/H(+) exchanger regulatory factor (NHERF) family members of multi-PDZ domain-containing scaffold proteins bind to the NHE3 COOH terminus and play necessary roles in NHE3 regulation in intestinal epithelial cells. Most studies of NHE3 regulation have been in cell models in which NHERF1 and/or NHERF2 were overexpressed. We have now developed an intestinal Na(+) absorptive cell model in Caco-2/bbe cells by expressing hemagglutinin (HA)-tagged NHE3 with an adenoviral infection system. Roles of NHERF1 and NHERF2 in NHE3 regulation were determined, including inhibition by cAMP, cGMP, and Ca(2+) and stimulation by EGF, with knockdown (KD) approaches with lentivirus (Lenti)-short hairpin RNA (shRNA) and/or adenovirus (Adeno)-small interfering RNA (siRNA). Stable infection of Caco-2/bbe cells by NHERF1 or NHERF2 Lenti-shRNA significantly and specifically reduced NHERF protein expression by >80%. NHERF1 KD reduced basal NHE3 activity, while NHERF2 KD stimulated NHE3 activity. siRNA-mediated (transient) and Lenti-shRNA-mediated (stable) gene silencing of NHERF2 (but not of NHERF1) abolished cGMP- and Ca(2+)-dependent inhibition of NHE3. KD of NHERF1 or NHERF2 alone had no effect on cAMP inhibition of NHE3, but KD of both simultaneously abolished the effect of cAMP. The stimulatory effect of EGF on NHE3 was eliminated in NHERF1-KD but occurred normally in NHERF2-KD cells. These findings show that both NHERF2 and NHERF1 are involved in setting NHE3 activity. NHERF2 is necessary for cGMP-dependent protein kinase (cGK) II- and Ca(2+)-dependent inhibition of NHE3. cAMP-dependent inhibition of NHE3 activity requires either NHERF1 or NHERF2. Stimulation of NHE3 activity by EGF is NHERF1 dependent.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Gastroenterology and Hepatology Division, Department of Medicine, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Salyer S, Lesousky N, Weinman EJ, Clark BJ, Lederer ED, Khundmiri SJ. Dopamine regulation of Na+-K+-ATPase requires the PDZ-2 domain of sodium hydrogen regulatory factor-1 (NHERF-1) in opossum kidney cells. Am J Physiol Cell Physiol 2010; 300:C425-34. [PMID: 21160026 DOI: 10.1152/ajpcell.00357.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)-K(+)-ATPase activity in renal proximal tubule is regulated by several hormones including parathyroid hormone (PTH) and dopamine. The current experiments explore the role of Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1) in dopamine-mediated regulation of Na(+)-K(+)-ATPase. We measured dopamine regulation of ouabain-sensitive (86)Rb uptake and Na(+)-K(+)-ATPase α1 subunit phosphorylation in wild-type opossum kidney (OK) (OK-WT) cells, OKH cells (NHERF-1-deficient), and OKH cells stably transfected with full-length human NHERF-1 (NF) or NHERF-1 constructs with mutated PDZ-1 (Z1) or PDZ-2 (Z2) domains. Treatment with 1 μM dopamine decreased ouabain-sensitive (86)Rb uptake, increased phosphorylation of Na(+)-K(+)-ATPase α1-subunit, and enhanced association of NHERF-1 with D1 receptor in OK-WT cells but not in OKH cells. Transfection with wild-type, full-length, or PDZ-1 domain-mutated NHERF-1 into OKH cells restored dopamine-mediated regulation of Na(+)-K(+)-ATPase and D1-like receptor association with NHERF-1. Dopamine did not regulate Na(+)-K(+)-ATPase or increase D1-like receptor association with NHERF-1 in OKH cells transfected with mutated PDZ-2 domain. Dopamine stimulated association of PKC-ζ with NHERF-1 in OK-WT and OKH cells transfected with full-length or PDZ-1 domain-mutated NHERF-1 but not in PDZ-2 domain-mutated NHERF-1-transfected OKH cells. These results suggest that NHERF-1 mediates Na(+)-K(+)-ATPase regulation by dopamine through its PDZ-2 domain.
Collapse
Affiliation(s)
- Sarah Salyer
- Department of Medicine/Kidney Disease Program, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
95
|
Datta NS, Samra TA, Mahalingam CD, Datta T, Abou-Samra AB. Role of PTH1R internalization in osteoblasts and bone mass using a phosphorylation-deficient knock-in mouse model. J Endocrinol 2010; 207:355-65. [PMID: 20929987 PMCID: PMC3771320 DOI: 10.1677/joe-10-0227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation, internalization, and desensitization of G protein-coupled receptors, such as the parathyroid hormone (PTH) and PTH-related peptide (PTHrP) receptor (PTH1R), are well characterized and known to regulate the cellular responsiveness in vitro. However, the role of PTH1R receptor phosphorylation in bone formation and osteoblast functions has not yet been elucidated. In previous studies, we demonstrated impaired internalization and sustained cAMP stimulation of a phosphorylation-deficient (pd) PTH1R in vitro, and exaggerated cAMP and calcemic responses to s.c. PTH infusion in pdPTH1R knock-in mouse model. In this study, we examined the impact of impaired PTH1R phosphorylation on the skeletal phenotype of mice maintained on normal, low, and high calcium diets. The low calcium diet moderately reduced (P<0.05) bone volume and trabecular number, and increased trabecular spacing in both wild-type (WT) and pd mice. The effects, however, seem to be less pronounced in the female pd compared to WT mice. In primary calvarial osteoblasts isolated from 2-week-old pd or WT mice, PTH and PTHrP decreased phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2), a member of mitogen-activated protein kinase, and cyclin D1, a G₁/S phase cyclin, in vitro. In contrast to WT osteoblasts, down-regulation of cyclin D1 was sustained for longer periods of time in osteoblasts isolated from the pd mice. Our results suggest that adaptive responses of intracellular signaling pathways in the pd mice may be important for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
96
|
Nagai S, Okazaki M, Segawa H, Bergwitz C, Dean T, Potts JT, Mahon MJ, Gardella TJ, Jüppner H. Acute down-regulation of sodium-dependent phosphate transporter NPT2a involves predominantly the cAMP/PKA pathway as revealed by signaling-selective parathyroid hormone analogs. J Biol Chem 2010; 286:1618-26. [PMID: 21047792 DOI: 10.1074/jbc.m110.198416] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.
Collapse
Affiliation(s)
- So Nagai
- Endocrine Unit, Departments of Medicine and Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kim JK, Lim S, Kim J, Kim S, Kim JH, Ryu SH, Suh PG. Subtype-specific roles of phospholipase C-β via differential interactions with PDZ domain proteins. ACTA ACUST UNITED AC 2010; 51:138-51. [PMID: 21035486 DOI: 10.1016/j.advenzreg.2010.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 12/13/2022]
Abstract
Since we first identified the PLC-β isozyme, enormous studies have been conducted to investigate the functional roles of this protein (Min et al., 1993; Suh et al.,1988). It is now well-known that the four PLC-β subtypes are major effector molecules in GPCR-mediated signaling, especially for intracellular Ca2+ signaling. Nonetheless, it is still poorly understood why multiple PLC-β subtype exist. Most cells express multiple subtypes of PLC-β in different combinations, and each subtype is involved in somewhat different signaling pathways. Therefore, studying the differential roles of each PLC-β subtype is a very interesting issue. In this regard, we focus here on PDZ domain proteins which are novel PLC-β interacting proteins. As scaffolders, PDZ domain proteins recruit various target proteins ranging from membrane receptors to cytoskeletal proteins to assemble highly organized signaling complexes; this can give rise to efficiency and diversity in cellular signaling. Because PLC-β subtypes have different PDZ-binding motifs, it is possible that they are engaged with different PDZ domain proteins, and in turn participate in distinct physiological responses. To date, several PDZ domain proteins, such as the NHERF family, Shank2, and Par-3, have been reported to selectively interact with certain PLC-β subtypes and GPCRs. Systematic predictions of potential binding partners also suggests differential binding properties between PLC-β subtypes. Furthermore, we elucidated parallel signaling processes for multiple PLC-β subtypes, which still perform distinct functions resulting from differential interactions with PDZ domain proteins within a single cell. Therefore, these results highlight the novel function of PDZ domain proteins as intermediaries in subtype-specific role of PLC-β in GPCR-mediated signaling. Future studies will focus on the physiological meanings of this signaling complex formation by different PDZ domain proteins and PLC-β subtypes. It has been observed for a long time that the expression of certain PLC-β subtype fluctuates during diverse physiological conditions. For example, the expression of PLC-β1 is selectively increased during myoblast and adipocyte differentiation (Faenza et al., 2004; O'Carroll et al., 2009). Likewise, PLC-β2 is highly up-regulated during breast cancer progression and plays a critical role in cell migration and mitosis (Bertagnolo et al., 2007). Although PLC-β3 is selectively down-regulated in neuroendocrine tumors, the expression of PLC-β1 is increased in small cell lung carcinoma (Stalberg et al., 2003; Strassheim et al., 2000). In our hypothetical model, it is most likely that up- and down regulation of certain PLC-β subtypes are due to their selective coupling with specific GPCR-mediated signaling, implicated in these pathophysiologic conditions. Therefore, better understanding of selective coupling between PLC-β subtypes, PDZ domain proteins, and GPCRs will shed light on new prognosis and therapy of diverse diseases, and provide potential targets for drug development.
Collapse
Affiliation(s)
- Jung Kuk Kim
- School of Nano-Biotechnology & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
98
|
EBP50 inhibits the anti-mitogenic action of the parathyroid hormone type 1 receptor in vascular smooth muscle cells. J Mol Cell Cardiol 2010; 49:1012-21. [PMID: 20843475 DOI: 10.1016/j.yjmcc.2010.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/11/2010] [Accepted: 08/29/2010] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) and the parathyroid hormone type 1 receptor (PTH1R) are important regulators of vascular remodeling. PTHrP expression is associated to increased proliferation of vascular smooth muscle cells (VSMC). In contrast, signaling via the PTH1R inhibits cell growth. The mechanisms regulating the dual effect of PTHrP and PTH1R on VSMC proliferation are only partially understood. In this study we examined the role of the adaptor protein ezrin-radixin-moesin-binding phosphoprotein (EBP50) on PTH1R expression, trafficking, signaling and control of A10 cell proliferation. In normal rat vascular tissues, EBP50 was restricted to the endothelium with little expression in VSMC. EBP50 expression significantly increased in VSMC following angioplasty in parallel with PTHrP. Interestingly, PTHrP was able to induce EBP50 expression. In the clonal rat aortic smooth muscle cell line A10, EBP50 increased the recruitment of PTH1R to the cell membrane and delayed its internalization in response to PTHrP(1-36). This effect required an intact C-terminal motif in the PTH1R. In naïve A10 cells, PTHrP(1-36) stimulated cAMP production but not intracellular calcium release. In contrast, PTHrP(1-36) induced both cAMP and calcium signaling in A10 cells over-expressing EBP50. Finally, EBP50 attenuated the induction of p27(kip1) and the anti-proliferative effect of PTHrP(1-36). In summary, this study demonstrates the dynamic expression of EBP50 in vessels following injury and the effects of EBP50 on PTH1R function in VSMC. These findings highlight one of the mechanisms leading to increased VSMC proliferation and have important implication in the understanding of the molecular events leading to restenosis.
Collapse
|
99
|
The scaffold protein NHERF2 determines the coupling of P2Y1 nucleotide and mGluR5 glutamate receptor to different ion channels in neurons. J Neurosci 2010; 30:11068-72. [PMID: 20720114 DOI: 10.1523/jneurosci.2597-10.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expressed metabotropic group 1 glutamate mGluR5 receptors and nucleotide P2Y1 receptors (P2Y1Rs) show promiscuous ion channel coupling in sympathetic neurons: their stimulation inhibits M-type [Kv7, K(M)] potassium currents and N-type (Ca(V)2.2) calcium currents (Kammermeier and Ikeda, 1999; Brown et al., 2000). These effects are mediated by G(q) and G(i/o) G-proteins, respectively. Via their C-terminal tetrapeptide, these receptors also bind to the PDZ domain of the scaffold protein NHERF2, which enhances their coupling to G(q)-mediated Ca(2+) signaling (Fam et al., 2005; Paquet et al., 2006b). We investigated whether NHERF2 could modulate coupling to neuronal ion channels. We find that coexpression of NHERF2 in sympathetic neurons (by intranuclear cDNA injections) does not affect the extent of M-type potassium current inhibition produced by either receptor but strongly reduced Ca(V)2.2 inhibition by both P2Y1R and mGluR5 activation. NHERF2 expression had no significant effect on Ca(V)2.2 inhibition by norepinephrine (via alpha(2)-adrenoceptors, which do not bind NHERF2), nor on Ca(V)2.2 inhibition produced by an expressed P2Y1R lacking the NHERF2-binding DTSL motif. Thus, NHERF2 selectively restricts downstream coupling of mGluR5 and P2Y1Rs in neurons to G(q)-mediated responses such as M-current inhibition. Differential distribution of NHERF2 in neurons may therefore determine coupling of mGluR5 receptors and P2Y1 receptors to calcium channels.
Collapse
|
100
|
Isolation and characterization of a novel peptide, osteoblast activating peptide (OBAP), associated with osteoblast differentiation and bone formation. Biochem Biophys Res Commun 2010; 400:157-63. [PMID: 20709021 DOI: 10.1016/j.bbrc.2010.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
A long-standing goal in bone loss treatment has been to develop bone-rebuilding anabolic agents that can potentially be used to treat bone-related disorders. To purify and isolate a novel anabolic that acts to osteoblasts, we monitored changes in intracellular calcium concentrations ([Ca(2+)]i). We identified a novel, 24 amino-acid peptide from the rat stomach and termed this peptide osteoblast activating peptide (OBAP). Furthermore, we examined the effects of OBAP in osteoblasts. First, osteoblast differentiation markers (alkaline phosphatase [ALP], osteocalcin [OCN]) were analyzed using quantitative RT-PCR. We also examined the ALP activity in osteoblasts induced by OBAP. OBAP significantly increased the expression of osteoblast differentiation markers and the activity of ALP in vitro. Next, to address the in vivo effects of OBAP on bone metabolism, we examined the bone mineral density (BMD) of gastrectomized (Gx) rats and found that OBAP significantly increased BMD in vivo. Finally, to confirm the in vivo effects of OBAP on bone, we measured serum ALP and OCN in Gx rats and found that OBAP significantly increased serum ALP and OCN. Taken together, these results indicate that the novel peptide, OBAP, positively regulates bone formation by augmenting osteoblast differentiation. Furthermore, these results may provide a new therapeutic approach to anabolically treat bone-related disorders.
Collapse
|