51
|
Günes C, Wezel F, Southgate J, Bolenz C. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat Rev Urol 2019; 15:386-393. [PMID: 29599449 DOI: 10.1038/s41585-018-0001-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomerase activity imparts eukaryotic cells with unlimited proliferation capacity, one of the cancer hallmarks. Over 90% of human urothelial carcinoma of the bladder (UCB) tumours are positive for telomerase activity. Telomerase activation can occur through several mechanisms. Mutations in the core promoter region of the human telomerase reverse transcriptase gene (TERT) cause telomerase reactivation in 60-80% of UCBs, whereas the prevalence of these mutations is lower in urothelial cancers of other origins. TERT promoter mutations are the most frequent genetic alteration across all stages of UCB, indicating a strong selection pressure during neoplastic transformation. TERT promoter mutations could arise during regeneration of normal urothelium and, owing to consequential telomerase reactivation, might be the basis of UCB initiation, which represents a new model of urothelial cancer origination. In the future, TERT promoter mutations and telomerase activity might have diagnostic and therapeutic applications in UCB.
Collapse
Affiliation(s)
- Cagatay Günes
- Department of Urology, University of Ulm, Ulm, Germany.
| | - Felix Wezel
- Department of Urology, University of Ulm, Ulm, Germany
| | - Jennifer Southgate
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | |
Collapse
|
52
|
Zhang L, Li S, Chen L, Li J, Zhang Z, Yang Y, Wang X, Liu J. Cerebellar fastigial nucleus electrical stimulatin protects against cerebral ischemic damage by upregulating telomerase activity. Restor Neurol Neurosci 2019; 37:131-141. [PMID: 30988241 DOI: 10.3233/rnn-180876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cerebellar fastigial nucleus electrical stimulation (FNS) in rats has been shown to protect against brain ischemia/reperfusion (I/R) damage. Activation of telomerase has been reported to provide neuroprotection in animal models of stroke. OBJECTIVE The aim of this study was to explore whether precondition FNS increases the expression of telomerase reverse transcriptase (TERT) and telomerase activity in rats after cerebral I/R injury. METHODS One day after continuous stimulation of the fastigial cerebellar nucleus for 1 h, adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 24 h, 48 h and 72 h, while the I/R control groups received the same treatment without FNS. Ischemic lesion volumes were measured following TTC staining. The number of apoptotic cells was measured by using TUNEL assays. Subsequently, telomerase activity was examined by using TRAP-silver staining. Additionally, the expression level of TERT mRNA was assessed by using real-time fluorescence quantitative PCR. Finally, the expression of TERT protein was measured by using Western blotting. RESULTS The results of our study demonstrated that FNS significantly decreased infarct volumes and improved neurological deficits when compared with the I/R control group. The telomerase activity in the I/R + FNS group was significantly increased compared with that in the I/R control group, particularly in the 24 h reperfusion subgroup (P < 0.05). FNS treatment significantly decreased the number of TUNEL-positive cells when compared with that in the I/R control group. Expression of TERT gradually increased, with the peak occurring after or before 48 h reperfusion and the 24 h and 72 h reperfusion subgroups demonstrating higher expression than each I/R control group (P < 0.05). CONCLUSIONS Our results show that pre-FNS exerts neuroprotective effects that may be achieved by upregulating the expression of TERT and then by increasing telomerase activity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Shenghua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Zhaoxia Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xiaoling Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| |
Collapse
|
53
|
Yuan X, Xu D. Telomerase Reverse Transcriptase (TERT) in Action: Cross-Talking with Epigenetics. Int J Mol Sci 2019; 20:ijms20133338. [PMID: 31284662 PMCID: PMC6651578 DOI: 10.3390/ijms20133338] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase with telomerase reverse transcriptase (TERT) as the catalytic component, is silent due to the tight repression of the TERT gene in most normal human somatic cells, whereas activated only in small subsets of cells, including stem cells, activated lymphocytes, and other highly proliferative cells. In contrast, telomerase activation via TERT induction is widespread in human malignant cells, which is a prerequisite for malignant transformation. It is well established that TERT/telomerase extends telomere length, thereby conferring sustained proliferation capacity to both normal and cancerous cells. The recent evidence has also accumulated that TERT/telomerase may participate in the physiological process and oncogenesis independently of its telomere-lengthening function. For instance, TERT is shown to interact with chromatin remodeling factors and to regulate DNA methylation, through which multiple cellular functions are attained. In the present review article, we summarize the non-canonical functions of TERT with a special emphasis on its cross-talk with epigenetics: How TERT contributes to epigenetic alterations in physiological processes and cancer, and how the aberrant epigenetics in turn facilitate TERT expression and function, eventually promoting cancer either initiation or progression or both. Finally, we briefly discuss clinical implications of the TERT-related methylation.
Collapse
Affiliation(s)
- Xiaotian Yuan
- School of Medicine, Shandong University, Jinan 250012, China.
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, 171 64 Solna, Sweden.
| | - Dawei Xu
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, 171 64 Solna, Sweden.
- Shandong University-Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Jinan 250033, China.
| |
Collapse
|
54
|
The Role of Extracellular Vesicles in Cutaneous Remodeling and Hair Follicle Dynamics. Int J Mol Sci 2019; 20:ijms20112758. [PMID: 31195626 PMCID: PMC6600598 DOI: 10.3390/ijms20112758] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disorders.
Collapse
|
55
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20112646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton’s Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
56
|
Criscuolo F, Smith S, Zahn S, Heidinger BJ, Haussmann MF. Experimental manipulation of telomere length: does it reveal a corner-stone role for telomerase in the natural variability of individual fitness? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0440. [PMID: 29335364 DOI: 10.1098/rstb.2016.0440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Telomeres, the non-coding ends of linear chromosomes, are thought to be an important mechanism of individual variability in performance. Research suggests that longer telomeres are indicative of better health and increased fitness; however, many of these data are correlational and whether these effects are causal are poorly understood. Experimental tests are emerging in medical and laboratory-based studies, but these types of experiments are rare in natural populations, which precludes conclusions at an evolutionary level. At the crossroads between telomere length and fitness is telomerase, an enzyme that can lengthen telomeres. Experimental modulation of telomerase activity is a powerful tool to manipulate telomere length, and to look at the covariation of telomerase, telomeres and individual life-history traits. Here, we review studies that manipulate telomerase activity in laboratory conditions and emphasize the associated physiological and fitness consequences. We then discuss how telomerase's impact on ageing may go beyond telomere maintenance. Based on this overview, we then propose several research avenues for future studies to explore how individual variability in health, reproduction and survival may have coevolved with different patterns of telomerase activity and expression. Such knowledge is of prime importance to fully understand the role that telomere dynamics play in the evolution of animal ageing.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- F Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - S Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - S Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - B J Heidinger
- Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - M F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
57
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
58
|
Cell-based chemical fingerprinting identifies telomeres and lamin A as modifiers of DNA damage response in cancer cells. Sci Rep 2018; 8:14827. [PMID: 30287851 PMCID: PMC6172206 DOI: 10.1038/s41598-018-33139-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Telomere maintenance by telomerase activity supports the infinite growth of cancer cells. MST-312, a synthetic telomerase inhibitor, gradually shortens telomeres at non-acute lethal doses and eventually induces senescence and apoptosis of telomerase-positive cancer cells. Here we report that MST-312 at higher doses works as a dual inhibitor of telomerase and DNA topoisomerase II and exhibits acute anti-proliferative effects on cancer cells and xenografted tumours in vivo. Our cell-based chemical fingerprinting approach revealed that cancer cells with shorter telomeres and lower expression of lamin A, a nuclear architectural protein, exhibited higher sensitivity to the acute deleterious effects of MST-312, accompanied by formation of telomere dysfunction-induced foci and DNA double-strand breaks. Telomere elongation and lamin A overexpression attenuated telomeric and non-telomeric DNA damage, respectively, and both conferred resistance to apoptosis induced by MST-312 and other DNA damaging anticancer agents. These observations suggest that sufficient pools of telomeres and a nuclear lamina component contribute to the cellular robustness against DNA damage induced by therapeutic treatment in human cancer cells.
Collapse
|
59
|
Wang Q, Wang X, Lai D, Deng J, Hou Z, Liang H, Liu D. BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas Cashmere goats. Res Vet Sci 2018; 119:9-18. [PMID: 29783122 DOI: 10.1016/j.rvsc.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Qing Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Defang Lai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Jin Deng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Zhuang Hou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
60
|
Liu M, Lei H, Dong P, Fu X, Yang Z, Yang Y, Ma J, Liu X, Cao Y, Xiao R. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant 2018; 26:1505-1519. [PMID: 29113467 PMCID: PMC5680952 DOI: 10.1177/0963689717721221] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ASCs) can be applied extensively in the clinic because they can be easily isolated and cause less donor-site morbidity; however, their application can be complicated by patient-specific factors, such as age and harvest site. In this study, we systematically evaluated the effects of age on the quantity and quality of human adipose-derived mesenchymal stem cells (hASCs) isolated from excised chest subcutaneous adipose tissue and investigated the underlying molecular mechanism. hASCs were isolated from donors of 3 different age-groups (i.e., child, young adult, and elderly). hASCs are available from individuals across all age-groups and maintain mesenchymal stem cell (MSC) characteristics. However, the increased age of the donors was found to have a significant negative effect on hASCs frequency base on colony-forming unit fibroblasts assay. Moreover, there is a decline in both stromal vascular fraction (SVF) cell yield and the proliferation rate of hASCs with increasing age, although this relationship is not significant. Aging increases cellular senescence, which is manifested as an increase in SA-β-gal-positive cells, increased mitochondrial-specific reactive oxygen species (ROS) production, and the expression of p21 in the elderly. Further, advancing age was found to have a significant negative effect on the adipogenic and osteogenic differentiation potentials of hASCs, particularly at the early and mid-stages of induction, suggesting a slower response to the inducing factors of hASCs from elderly donors. Finally, impaired migration ability was also observed in the elderly group and was determined to be associated with decreased expression of chemokine receptors, such as CXCR4 and CXCR7. Taken together, these results suggest that, while hASCs from different age populations are phenotypically similar, they present major differences at the functional level. When considering potential applications of hASCs in cell-based therapeutic strategies, the negative influence of age on hASC differentiation potential and migration abilities should be taken seriously.
Collapse
Affiliation(s)
- Meichen Liu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hua Lei
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ping Dong
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Yang
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiguang Ma
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
61
|
Zhang H, Hu N. Telomerase reverse transcriptase induced thyroid carcinoma cell proliferation through PTEN/AKT signaling pathway. Mol Med Rep 2018; 18:1345-1352. [PMID: 29901196 PMCID: PMC6072153 DOI: 10.3892/mmr.2018.9119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Thyroid carcinoma is the most common endocrine malignant tumor in the world, and so, there is a requirement to develop novel molecular targets for thyroid cancer diagnosis and treatment. Telomerase reverse transcriptase (TERT) was revealed to promote cell proliferation in a number of types of cell. To evaluate whether and how TERT functioned on papillary thyroid cancer (PTC) cell proliferation, the present study constructed TERT over‑expression [recombined (r)TERT plasmid group] and interference [small interfering RNA (si)‑TERT group] models by liposome transfection respectively to study the molecular mechanisms. The transfection efficiency was first detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting to analyze TERT levels compared with the negative control (NC) and control groups. Then MTT and carboxyfluorescein diacetate succinimidyl ester assays were performed to determine living cell proliferation and total cell proliferation respectively. Propidium iodide assay was used to detect alterations in cell cycle progression. RT‑qPCR and western blotting were performed to detect associated factor variation. The results demonstrated that, following the generation of TERT overexpression or silencing PTC cells, the living cells and also total cell proliferation increased significantly in the rTERT group, and decreased significantly in siTERT group, when compared with the NC and control groups. The cell cycle was accelerated in the rTERT group, and blocked in the G1/S transition in the siTERT group. The mRNA and protein levels of P27, P53 and phosphatase and tensin homolog (PTEN) decreased significantly in the rTERP group and increased in the siTERP group, while cyclin dependent kinase 2 and Cyclin D1 increased significantly in the rTERP group and decreased in the siTERP group. The expression of cell division cycle 25A did not alter significantly. The protein levels of β‑catenin and retinoblastoma were also unaltered. Protein kinase B (AKT) was detected once activated by TERT, and there were increased phosphorylated (p)‑AKT protein levels in the rTERT group, and decreased p‑AKT protein levels in the siTERT group. In conclusion, TERT could induce thyroid carcinoma cell proliferation mainly through the PTEN/AKT signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- The First Sector of Department of Thyroid Breast Surgery, Northern Branch of Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ning Hu
- The Second Sector of Department of Thyroid Breast Surgery, Southern Branch of Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
62
|
Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 2018; 37:4058-4072. [PMID: 29695835 PMCID: PMC6062502 DOI: 10.1038/s41388-018-0247-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
Targeting RAS is one of the greatest challenges in cancer therapy. Oncogenic mutations in NRAS are present in over 25% of melanomas and patients whose tumors harbor NRAS mutations have limited therapeutic options and poor prognosis. Thus far, there are no clinical agents available to effectively target NRAS or any other RAS oncogene. An alternative approach is to identify and target critical tumor vulnerabilities or non-oncogene addictions that are essential for tumor survival. We investigated the consequences of NRAS blockade in NRAS-mutant melanoma and show that decreased expression of the telomerase catalytic subunit, TERT, is a major consequence. TERT silencing or treatment of NRAS-mutant melanoma with the telomerase-dependent telomere uncapping agent, 6-thio-2'-deoxyguanosine (6-thio-dG), led to rapid cell death, along with evidence of both telomeric and non-telomeric DNA damage, increased ROS levels, and upregulation of a mitochondrial antioxidant adaptive response. Combining 6-thio-dG with the mitochondrial inhibitor Gamitrinib attenuated this adaptive response and more effectively suppressed NRAS-mutant melanoma. Our study uncovers a robust dependency of NRAS-mutant melanoma on TERT, and provides proof-of-principle for a new combination strategy to combat this class of tumors, which could be expanded to other tumor types.
Collapse
|
63
|
Heidenreich B, Denisova E, Rachakonda S, Sanmartin O, Dereani T, Hosen I, Nagore E, Kumar R. Genetic alterations in seborrheic keratoses. Oncotarget 2018; 8:36639-36649. [PMID: 28410231 PMCID: PMC5482683 DOI: 10.18632/oncotarget.16698] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 01/06/2023] Open
Abstract
Seborrheic keratoses are common benign epidermal lesions that are associated with increased age and sun-exposure. Those lesions despite harboring multiple somatic alterations in contrast to malignant tumors appear to be genetically stable. In order to investigate and characterize the presence of recurrent mutations, we performed exome sequencing on DNA from one seborrheic keratosis lesion and corresponding blood cells from the same patients with follow up investigation of alterations identified by exome sequencing in 24 additional lesions from as many patients. In addition we investigated alterations in all lesions at specific genes loci that included FGFR3, PIK3CA, HRAS, BRAF, CDKN2A and TERT and DHPH3 promoters. The exome sequencing data indicated three mutations per Mb of the targeted sequence. The mutational pattern depicted typical UV signature with majority of alterations being C>T and CC>TT base changes at dipyrimidinic sites. The FGFR3 mutations were the most frequent, detected in 12 of 25 (48%) lesions, followed by the PIK3CA (32%), TERT promoter (24%) and DPH3 promoter mutations (24%). TERT promoter mutations associated with increased age and were present mainly in the lesions excised from head and neck. Three lesions also carried alterations in CDKN2A. FGFR3, TERT and DPH3 expression did not correlate with mutations in the respective genes and promoters; however, increased FGFR3 transcript levels were associated with increased FOXN1 levels, a suggested positive feedback loop that stalls malignant progression. Thus, in this study we report overall mutation rate through exome sequencing and show the most frequent mutations seborrheic keratosis.
Collapse
Affiliation(s)
- Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Evygenia Denisova
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Onofre Sanmartin
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Timo Dereani
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ismail Hosen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
64
|
Scahill CM, Digby Z, Sealy IM, White RJ, Wali N, Collins JE, Stemple DL, Busch-Nentwich EM. The age of heterozygous telomerase mutant parents influences the adult phenotype of their offspring irrespective of genotype in zebrafish. Wellcome Open Res 2018; 2:77. [PMID: 29568807 PMCID: PMC5840683 DOI: 10.12688/wellcomeopenres.12530.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/03/2022] Open
Abstract
Background: Mutations in proteins involved in telomere maintenance lead to a range of human diseases, including dyskeratosis congenita, idiopathic pulmonary fibrosis and cancer. Telomerase functions to add telomeric repeats back onto the ends of chromosomes, however non-canonical roles of components of telomerase have recently been suggested. Methods: Here we use a zebrafish telomerase mutant which harbours a nonsense mutation in
tert to investigate the adult phenotypes of fish derived from heterozygous parents of different ages. Furthermore we use whole genome sequencing data to estimate average telomere lengths. Results: We show that homozygous offspring from older heterozygotes exhibit signs of body wasting at a younger age than those of younger parents, and that offspring of older heterozygous parents weigh less irrespective of genotype. We also demonstrate that
tert homozygous mutant fish have a male sex bias, and that clutches from older parents also have a male sex bias in the heterozygous and wild-type populations. Telomere length analysis reveals that the telomeres of younger heterozygous parents are shorter than those of older heterozygous parents. Conclusions: These data indicate that the phenotypes observed in offspring from older parents cannot be explained by telomere length. Instead we propose that Tert functions outside of telomere length maintenance in an age-dependent manner to influence the adult phenotypes of the next generation.
Collapse
Affiliation(s)
| | - Zsofia Digby
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ian M Sealy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Richard J White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Neha Wali
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - John E Collins
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
65
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
66
|
Li HL, Song J, Yong HM, Hou PF, Chen YS, Song WB, Bai J, Zheng JN. PinX1: structure, regulation and its functions in cancer. Oncotarget 2018; 7:66267-66275. [PMID: 27556185 PMCID: PMC5323232 DOI: 10.18632/oncotarget.11411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) is a novel cloned gene located at human chromosome 8p23, playing a vital role in maintaining telomeres length and chromosome stability. It has been demonstrated to be involved in tumor genesis and progression in most malignancies. However, some researches showed opposing molecular status of PinX1 gene and its expression patterns in several other types of tumors. The pathogenic mechanism of PinX1 expression in human malignancy is not yet clear. Moreover, emerging evidence suggest that PinX1 (especially its TID domain) might be a potential new target cancer treatment. Therefore, PinX1 may be a new potential diagnostic biomarker and therapeutic target for human cancers, and may play different roles in different human cancers. The functions and the mechanisms of PinX1 in various human cancers remain unclear, suggesting the necessity of further extensive works of its role in tumor genesis and progression.
Collapse
Affiliation(s)
- Hai-Long Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jun Song
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hong-Mei Yong
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical College, Huai'an, Jiangsu, China
| | - Ping-Fu Hou
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yan-Su Chen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wen-Bo Song
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
67
|
Song YL, Tian KY, Mi WJ, Ding ZJ, Qiu Y, Chen FQ, Zha DJ, Qiu JH. Decreased expression of TERT correlated with postnatal cochlear development and proliferation reduction of cochlear progenitor cells. Mol Med Rep 2018; 17:6077-6083. [PMID: 29436610 DOI: 10.3892/mmr.2018.8565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
Cochlear progenitor cells are considered as one of the best candidates for hair cell regeneration, thus, the regulation of cochlear progenitor cell proliferation has become a focus in this field. Several genes expressed in the inner ear during postnatal development have been demonstrated to be involved in maintaining the proliferative potential of progenitor cells, but the mechanism for regulating the proliferation and differentiation of cochlear progenitor cells remains poorly understood. Telomerase reverse transcriptase (TERT) has rate limiting telomerase activity and the overexpression of TERT has been shown to promote cell proliferation in series of cell lines. The aim of the present study was to evaluate the expression of TERT in the postnatal development of the cochlea and progenitor cells. The results demonstrated that TERT was expressed in the basilar membranes during the first postnatal week. In vitro, TERT expression in progenitor cells reached a maximum at day 4 after culture and decreased as the culture time prolonged or the cell passage number increased. These results led us to hypothesize that TERT may be involved in the development of the cochlea and in maintaining the proliferation ability of progenitor cells.
Collapse
Affiliation(s)
- Yong-Li Song
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ke-Yong Tian
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen-Juan Mi
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhong-Jia Ding
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Qiu
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Quan Chen
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ding-Jun Zha
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Hua Qiu
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
68
|
Gutkin A, Uziel O, Beery E, Nordenberg J, Pinchasi M, Goldvaser H, Henick S, Goldberg M, Lahav M. Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget 2018; 7:59173-59188. [PMID: 27385095 PMCID: PMC5312303 DOI: 10.18632/oncotarget.10384] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Exosomes are small (30-100nm) vesicles secreted from all cell types serving as inter-cell communicators and affecting biological processes in “recipient” cells upon their uptake. The current study demonstrates for the first time that hTERT mRNA, the transcript of the enzyme telomerase, is shuttled from cancer cells via exosomes into telomerase negative fibroblasts, where it is translated into a fully active enzyme and transforms these cells into telomerase positive, thus creating a novel type of cells; non malignant cells with telomerase activity. All tested telomerase positive cells, including cancer cells and non malignant cells with overexpressed telomerase secreted exosomal hTERT mRNA in accordance with the endogenous levels of their hTERT mRNA and telomerase activity. Similarly exosomes isolated from sera of patients with pancreatic and lung cancer contained hTERT mRNA as well. Telomerase activity induced phenotypic changes in the recipient fibroblasts including increased proliferation, extension of life span and postponement of senescence. In addition, telomerase activity protected the fibroblasts from DNA damage induced by phleomycin and from apoptosis, indicating that also telomerase “extracurricular” activities are manifested in the recipient cells. The shuttle of telomerase from cancer cells into fibroblasts and the induction of these changes may contribute to the alterations of cancer microenvironment and its role in cancer. The described process has an obvious therapeutic potential which will be explored in further studies.
Collapse
Affiliation(s)
- Anna Gutkin
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Petah Tikva, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Jardena Nordenberg
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Petah Tikva, Israel
| | - Maria Pinchasi
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Petah Tikva, Israel
| | - Hadar Goldvaser
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Steven Henick
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal Goldberg
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Petah Tikva, Israel
| | - Meir Lahav
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Petah Tikva, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
69
|
Lin S, Wei J, Wunderlich M, Chou FS, Mulloy JC. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation. Oncotarget 2018; 7:55939-55950. [PMID: 27509060 PMCID: PMC5302887 DOI: 10.18632/oncotarget.11093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
Human CD34+ hematopoietic stem and progenitor cells (HSPC) expressing fusion protein AML1-ETO (AE), generated by the t(8;21)(q22;q22) rearrangement, manifest enhanced self-renewal and dysregulated differentiation without leukemic transformation, representing a pre-leukemia stage. Enabling replicative immortalization via telomerase reactivation is a crucial step in cancer development. However, AE expression alone is not sufficient to maintain high telomerase activity to immortalize human HSPC cells, which may hamper transformation. Here, we investigated the cooperativity of telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, and AE in disease progression. Enforced expression of hTERT immortalized human AE pre-leukemia cells in a telomere-lengthening independent manner, and improved the pre-leukemia stem cell function by enhancing cell proliferation and survival. AE-hTERT cells retained cytokine dependency and multi-lineage differentiation potential similar to parental AE clones. Over the short-term, AE-hTERT cells did not show features of stepwise transformation, with no leukemogenecity evident upon initial injection into immunodeficient mice. Strikingly, after extended culture, we observed full transformation of one AE-hTERT clone, which recapitulated the disease evolution process in patients and emphasizes the importance of acquiring cooperating mutations in t(8;21) AML leukemogenesis. In summary, achieving unlimited proliferative potential via hTERT activation, and thereby allowing for acquisition of additional mutations, is a critical link for transition from pre-leukemia to overt disease in human cells. AE-hTERT cells represent a tractable model to study cooperating genetic lesions important for t(8;21) AML disease progression.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Junping Wei
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Fu-Sheng Chou
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - James C Mulloy
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| |
Collapse
|
70
|
Zhang Y, Chen Z, Wang T, Yang J, Li R, Wang S, Liu J, Ye Z. Treatment of diabetes mellitus-induced erectile dysfunction using endothelial progenitor cells genetically modified with human telomerase reverse transcriptase. Oncotarget 2018; 7:39302-39315. [PMID: 27283992 PMCID: PMC5129934 DOI: 10.18632/oncotarget.9909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
The efficacy of treatments for diabetes mellitus-induced erectile dysfunction (DMED) is quite poor, and stem cell therapy is emerging as a useful method. In this study, we used endothelial progenitor cells (EPCs) overexpressing human telomerase reverse transcriptase (hTERT) for the treatment of DMED. Rat EPCs were transfected with hTERT (EPCs-hTERT). EPCs-hTERT secreted more growth factors and demonstrated enhanced proliferation and resistance to oxidative stress. Twenty-four male DMED rats were subjected to four treatments: DMED (DMED group), EPCs (EPCs group), EPCs transduced with control lentivirus (EPC-control group) and EPCs-hTERT (EPCs-hTERT group). A group of healthy rats were used as the normal control group. The erectile function in the EPCs-hTERT group was markedly increased compared with the EPCs and EPCs-control groups. The EPCs-hTERT group exhibited more growth factors, smooth muscle content and retained stem cells in penile tissues. The degree of apoptosis and collagen/smooth muscle ratio in penile tissues of the EPCs-hTERT group was considerably reduced. Endothelial nitric oxide synthase (eNOS) expression increased significantly in the EPCs-hTERT group. Taken together, these data showed that the enhanced paracrine effect, resistance to oxidative stress and proliferation of EPCs-hTERT may contribute to the improvements of erectile function in DMED rats.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
71
|
Saraulli D, Costanzi M, Mastrorilli V, Farioli-Vecchioli S. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age. Curr Neuropharmacol 2018; 15:519-533. [PMID: 27000776 PMCID: PMC5543673 DOI: 10.2174/1570159x14666160412150223] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on adult neurogenesis, a process which has proved being highly responsive to physical exercise and may represent a major factor of brain health over the lifespan. METHODS The most recent literature related to the subject has been reviewed. The text has been divided into three main sections, addressing the effects of physical exercise during childhood/ adolescence, adulthood and aging, respectively. For each one, the most relevant studies, carried out on both human participants and rodent models, have been described. RESULTS The data reviewed converge in indicating that physical activity exerts a positive effect on brain functioning throughout the lifespan. However, uncertainty remains about the magnitude of the effect and its biological underpinnings. Cellular and synaptic plasticity provided by adult neurogenesis are highly probable mediators, but the mechanism for their action has yet to be conclusively established. CONCLUSION Despite alternative mechanisms of action are currently debated, age-appropriate physical activity programs may constitute a large-scale, relatively inexpensive and powerful approach to dampen the individual and social impact of age-related cognitive decline.
Collapse
Affiliation(s)
- Daniele Saraulli
- Institute of Cell Biology and Neurobiology, National Research Council, & Fondazione S. Lucia, Rome. Italy
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, Rome. Italy
| | - Valentina Mastrorilli
- Institute of Cell Biology and Neurobiology, National Research Council, & Fondazione S. Lucia, Rome. Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Via del Fosso di Fiorano 64, 00143 Rome. Italy
| |
Collapse
|
72
|
Zhang X, Feng Y, Ding WF, Li X, Xie SC. Establishment of an embryonic cell line from the American cockroach Periplaneta americana (Blattaria: Blattidae) and a preliminary study of telomerase activity changes during the culturing process. In Vitro Cell Dev Biol Anim 2018; 54:129-135. [PMID: 29313222 DOI: 10.1007/s11626-017-0223-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Despite the pest status and medicinal value of the American cockroach Periplaneta americana, few attempts have been made to establish cell lines from this insect owing to the difficulty of culturing Blattarian cells. Here, we describe the establishment of the RIRI-PA1 line from P. americana embryo tissue following primary culture in modified Grace's medium containing 20% fetal bovine serum. RIRI-PA1 was found to primarily consist of attached spindle-shaped and giant cells, which attach themselves to their container. The population-doubling time of 40th-passage cells was approximately 84.8 h. The average chromosome number at the 30th passage was 42, with 40% of cells demonstrating substantial variations, with the highest number of variations of 78 and lowest of 24. The identity of RIRI-PA1 was confirmed by comparing the COI gene of these cells to that of P. americana embryo tissue. Telomerase activity decreased in primary cells after 7 d of culture and 5th-passage cells in comparison to embryo tissues; however, compared to the other cultured cells tested, the telomerase activity significantly increased at the 20th passage. We propose that the stagnation periods and cessation of proliferation observed relate to cellular telomerase activity, but the relationship between insect cell proliferation and telomerase as well as the regulatory mechanism involved remains to be elucidated.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| | - Ying Feng
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China.
| | - Wei-Feng Ding
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| | - Xian Li
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| | - Si-Cong Xie
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| |
Collapse
|
73
|
Alves-Paiva RM, Kajigaya S, Feng X, Chen J, Desierto M, Wong S, Townsley DM, Donaires FS, Bertola A, Gao B, Young NS, Calado RT. Telomerase enzyme deficiency promotes metabolic dysfunction in murine hepatocytes upon dietary stress. Liver Int 2018; 38:144-154. [PMID: 28741793 PMCID: PMC5741503 DOI: 10.1111/liv.13529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Short telomeres and genetic telomerase defects are risk factors for some human liver diseases, ranging from non-alcoholic fatty liver disease and non-alcoholic steatohepatitis to cirrhosis. In murine models, telomere dysfunction has been shown to metabolically compromise hematopoietic cells, liver and heart via the activation of the p53-PGC axis. METHODS Tert- and Terc-deficient mice were challenged with liquid high-fat diet. Liver metabolic contents were analysed by CE-TOFMS and liver fat content was confirmed by confocal and electronic microscopy. RESULTS Tert-deficient but not Terc-deficient mice develop hepatocyte injury and frank steatosis when challenged with liquid high-fat diet. Upon high-fat diet, Tert-/- hepatocytes fail to engage the citric acid cycle (TCA), with an imbalance of NADPH/NADP+ and NADH/NAD+ ratios and depletion of intermediates of TCA cycle, such as cis-aconitic acid. Telomerase deficiency caused an intrinsic metabolic defect unresponsive to environmental challenge. Chemical inhibition of telomerase by zidovudine recapitulated the abnormal Tert-/- metabolic phenotype in Terc-/- hepatocytes. CONCLUSIONS Our findings indicate that in telomeropathies short telomeres are not the only molecular trigger and telomerase enzyme deficiency provokes hepatocyte metabolic dysfunction, abrogates response to environmental challenge, and causes cellular injury and steatosis, providing a mechanism for liver damage in telomere diseases.
Collapse
Affiliation(s)
- Raquel M. Alves-Paiva
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil,Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Marie Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M. Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Flávia S. Donaires
- Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| | - Adeline Bertola
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo T. Calado
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW The activation of telomere maintenance pathways has long been regarded as a key hallmark of cancer and this has propelled the development of novel inhibitors of telomerase. In this review, we detail the background biology on telomere maintenance in health and disease, then concentrate on the recent preclinical and clinical development behind targeting telomerase in blood cancers. RECENT FINDINGS Preclinical and clinical studies have shown that imetelstat, a competitive inhibitor of telomerase, has activity in certain hematologic malignancies, in particular the myeloproliferative neoplasms and acute myeloid leukemia. SUMMARY Telomerase inhibition has shown remarkable efficacy in myeloid malignancies, and current and future preclinical and clinical studies are necessary to comprehensively investigate its underlying mechanism of action. Future work should identify the potential genetic susceptibilities to telomerase inhibition therapy, and evaluate rational combinations of telomerase inhibitors with chemotherapy and other novel agents. Robust preclinical evaluation is essential to best translate these new agents successfully into our clinical treatment algorithm for myeloid and other blood cancers.
Collapse
|
75
|
Lagunas AM, Wu J, Crowe DL. Telomere DNA damage signaling regulates cancer stem cell evolution, epithelial mesenchymal transition, and metastasis. Oncotarget 2017; 8:80139-80155. [PMID: 29113290 PMCID: PMC5655185 DOI: 10.18632/oncotarget.20960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 08/25/2017] [Indexed: 12/16/2022] Open
Abstract
Chromosome ends are protected by telomeres that prevent DNA damage response and degradation. When telomeres become critically short, the DNA damage response is activated at chromosome ends which induces cellular senescence or apoptosis. Telomeres are protected by the double stranded DNA binding protein TRF2 and maintained by telomerase or a recombination based mechanism known as alternative lengthening of telomeres (ALT). Telomerase is expressed in the basal layer of the epidermis, and stem cells in epidermis have longer telomeres than proliferating populations. Stem cell expansion has been associated with epithelial-mesenchymal transition (EMT) in cancer. EMT is a critical process in cancer progression in which cells acquire spindle morphology, migrate from the primary tumor, and spread to distant anatomic sites. Our previous study demonstrated that loss of TRF2 expression observed in human squamous cell carcinomas expanded metastatic cancer stem cells during mouse skin carcinogenesis. To determine if telomerase inhibition could block the TRF2-null mediated expansion of metastatic clones, we characterized skin carcinogenesis in a conditional TRF2/Terc double null mutant mouse. Loss of TRF2 and Terc expression resulted in telomere DNA damage, severely depleted CD34 + and Lgr6+ cancer stem cells, and induced terminal differentiation of metastatic cancer cells. However a novel cancer stem cell population evolved in primary tumors exhibiting genomic instability, ALT, and EMT. Surprisingly we discovered that metastatic clones evolved prior to histopathologic onset of primary tumors. These results have important implications for understanding the evolution and treatment of metastatic cancer.
Collapse
Affiliation(s)
| | - Jianchun Wu
- University of Illinois Cancer Center, Chicago, IL, USA
| | - David L Crowe
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
76
|
Scahill CM, Digby Z, Sealy IM, White RJ, Collins JE, Busch-Nentwich EM. The age of heterozygous telomerase mutant parents influences the adult phenotype of their offspring irrespective of genotype in zebrafish. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.12530.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Mutations in proteins involved in telomere maintenance lead to a range of human diseases, including dyskeratosis congenita, idiopathic pulmonary fibrosis and cancer. Telomerase functions to add telomeric repeats back onto the ends of chromosomes, however non-canonical roles of components of telomerase have recently been suggested.Methods: Here we use a zebrafish telomerase mutant which harbours a nonsense mutation intertto investigate the adult phenotypes of fish derived from heterozygous parents of different ages. Furthermore we use whole genome sequencing data to estimate average telomere lengths.Results: We show that homozygous offspring from older heterozygotes exhibit signs of body wasting at a younger age than those of younger parents, and that offspring of older heterozygous parents weigh less irrespective of genotype. We also demonstrate thatterthomozygous mutant fish have a male sex bias, and that clutches from older parents also have a male sex bias in the heterozygous and wild-type populations. Telomere length analysis reveals that the telomeres of younger heterozygous parents are shorter than those of older heterozygous parents.Conclusions: These data indicate that the phenotypes observed in offspring from older parents cannot be explained by telomere length. Instead we propose that Tert functions outside of telomere length maintenance in an age-dependent manner to influence the adult phenotypes of the next generation.
Collapse
|
77
|
Telomerase reverse transcriptase promotes chemoresistance by suppressing cisplatin-dependent apoptosis in osteosarcoma cells. Sci Rep 2017; 7:7070. [PMID: 28765565 PMCID: PMC5539325 DOI: 10.1038/s41598-017-07204-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022] Open
Abstract
Cisplatin is one of the most efficacious antimitotic drugs used in the treatment of a range of malignant tumors. However, treatment failures are common due to the development of chemoresistance. In addition to its telomere maintenance function, telomerase plays a pro-survival role, inducing decreased apoptosis and increased resistance against DNA damage. Elucidation of the molecular mechanisms underlying this effect is critical to improve treatment outcomes. Previously, our group showed higher telomerase reverse transcriptase(TERT) expression in cisplatin resistant osteosarcoma cells. In this study, confocal fluorescence microscopy experiments revealed that TERT translocates from the nucleus to mitochondria in cisplatin treated osteosarcoma cells. We observed decreased apoptosis rate and improved mitochondrial function in TERT-overexpressing cells following cisplatin treatment. Based on these results, we further established that TERT inhibits cisplatin-induced apoptosis independently of telomerase reverse transcriptase activity. Moreover, TERT suppressed cisplatin-induced apoptosis and improved mitochondrial function via alleviating intracellular ROS in osteosarcoma cells. Our finding that TERT shuttles from the nucleus to the mitochondrion in response to cisplatin treatment and inhibits cisplatin-induced apoptosis in osteosarcoma cells may be especially important to overcome drug resistance.
Collapse
|
78
|
Zhou QG, Liu MY, Lee HW, Ishikawa F, Devkota S, Shen XR, Jin X, Wu HY, Liu Z, Liu X, Jin X, Zhou HH, Ro EJ, Zhang J, Zhang Y, Lin YH, Suh H, Zhu DY. Hippocampal TERT Regulates Spatial Memory Formation through Modulation of Neural Development. Stem Cell Reports 2017; 9:543-556. [PMID: 28757168 PMCID: PMC5550029 DOI: 10.1016/j.stemcr.2017.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanism of memory formation remains a mystery. Here, we show that TERT, the catalytic subunit of telomerase, gene knockout (Tert−/−) causes extremely poor ability in spatial memory formation. Knockdown of TERT in the dentate gyrus of adult hippocampus impairs spatial memory processes, while overexpression facilitates it. We find that TERT plays a critical role in neural development including dendritic development and neuritogenesis of hippocampal newborn neurons. A monosynaptic pseudotyped rabies virus retrograde tracing method shows that TERT is required for neural circuit integration of hippocampal newborn neurons. Interestingly, TERT regulated neural development and spatial memory formation in a reverse transcription activity-independent manner. Using X-ray irradiation, we find that hippocampal newborn neurons mediate the modulation of spatial memory processes by TERT. These observations reveal an important function of TERT through a non-canonical pathway and encourage the development of a TERT-based strategy to treat neurological disease-associated memory impairment. Tert gene knockout causes extremely poor ability in spatial memory formation Dendritic development and neuritogenesis are impaired in Tert−/− mice TERT is required for neural circuit integration of hippocampal newborn neurons TERT regulates spatial memory formation in an activity-independent manner
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Meng-Ying Liu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Korea
| | - Fuyuki Ishikawa
- Departments of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-850, Japan
| | - Sushil Devkota
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Korea
| | - Xin-Ru Shen
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Xin Jin
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hai-Yin Wu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Zhigang Liu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiao Liu
- Department of Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 Zhejiang, P.R. China
| | - Hai-Hui Zhou
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Eun Jeoung Ro
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yu Zhang
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yu-Hui Lin
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China.
| |
Collapse
|
79
|
Zietzer A, Buschmann EE, Janke D, Li L, Brix M, Meyborg H, Stawowy P, Jungk C, Buschmann I, Hillmeister P. Acute physical exercise and long-term individual shear rate therapy increase telomerase activity in human peripheral blood mononuclear cells. Acta Physiol (Oxf) 2017; 220:251-262. [PMID: 27770498 DOI: 10.1111/apha.12820] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/28/2016] [Accepted: 10/17/2016] [Indexed: 01/03/2023]
Abstract
AIM Physical activity is a potent way to impede vascular ageing. However, patients who suffer from peripheral artery disease (PAD) are often unable to exercise adequately. For those patients, we have developed individual shear rate therapy (ISRT), which is an adaptation of external counterpulsation and enhances endovascular fluid shear stress to increase collateral growth (arteriogenesis). To evaluate the effects of physical exercise and ISRT on the telomere biology of peripheral blood mononuclear cells (PBMCs), we conducted two clinical trials. METHODS In the ISRT-1 study, we assessed PBMC telomerase activity in 26 young healthy volunteers upon a single (short-term) ISRT session and a single treadmill running session. In the ISRT-2 study, we investigated PBMC telomere biology of 14 elderly patients with PAD, who underwent 30 h of (long-term) ISRT within a 5-week period. RESULTS We demonstrate that telomerase activity significantly increased from 39.84 Total Product Generated (TPG) Units ± 6.15 to 58.10 TPG ± 10.46 upon a single treadmill running session in healthy volunteers. In the ISRT-2 trial, PBMC telomerase activity and the mRNA expression of the telomere-protective factor TRF2 increased from 40.87 TPG ± 4.45 to 60.98 TPG ± 6.83 and 2.10-fold ± 0.40, respectively, upon long-term ISRT in elderly patients with PAD. CONCLUSION In summary, we show that acute exercise and long-term ISRT positively affect PBMC telomerase activity, which is indicative for an improved regenerative potential of immune cells and vascular tissues. Long-term ISRT also enhances the gene expression of the telomere-protective factor TRF2.
Collapse
Affiliation(s)
- A. Zietzer
- Experimental and Clinical Research Center (ECRC); Richard-Thoma-Laboratories for Arteriogenesis; Center for Cardiovascular Research; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
| | - E. E. Buschmann
- Department for Angiology; Center for Internal Medicine I; Medical University of Brandenburg (MHB); Brandenburg an der Havel Brandenburg Germany
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
| | - D. Janke
- Berlin-Brandenburg School for Regenerative Therapies (BSRT); Charité - Universitaetsmedizin Berlin; Campus Virchow Klinikum (CVK) and Institute of Chemistry and Biochemistry; Freie Universität Berlin; Berlin Germany
| | - L. Li
- Experimental and Clinical Research Center (ECRC); Richard-Thoma-Laboratories for Arteriogenesis; Center for Cardiovascular Research; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
- Department for Angiology; Center for Internal Medicine I; Medical University of Brandenburg (MHB); Brandenburg an der Havel Brandenburg Germany
| | - M. Brix
- Experimental and Clinical Research Center (ECRC); Richard-Thoma-Laboratories for Arteriogenesis; Center for Cardiovascular Research; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
| | - H. Meyborg
- Department of Medicine/Cardiology; Deutsches Herzzentrum Berlin; Berlin Germany
| | - P. Stawowy
- Department of Medicine/Cardiology; Deutsches Herzzentrum Berlin; Berlin Germany
| | - C. Jungk
- Experimental and Clinical Research Center (ECRC); Richard-Thoma-Laboratories for Arteriogenesis; Center for Cardiovascular Research; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
| | - I. Buschmann
- Experimental and Clinical Research Center (ECRC); Richard-Thoma-Laboratories for Arteriogenesis; Center for Cardiovascular Research; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
- Department for Angiology; Center for Internal Medicine I; Medical University of Brandenburg (MHB); Brandenburg an der Havel Brandenburg Germany
| | - P. Hillmeister
- Experimental and Clinical Research Center (ECRC); Richard-Thoma-Laboratories for Arteriogenesis; Center for Cardiovascular Research; Charité - Universitätsmedizin Berlin; Campus Mitte (CCM); Berlin Germany
- Department for Angiology; Center for Internal Medicine I; Medical University of Brandenburg (MHB); Brandenburg an der Havel Brandenburg Germany
| |
Collapse
|
80
|
Cheng G, Yuan X, Wang F, Sun Q, Xin Q, Li K, Sun C, Lin Z, Luan Y, Xu Y, Li P, Kong F, Xu D. Association Between the Telomerase rs2736098_TT Genotype and a Lower Risk of Chronic Hepatitis B and Cirrhosis in Chinese Males. Clin Transl Gastroenterol 2017; 8:e79. [PMID: 28300824 PMCID: PMC5387758 DOI: 10.1038/ctg.2017.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Chronic hepatitis B (CHB) is caused by infection of hepatitis B virus (HBV) and liver cirrhosis (LC) is its most common complication. The accumulated evidence indicates a genetic context of HBV infection phenotypes. Here we determine a potential association of CHB/LC with the genetic variant of telomerase reverse transcriptase (TERT), a key player in aging including immune-senescence. METHODS The study included 227 Chinese CHB patients and 315 sex/age-matched healthy controls. TERT rs2736098 and rs2736100 genotyping was performed using pre-designed TaqMan SNP genotyping assay kits. Leukocyte telomere length (LTL) was determined using quantitative PCR. RESULTS The rs2736098_CT/CC genotypes were significantly associated with risk of CHB compared to the TT one (OR 2.265, 95% CI 1.202-4.269, P=0.015). A similar association was also found in CHB patients with cirrhosis (CT/CC vs TT: OR 2.398, 95% CI 1.168-4.922, P=0.02). Further analyses showed that the rs2736098_TT genotype difference occurred between male controls and patients (P=0.008) and male CT/CC-carriers exhibited highly increased risk of CHB compared to male controls (CT+CC vs TT, OR 3.182, 95% CI 1.350-7.500, P=0.01). There was no difference in the rs2736100 variants between controls and CHB patients. LTL was not different between cases and controls. CONCLUSIONS The TERT rs2736098_TT genotype is associated with a lower CHB and LC risk in Chinese males, which may have implications in CHB pathogenesis and prevention.
Collapse
Affiliation(s)
- Guanghui Cheng
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Xiaotian Yuan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska University Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Fang Wang
- Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Qing Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Qian Xin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Kailin Li
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Zhaomin Lin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Yiteng Xu
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Ping Li
- School of Nursing, Shandong University, Jinan, PR China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Dawei Xu
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska University Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
81
|
Ozturk MB, Li Y, Tergaonkar V. Current Insights to Regulation and Role of Telomerase in Human Diseases. Antioxidants (Basel) 2017; 6:antiox6010017. [PMID: 28264499 PMCID: PMC5384180 DOI: 10.3390/antiox6010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
The telomerase ribonucleoprotein complex has a pivotal role in regulating the proliferation and senescence of normal somatic cells as well as cancer cells. This complex is comprised mainly of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC) and other associated proteins that function to elongate telomeres localized at the end of the chromosomes. While reactivation of telomerase is a major hallmark of most cancers, together with the synergistic activation of other oncogenic signals, deficiency in telomerase and telomeric proteins might lead to aging and senescence-associated disorders. Therefore, it is critically important to understand the canonical as well as non-canonical functions of telomerase through TERT to develop a therapeutic strategy against telomerase-related diseases. In this review, we shed light on the regulation and function of telomerase, and current therapeutic strategies against telomerase in cancer and age-related diseases.
Collapse
Affiliation(s)
- Mert Burak Ozturk
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5000, Australia.
| |
Collapse
|
82
|
Pestana A, Vinagre J, Sobrinho-Simões M, Soares P. TERT biology and function in cancer: beyond immortalisation. J Mol Endocrinol 2017; 58:R129-R146. [PMID: 28057768 DOI: 10.1530/jme-16-0195] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Evasion of replicative senescence and proliferation without restriction, sometimes designated as immortalisation, is one of the hallmarks of cancer that may be attained through reactivation of telomerase in somatic cells. In contrast to most normal cells in which there is lack of telomerase activity, upregulation of TERT transcription/activity is detected in 80-90% of malignant tumours. In several types of cancer, there is a relationship between the presence of TERT promoter mutations, TERT mRNA expression and clinicopathological features, but the biological bridge between the occurrence of TERT promoter mutations and the aggressive/invasive features displayed by the tumours remains unidentified. We and others have associated the presence of TERT promoter mutations with metastisation/survival in several types of cancer. In follicular cell-derived thyroid cancer, such mutations are associated with worse prognostic features (age of patients, tumour size and tumour stage) as well as with distant metastases, worse response to treatment and poorer survival. In this review, we analyse the data reported in several studies that imply TERT transcription reactivation/activity with cell proliferation, tumour invasion and metastisation. A particular attention is given to the putative connections between TERT transcriptional reactivation and signalling pathways frequently altered in cancer, such as c-MYC, NF-κB and B-Catenin.
Collapse
Affiliation(s)
- Ana Pestana
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
| | - João Vinagre
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
- Medical FacultyUniversity of Porto, Porto, Portugal
- Department of PathologyCentro Hospitalar S. João, Porto, Portugal
- Department of PathologyMedical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
- Medical FacultyUniversity of Porto, Porto, Portugal
- Department of PathologyMedical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
83
|
Endorf EB, Qing H, Aono J, Terami N, Doyon G, Hyzny E, Jones KL, Findeisen HM, Bruemmer D. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol 2016; 37:301-311. [PMID: 27932351 DOI: 10.1161/atvbaha.116.308717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/20/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. APPROACH AND RESULTS We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. CONCLUSIONS These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC.
Collapse
MESH Headings
- Acetylation
- Animals
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Binding Sites
- Cell Proliferation
- Cells, Cultured
- Chromatin Assembly and Disassembly
- Disease Models, Animal
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Femoral Artery/enzymology
- Femoral Artery/injuries
- Femoral Artery/pathology
- G1 Phase Cell Cycle Checkpoints
- Gene Silencing
- Genetic Predisposition to Disease
- Histones/metabolism
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Neointima
- Phenotype
- Phosphorylation
- Protein Binding
- RNA Interference
- Retinoblastoma Protein/metabolism
- Signal Transduction
- Telomerase/deficiency
- Telomerase/genetics
- Telomerase/metabolism
- Time Factors
- Transfection
- Vascular Remodeling
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Elizabeth B Endorf
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Hua Qing
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Jun Aono
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Naoto Terami
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Geneviève Doyon
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Eric Hyzny
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Karrie L Jones
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Hannes M Findeisen
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Dennis Bruemmer
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.).
| |
Collapse
|
84
|
Liu N, Ding D, Hao W, Yang F, Wu X, Wang M, Xu X, Ju Z, Liu JP, Song Z, Shay JW, Guo Y, Cong YS. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res 2016; 44:8693-8703. [PMID: 27325744 PMCID: PMC5062966 DOI: 10.1093/nar/gkw549] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is recognized as an important hallmark of cancer. Although telomerase is thought to be involved in tumor angiogenesis, the evidence and underlying mechanism remain elusive. Here, we demonstrate that human telomerase reverse transcriptase (hTERT) activates vascular epithelial growth factor (VEGF) gene expression through interactions with the VEGF promoter and the transcription factor Sp1. hTERT binds to Sp1 in vitro and in vivo and stimulates angiogenesis in a manner dependent on Sp1. Deletion of the mTert gene in the first generation of Tert null mice compromised tumor growth, with reduced VEGF expression. In addition, we show that hTERT expression levels are positively correlated with those of VEGF in human gastric tumor samples. Together, our results demonstrate that hTERT facilitates tumor angiogenesis by up-regulating VEGF expression through direct interactions with the VEGF gene and the Sp1 transcription factor. These results provide novel insights into hTERT function in tumor progression in addition to its role in telomere maintenance.
Collapse
Affiliation(s)
- Ning Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Deqiang Ding
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Wanyu Hao
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Fan Yang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Xiaoying Wu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Miao Wang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Xiaoling Xu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Zhenyu Ju
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Zhangfa Song
- Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou 310016, China
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| |
Collapse
|
85
|
Lionaki E, Gkikas I, Tavernarakis N. Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Front Genet 2016; 7:162. [PMID: 27695477 PMCID: PMC5025450 DOI: 10.3389/fgene.2016.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
The coordination of nuclear and mitochondrial genomes plays a pivotal role in maintenance of mitochondrial biogenesis and functionality during stress and aging. Environmental and cellular inputs signal to nucleus and/or mitochondria to trigger interorganellar compensatory responses. Loss of this tightly orchestrated coordination results in loss of cellular homeostasis and underlies various pathologies and age-related diseases. Several signaling cascades that govern interorganellar communication have been revealed up to now, and have been classified as part of the anterograde (nucleus to mitochondria) or retrograde (mitochondrial to nucleus) response. Many of these molecular pathways rely on the dual distribution of nuclear or mitochondrial components under basal or stress conditions. These dually localized components usually engage in specific tasks in their primary organelle of function, whilst upon cellular stimuli, they appear in the other organelle where they engage in the same or a different task, triggering a compensatory stress response. In this review, we focus on protein factors distributed between the nucleus and mitochondria and activated to exert their functions upon basal or stress conditions. We further discuss implications of bi-organellar targeting in the context of aging.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| |
Collapse
|
86
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
87
|
Telomerase: The Devil Inside. Genes (Basel) 2016; 7:genes7080043. [PMID: 27483324 PMCID: PMC4999831 DOI: 10.3390/genes7080043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in a telomerase positive stem/progenitor cell, or rely in alternative lengthening of telomeres, a telomerase-independent telomere-length maintenance mechanism. In this review, we will focus on the telomerase positive tumors. In this context, the recent findings that telomerase reverse transcriptase (TERT) promoter mutations represent the most common non-coding mutations in human cancer have flared up the long-standing discussion whether cancer originates from telomerase positive stem cells or telomerase reactivation is a final step in cellular transformation. Here, we will discuss the pros and cons of both concepts in the context of telomere length-dependent and telomere length-independent functions of telomerase. Together, these observations may provoke a re-evaluation of telomere and telomerase based therapies, both in telomerase inhibition for cancer therapy and telomerase activation for tissue regeneration and anti-ageing strategies.
Collapse
|
88
|
Jäger K, Walter M. Therapeutic Targeting of Telomerase. Genes (Basel) 2016; 7:genes7070039. [PMID: 27455328 PMCID: PMC4962009 DOI: 10.3390/genes7070039] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and personalized approaches. Telomerase activation and cell rejuvenation is successfully used in regenerative medicine for tissue engineering and reconstructive surgery. However, there are also a number of pitfalls in the treatment with telomerase activating procedures for the whole organism and for longer periods of time. Extended cell lifespan may accumulate rare genetic and epigenetic aberrations that can contribute to malignant transformation. Therefore, novel vector systems have been developed for a 'mild' integration of telomerase into the host genome and loss of the vector in rapidly-proliferating cells. It is currently unclear if this technique can also be used in human beings to treat chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Kathrin Jäger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Michael Walter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
- Labor Berlin-Charité Vivantes Services GmbH, Sylter Str. 2, Berlin 13353, Germany.
| |
Collapse
|
89
|
Hidema S, Fukuda T, Date S, Tokitake Y, Matsui Y, Sasaki H, Nishimori K. Transgenic expression of Telomerase reverse transcriptase (Tert) improves cell proliferation of primary cells and enhances reprogramming efficiency into the induced pluripotent stem cell. Biosci Biotechnol Biochem 2016; 80:1925-33. [PMID: 27297181 DOI: 10.1080/09168451.2016.1191330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The enzymatic activity of telomerase is important for the extension of the telomere repeat sequence and overcoming cellular senescence. We generated a conditional transgenic mouse line, carrying the telomerase reverse transcriptase (Tert) expression cassette, controlled by the Cre-loxP-mediated recombination. In our study, Cre recombinase expression efficiently activated Tert expression, resulting in its increased enzymatic activity, which extended the period of cellular proliferation until the keratinocytes entered senescence. This suggests that transgenic Tert expression is effective in enhancing primary cell proliferation. Notably, Tert expression increased colony formation of induced pluripotent stem (iPS) cells after the introduction of four reprogramming factors, Oct-4, klf4, SOX-2, and c-Myc into the transgenic fibroblasts. To the best of our knowledge, this is the first study to show that the transgenic Tert expression enhances reprogramming efficiency of iPS cells, which indicates a critical role for Tert in the reprogramming process.
Collapse
Affiliation(s)
- Shizu Hidema
- a Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Tomokazu Fukuda
- a Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Shiori Date
- a Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Yuko Tokitake
- b Cell Resource Center for Biomedical Research, Institute of Development, Aging, and Cancer , Tohoku University , Sendai , Japan
| | - Yasuhisa Matsui
- b Cell Resource Center for Biomedical Research, Institute of Development, Aging, and Cancer , Tohoku University , Sendai , Japan
| | - Hiroki Sasaki
- c Department of Translational Oncology , National Cancer Center Research Institute , Tokyo , Japan
| | - Katsuhiko Nishimori
- a Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
90
|
Guo F, Ren X, Dong Y, Hu X, Xu D, Zhou H, Meng F, Tian W, Zhao Y. Constitutive expression of PPARγ inhibits proliferation and migration of gastric cancer cells and down-regulates Wnt/β-Catenin signaling pathway downstream target genes TERT and ENAH. Gene 2016; 584:31-37. [DOI: 10.1016/j.gene.2016.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
|
91
|
Aono J, Ruiz-Rodriguez E, Qing H, Findeisen HM, Jones KL, Heywood EB, Bruemmer D. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing. ACTA ACUST UNITED AC 2016; 1:49-60. [PMID: 27127803 PMCID: PMC4843168 DOI: 10.1016/j.jacbts.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proliferation of smooth muscle cells (SMCs) during neointima formation is prevented by drug-eluting stents. The replicative capacity of mammalian cells is enhanced by telomerase expression; however, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target are unknown. The present study investigated the mechanisms underlying the mitogenic function of telomerase, and tested the hypothesis that everolimus, which is commonly used on drug-eluting stents, suppresses SMC proliferation by targeting telomerase. Inhibition of neointima formation by everolimus was lost in mice overexpressing telomerase reverse transcriptase (TERT), indicating that repression of telomerase confers the anti-proliferative efficacy of everolimus. Everolimus reduced TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S-phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These effects were sensitive to inhibition by everolimus. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus, and further identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT. The proliferative capacity of smooth muscle cells (SMC) during neointima formation is prevented by everolimus-coated drug-eluting stents. Everolimus failed to inhibit neointima formation by in mice overexpressing telomerase reverse transcriptase (TERT). Everolimus reduced TERT-dependent SMC proliferation through inhibition of Ets-1–dependent promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred as a result of a G1→S-phase arrest, rather than telomerase shortening. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These studies identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT.
Collapse
Affiliation(s)
- Jun Aono
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Ernesto Ruiz-Rodriguez
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Hua Qing
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Hannes M Findeisen
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Karrie L Jones
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Elizabeth B Heywood
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Dennis Bruemmer
- Division of Cardiovascular Medicine, Gill Heart Institute and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
92
|
Liu H, Liu Q, Ge Y, Zhao Q, Zheng X, Zhao Y. hTERT promotes cell adhesion and migration independent of telomerase activity. Sci Rep 2016; 6:22886. [PMID: 26971878 PMCID: PMC4789728 DOI: 10.1038/srep22886] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
hTERT, a catalytic component of human telomerase, is undetectable in normal somatic cells but up-regulated in cancer and stem cells where telomere length is maintained by telomerase. Accumulated evidence indicates that hTERT may have noncanonical functions beyond telomerase by regulating the expression of particular genes. However, comprehensive identification of the genes regulated by hTERT is unavailable. In this report, we expressed WT hTERT and hTERTmut which displays dysfunctional catalytic activity, in human U2OS cancer cells and VA-13 immortalized fibroblast cells, both of which lack endogenous hTERT and hTR expression. Changes in gene expression induced by hTERT and hTERT-mut expression were determined by genome-wide RNA-seq and verified by qPCR. Our results showed that hTERT affects different genes in two cell lines, implying that the regulation of gene expression by hTERT is indirect and cell type dependent. Moreover, functional analysis identifies cell adhesion-related genes that have been changed by hTERT in both cell lines. Adhesion experiments revealed that hTERT expression significantly increases cell adhesion. Monolayer wound healing and transwell assays demonstrated increased cell migration upon hTERT expression. These results provide new evidence to support a noncanonical function for hTERT in promoting tumorigenesis.
Collapse
Affiliation(s)
- Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, P. R. China
| | - Qianqian Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yuanlong Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, P. R. China
| | - Qi Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 P. R. China
| | - Xiaohui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, P. R. China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, P. R. China
| |
Collapse
|
93
|
Abstract
The 2013 discovery of Telomerase reverse transcriptase (TERT) promoter mutations chr5, 1,295,228 C>T (C228T) and 1,295,250 C>T (C250T) in thyroid cancer represents an important event in the thyroid cancer field and much progress has occurred since then. This article provides a comprehensive review of this exciting new thyroid cancer field. The oncogenic role of TERT promoter mutations involves their creation of consensus binding sites for E-twenty-six transcriptional factors. TERT C228T is far more common than TERT C250T and their collective prevalence is, on average, 0, 11.3, 17.1, 43.2 and 40.1% in benign thyroid tumors, papillary thyroid cancer (PTC), follicular thyroid cancer, poorly differentiated thyroid cancer and anaplastic thyroid cancer, respectively, displaying an association with aggressive types of thyroid cancer. TERT promoter mutations are associated with aggressive thyroid tumor characteristics, tumor recurrence and patient mortality as well as BRAF V600E mutation. Coexisting BRAF V600E and TERT promoter mutations have a robust synergistic impact on the aggressiveness of PTC, including a sharply increased tumor recurrence and patient mortality, while either mutation alone has a modest impact. Thus, TERT with promoter mutations represents a prominent new oncogene in thyroid cancer and the mutations are promising new diagnostic and prognostic genetic markers for thyroid cancer, which, in combination with BRAF V600E mutation or other genetic markers (e.g. RAS mutations), are proving to be clinically useful for the management of thyroid cancer. Future studies will specifically define such clinical utilities, elucidate the biological mechanisms and explore the potential as therapeutic targets of TERT promoter mutations in thyroid cancer.
Collapse
Affiliation(s)
- Rengyun Liu
- Laboratory for Cellular and Molecular Thyroid ResearchDivision of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA
| | - Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid ResearchDivision of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA
| |
Collapse
|
94
|
Hong J, Lee JH, Chung IK. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J Cell Sci 2016; 129:1566-79. [PMID: 26906424 DOI: 10.1242/jcs.181040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that is required for the maintenance of telomere repeats. Although overexpression of telomerase in normal human somatic cells is sufficient to overcome replicative senescence, the ability of telomerase to promote tumorigenesis requires additional activities that are independent of its role in telomere extension. Here, we identify proliferation-associated nucleolar antigen 120 (NOL1, also known as NOP2) as a telomerase RNA component (TERC)-binding protein that is found in association with catalytically active telomerase. Although NOL1 is highly expressed in the majority of human tumor cells, the molecular mechanism by which NOL1 contributes to tumorigenesis remained unclear. We show that NOL1 binds to the T-cell factor (TCF)-binding element of the cyclin D1 promoter and activates its transcription. Interestingly, telomerase is also recruited to the cyclin D1 promoter in a TERC-dependent manner through the interaction with NOL1, further enhancing transcription of the cyclin D1 gene. Depletion of NOL1 suppresses cyclin D1 promoter activity, thereby leading to induction of growth arrest and altered cell cycle distributions. Collectively, our findings suggest that NOL1 represents a new route by which telomerase activates transcription of cyclin D1 gene, thus maintaining cell proliferation capacity.
Collapse
Affiliation(s)
- Juyeong Hong
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Hoon Lee
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - In Kwon Chung
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
95
|
Bosada FM, Devasthali V, Jones KA, Stankunas K. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis. Development 2016; 143:1041-54. [PMID: 26893350 DOI: 10.1242/dev.130575] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/31/2016] [Indexed: 01/12/2023]
Abstract
Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Vidusha Devasthali
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Kimberly A Jones
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
96
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
97
|
Liu T, Yu H, Ding L, Wu Z, Gonzalez De Los Santos F, Liu J, Ullenbruch M, Hu B, Martins V, Phan SH. Conditional Knockout of Telomerase Reverse Transcriptase in Mesenchymal Cells Impairs Mouse Pulmonary Fibrosis. PLoS One 2015; 10:e0142547. [PMID: 26555817 PMCID: PMC4640706 DOI: 10.1371/journal.pone.0142547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/25/2015] [Indexed: 12/31/2022] Open
Abstract
Telomerase is typically expressed in cellular populations capable of extended replication, such as germ cells, tumor cells, and stem cells, but is also induced in tissue injury, repair and fibrosis. Its catalytic component, telomerase reverse transcriptase (TERT) is induced in lung fibroblasts from patients with fibrotic interstitial lung disease and in rodents with bleomycin-induced pulmonary fibrosis. To evaluate the fibroblast specific role of TERT in pulmonary fibrosis, transgenic mice bearing a floxed TERT allele were generated, and then crossed with an inducible collagen α2(I)-Cre mouse line to generate fibroblast specific TERT conditional knockout mice. TERT-specific deficiency in mesenchymal cells caused attenuation of pulmonary fibrosis as manifested by reduced lung hydroxyproline content, type I collagen and α-smooth muscle actin mRNA levels. The TERT-deficient mouse lung fibroblasts displayed decreased cell proliferative capacity and higher susceptibility to induced apoptosis compared with control cells. Additionally TERT deficiency was associated with heightened α-smooth muscle actin expression indicative of myofibroblast differentiation. However the impairment of cell proliferation and increased susceptibility to apoptosis would cause a reduction in the myofibroblast progenitor population necessary to mount a successful myofibroblast-dependent fibrotic response. These findings identified a key role for TERT in fibroblast proliferation and survival essential for pulmonary fibrosis.
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Hongfeng Yu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Lin Ding
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Zhe Wu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | | | - Jianhua Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Biao Hu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vanessa Martins
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sem H. Phan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
98
|
Alibardi L. Immunocalization of telomerase in cells of lizard tail after amputation suggests cell activation for tail regeneration. Tissue Cell 2015; 48:63-71. [PMID: 26697743 DOI: 10.1016/j.tice.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 01/28/2023]
Abstract
Tail amputation (autotomy) in most lizards elicits a remarkable regenerative response leading to a new although simplified tail. No information on the trigger mechanism following wounding is known but cells from the stump initiate to proliferate and form a regenerative blastema. The present study shows that telomerases are mainly activated in the nuclei of various connective and muscle satellite cells of the stump, and in other tissues, probably responding to the wound signals. Western blotting detection also indicates that telomerase positive bands increases in the regenerating blastema in comparison to the normal tail. Light and ultrastructural immunocytochemistry localization of telomerase shows that 4-14 days post-amputation in lizards immunopositive nuclei of sparse cells located among the wounded tissues are accumulating into the forming blastema. These cells mainly include fibroblasts and fat cells of the connective tissue and satellite cells of muscles. Also some immature basophilic and polychromatophilic erytroblasts, lymphoblasts and myelocytes present within the Bone Marrow of the vertebrae show telomerase localization in their nuclei, but their contribution to the formation of the regenerative blastema remains undetermined. The study proposes that one of the initial mechanisms triggering cell proliferation for the formation of the blastema in lizards involve gene activation for the production of telomerase that stimulates the following signaling pathways for cell division and migration.
Collapse
Affiliation(s)
- L Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
99
|
A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. Nat Commun 2015; 5:3228. [PMID: 24496182 DOI: 10.1038/ncomms4228] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/09/2014] [Indexed: 02/04/2023] Open
Abstract
Dyskeratosis congenita (DC) is an inherited disorder with mutations affecting telomerase or telomeric proteins. DC patients usually die of bone marrow failure. Here we show that genetic depletion of the telomerase RNA component (TR) in the zebrafish results in impaired myelopoiesis, despite normal development of haematopoietic stem cells (HSCs). The neutropenia caused by TR depletion is independent of telomere length and telomerase activity. Genetic analysis shows that TR modulates the myeloid-erythroid fate decision by controlling the levels of the master myeloid and erythroid transcription factors spi1 and gata1, respectively. The alteration in spi1 and gata1 levels occurs through stimulation of gcsf and mcsf. Our model of TR deficiency in the zebrafish illuminates the non-canonical roles of TR, and could establish therapeutic targets for DC.
Collapse
|
100
|
Maida Y, Masutomi K. Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase. Cancer Sci 2015; 106:1486-92. [PMID: 26331588 PMCID: PMC4714691 DOI: 10.1111/cas.12806] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/26/2022] Open
Abstract
Telomeres, the repetitive sequences at chromosomal ends, protect intact chromosomes. Telomeres progressively shorten through successive rounds of cell divisions, and critically shortened telomeres trigger senescence and apoptosis. The enzyme that elongates telomeres and maintains their structure is known as telomerase. The catalytic subunit of this enzyme (telomerase reverse transcriptase [TERT]) is expressed at a high level in malignant cells, but at a very low level in normal cells. Although telomerase activity was long believed to be the only function of TERT, emerging evidence indicates that TERT plays roles beyond telomeres. For example, TERT contributes to stem cell maintenance and cell reprogramming processes in a manner independent of its canonical function. Even some types of splice variants that lack the telomerase catalytic domains exhibit the functions in a manner that does not depend on telomerase activity. We recently demonstrated that the RNA-dependent RNA polymerase (RdRP) activity of TERT is involved in regulation of gene silencing and heterochromatic transcription. Moreover, TERT RdRP activity is mediated by a newly identified complex, distinct from the authentic telomerase complex, that plays a role in cancer stem cells in a telomere maintenance independent manner. TERT has attracted interest as a molecular target for anticancer treatment, but previous efforts aimed at developing novel therapeutic strategies focused only on the canonical function of TERT. However, accumulating evidence about the non-canonical functions of TERT led us to speculate that the functions other than telomerase might be therapeutic targets as well. In this review, we discuss the non-canonical functions of TERT and their potential applications for anticancer treatment.
Collapse
Affiliation(s)
- Yoshiko Maida
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|