51
|
Zhao J, Liu J, Xu J, Zhao L, Wu Q, Xiao S. Quantitative Trait Locus Mapping and Candidate Gene Analysis for Verticillium Wilt Resistance Using Gossypium barbadense Chromosomal Segment Introgressed Line. FRONTIERS IN PLANT SCIENCE 2018; 9:682. [PMID: 29899750 PMCID: PMC5988901 DOI: 10.3389/fpls.2018.00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/03/2018] [Indexed: 05/08/2023]
Abstract
Verticillium wilt (VW) is a soil-borne fungal disease that is caused by Verticillium dahliae Kleb and seriously damages cotton production annually in China. To date, many efforts have been made to improve the resistance of upland cotton against VW, but little progress has been achieved because of a lack of resistant upland cotton to VW. G. barbadense is known to carry high resistance to VW; however, it is difficult to transfer the resistance trait from G. barbadense to upland cotton because of linkage drag and distortion in the interspecific hybrid. In this study, a chromosomal segment introgression line (CSIL), SuVR043, containing a single and homozygous chromosome segment of G. barbadense cv. H7124 D04 (Chr 22), was created and used to construct an F2 population for mapping of VW resistance quantitative trait loci (QTLs) in the greenhouse. Two major resistance QTLs against nondefoliating V. dahliae isolate Bp2, called qVW-Bp2-1 and qVW-Bp2-2, which were flanked by the markers cgr6409-ZHX37 and ZHX57-ZHX70 and explained an average of 16.38 and 22.36% of the observed phenotypic variation, respectively, were detected in three independent replicate experiments. The genetic distances from cgr6409 to ZHX37 and from ZHX57 to ZHX70 were 2.4 and 0.8 cM, respectively. By analyzing the genome sequence of the qVW-Bp2-1 and qVW-Bp2-2 regions, we determined that the accurate physical distances from cgr6409 to ZHX37 and from ZHX57 to ZHX70 in the G. barbadense genome are 254 and 140 kb, and that those spans 36 and 20 putative genes, respectively. The results of the expression analysis showed significant differences in the expression profiles of GbCYP450, GbTMEM214, and GbRLK among G. barbadense cv. H7124, CSIL SuVR043 and G. hirsutum acc. Sumian 8 at different times after inoculation with V. dahliae isolate Bp2. Virus-induced gene silencing (VIGS) analysis showed that silencing of GbCYP450 and GbTMEM214 decreased H7124 and CSIL SuVR043 resistance to VW. These results form a solid foundation for fine mapping and cloning of resistance genes in the substituted segment and will provide valuable assistance in future efforts to breed for VW resistance.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianwen Xu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiaojuan Wu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Songhua Xiao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Songhua Xiao
| |
Collapse
|
52
|
Kim H, Hong KI, Lee JH, Kang P, Choi MG, Jang WD. Triazole-bearing calixpyrroles: strong halide binding affinities through multiple N–H and C–H hydrogen bonds. Chem Commun (Camb) 2018; 54:10863-10865. [DOI: 10.1039/c8cc06385k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Triazole-bearing calixpyrroles (TCPs) were synthesized as artificial anion binding receptors.
Collapse
Affiliation(s)
| | - Kyeong-Im Hong
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Jeong Heon Lee
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Philjae Kang
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Moon-Gun Choi
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Woo-Dong Jang
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| |
Collapse
|
53
|
Song Y, Zhang B, Guo F, Yang M, Li Y, Liu ZQ. Identification of Intracellular β-Barrel Residues Involved in Ion Selectivity in the Mechanosensitive Channel of Thermoanaerobacter tengcongensis. Front Physiol 2017; 8:832. [PMID: 29118717 PMCID: PMC5661003 DOI: 10.3389/fphys.2017.00832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
The mechanosensitive channel of small conductance (MscS) is a bacterial membrane pore that senses membrane tension and protects cells from lysis by releasing osmolytes. MscS is a homoheptameric channel with a cytoplasmic domain with seven portals and a β-barrel opening to the cytoplasm. TtMscS, an MscS channel from Thermoanaerobacter tengcongensis, is an anion-selective channel. A previous study from our laboratory has defined the crucial role of β-barrel in the anion selectivity of TtMscS (Zhang et al., 2012). However, the mechanistic details by which the β-barrel determines anion selectivity remain unclear. Here, using mutagenesis and patch-clamp recordings, we investigated the function and structural correlations between β-barrels and the anion selectivity of TtMscS at the atomic level. Our results indicated that mutation of V274, a residue at the center of the inner wall of the β-barrel in TtMscS, caused the anion selectivity of TtMscS reverse to cation selectivity. Moreover, the electrostatic potential (T272) and physical size (L276) of residues in the inner wall of β-barrel also determine the anion selectivity of TtMscS. In summary, the present study confirmed that the β-barrel region of TtMscS acts as a “selective filter” that renders TtMscS anion selectivity.
Collapse
Affiliation(s)
- Yingcai Song
- Department of Anaesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Zhang
- Department of Anaesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Maojun Yang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qiang Liu
- Department of Anaesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Bækgaard Nielsen O, de Paoli FV, Riisager A, Pedersen TH. Chloride Channels Take Center Stage in Acute Regulation of Excitability in Skeletal Muscle: Implications for Fatigue. Physiology (Bethesda) 2017; 32:425-434. [DOI: 10.1152/physiol.00006.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023] Open
Abstract
Initiation and propagation of action potentials in muscle fibers is a key element in the transmission of activating motor input from the central nervous system to their contractile apparatus, and maintenance of excitability is therefore paramount for their endurance during work. Here, we review current knowledge about the acute regulation of ClC-1 channels in active muscles and its importance for muscle excitability, function, and fatigue.
Collapse
Affiliation(s)
| | | | - Anders Riisager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
55
|
Tomasek M, Misak A, Grman M, Tomaskova Z. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers. FEBS Lett 2017. [PMID: 28640976 DOI: 10.1002/1873-3468.12721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection.
Collapse
Affiliation(s)
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak
| | - Zuzana Tomaskova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak
| |
Collapse
|
56
|
Chin HJ, Kim CH, Ha K, Shin JH, Kim DS, So I. Electrophysiological characteristics of R47W and A298T mutations in CLC-1 of myotonia congenita patients and evaluation of clinical features. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:439-447. [PMID: 28706458 PMCID: PMC5507783 DOI: 10.4196/kjpp.2017.21.4.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023]
Abstract
Myotonia congenita (MC) is a genetic disease that displays impaired relaxation of skeletal muscle and muscle hypertrophy. This disease is mainly caused by mutations of CLCN1 that encodes human skeletal muscle chloride channel (CLC-1). CLC-1 is a voltage gated chloride channel that activates upon depolarizing potentials and play a major role in stabilization of resting membrane potentials in skeletal muscle. In this study, we report 4 unrelated Korean patients diagnosed with myotonia congenita and their clinical features. Sequence analysis of all coding regions of the patients was performed and mutation, R47W and A298T, was commonly identified. The patients commonly displayed transient muscle weakness and only one patient was diagnosed with autosomal dominant type of myotonia congenita. To investigate the pathological role of the mutation, electrophysiological analysis was also performed in HEK 293 cells transiently expressing homo- or heterodimeric mutant channels. The mutant channels displayed reduced chloride current density and altered channel gating. However, the effect of A298T on channel gating was reduced with the presence of R47W in the same allele. This analysis suggests that impaired CLC-1 channel function can cause myotonia congenita and that R47W has a protective effect on A298T in relation to channel gating. Our results provide clinical features of Korean myotonia congenita patients who have the heterozygous mutation and reveal underlying pathophyological consequences of the mutants by taking electrophysiological approach.
Collapse
Affiliation(s)
- Hyung Jin Chin
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chan Hyeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin Hong Shin
- Department of Neurology, Research Institute for Convergence of Biomedical Research and Technology, Pusan University Yangsan Hospital, Yangsan 50612, Korea
| | - Dae-Seong Kim
- Department of Neurology, Research Institute for Convergence of Biomedical Research and Technology, Pusan University Yangsan Hospital, Yangsan 50612, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
57
|
Ran S, Sun N, Liu Y, Zhang W, Li Y, Wei L, Wang J, Liu B. Fluoride resistance capacity in mammalian cells involves complex global gene expression changes. FEBS Open Bio 2017; 7:968-980. [PMID: 28680810 PMCID: PMC5494298 DOI: 10.1002/2211-5463.12236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 11/08/2022] Open
Abstract
Fluorine is a bone-seeking element ubiquitously present in the environment and widely used in many oral hygiene products. In humans, excessive intake of fluoride may cause dental and skeletal fluorosis. However, endemic fluorosis does not appear to develop in a proportion of individuals exposed to the same levels of fluoride. The mechanisms by which mammalian cells resist fluoride are still unclear. In this study, we developed strains of mouse L-929 cells resistant to different levels of fluoride. High-throughput RNA-sequencing analyses of the fluoride-resistant L-929 cells indicated that massive changes in global gene expression occurred, compared with the wild-type L-929 cells. The main biological processes and functions changed were associated with the extracellular region and matrix, response to stress, receptor binding, and signal transduction. This indicated that high doses of fluoride not only exerted stress on L-929 cells but also induced functional pathways that helped them adapt to the presence of fluoride or to expel it. These data should prove useful in identifying cellular processes or transporters/channels that play central roles in adaptation to or expulsion of fluoride in humans.
Collapse
Affiliation(s)
- Shujun Ran
- Department of Endodontics and Operative Dentistry Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai Key Laboratory of Stomatology Shanghai China
| | - Ning Sun
- Department of Physiology and Pathophysiology Fudan University Shanghai China
| | - Yun Liu
- The Ministry of Education Key Laboratory of Metabolism and Molecular Medicine Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| | - Wu Zhang
- Center for Dental Research Loma Linda University School of Dentistry CA USA
| | - Yiming Li
- Center for Dental Research Loma Linda University School of Dentistry CA USA
| | - Limin Wei
- Center for Dental Research Loma Linda University School of Dentistry CA USA.,School and Hospital of Stomatology Wenzhou Medical University China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai Key Laboratory of Stomatology Shanghai China
| | - Bin Liu
- Department of Endodontics and Operative Dentistry Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai Key Laboratory of Stomatology Shanghai China.,Center for Dental Research Loma Linda University School of Dentistry CA USA
| |
Collapse
|
58
|
Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC, Han M, Seo YA, Yien YY, Nardone C, Menon AV, Fan J, Svoboda DC, Anderson JB, Hong JD, Nicolau BG, Subedi K, Gewirth AA, Wessling-Resnick M, Kim J, Paw BH, Burke MD. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science 2017; 356:608-616. [PMID: 28495746 PMCID: PMC5470741 DOI: 10.1126/science.aah3862] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.
Collapse
Affiliation(s)
- Anthony S Grillo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna M SantaMaria
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Kafina
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander G Cioffi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Archita V Menon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - James Fan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dillon C Svoboda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob B Anderson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John D Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruno G Nicolau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kiran Subedi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marianne Wessling-Resnick
- Department of Genetic and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
59
|
Abstract
Synthetic pyrrole-based anion receptors date back to the 1990s. They have been extensively developed in the context of macrocyclic systems as expanded porphyrins and calixpyrroles, and related systems. The chemistry of open-chain pyrrolic systems is, in many respects, no less venerable. It also has more direct analogy to naturally occurring pyrrole-based anion binding motifs. However, it has not been the subject of a comprehensive review. Presented herein is a summary of efforts devoted to the creation of de novo pyrrole-based receptors, as well as the anion recognition chemistry of naturally occurring pyrrolic systems as prodigiosins and their synthetic analogues.
Collapse
|
60
|
Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 2016; 541:500-505. [PMID: 28002411 PMCID: PMC5576512 DOI: 10.1038/nature20812] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022]
Abstract
CLC proteins transport chloride (Cl-) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl- ions passively, whereas others are secondary active transporters that exchange two Cl- ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl- transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl- passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl-/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl- down its electrochemical gradient.
Collapse
|
61
|
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter. Biophys J 2016; 110:1334-45. [PMID: 27028643 DOI: 10.1016/j.bpj.2016.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
Multiscale reactive molecular dynamics simulations are used to study proton transport through the central region of ClC-ec1, a widely studied ClC transporter that enables the stoichiometric exchange of 2 Cl(-) ions for 1 proton (H(+)). It has long been known that both Cl(-) and proton transport occur through partially congruent pathways, and that their exchange is strictly coupled. However, the nature of this coupling and the mechanism of antiporting remain topics of debate. Here multiscale simulations have been used to characterize proton transport between E203 (Glu(in)) and E148 (Glu(ex)), the internal and external intermediate proton binding sites, respectively. Free energy profiles are presented, explicitly accounting for the binding of Cl(-) along the central pathway, the dynamically coupled hydration changes of the central region, and conformational changes of Glu(in) and Glu(ex). We find that proton transport between Glu(in) and Glu(ex) is possible in both the presence and absence of Cl(-) in the central binding site, although it is facilitated by the anion presence. These results support the notion that the requisite coupling between Cl(-) and proton transport occurs elsewhere (e.g., during proton uptake or release). In addition, proton transport is explored in the E203K mutant, which maintains proton permeation despite the substitution of a basic residue for Glu(in). This collection of calculations provides for the first time, to our knowledge, a detailed picture of the proton transport mechanism in the central region of ClC-ec1 at a molecular level.
Collapse
|
62
|
Pedersen TH, Riisager A, de Paoli FV, Chen TY, Nielsen OB. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. ACTA ACUST UNITED AC 2016; 147:291-308. [PMID: 27022190 PMCID: PMC4810071 DOI: 10.1085/jgp.201611582] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane permeability for Cl− ions. Thus, in resting human muscle, ClC-1 Cl− ion channels account for ∼80% of the membrane conductance, and because active Cl− transport is limited in muscle fibers, the equilibrium potential for Cl− lies close to the resting membrane potential. These conditions—high membrane conductance and passive distribution—enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with subsecond temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate ions. This inhibition is important for preserving excitability of working muscle in the face of activity-induced elevation of extracellular K+ and accumulating inactivation of voltage-gated sodium channels. Furthermore, during prolonged activity, a marked ClC-1 activation can develop that compromises muscle excitability. Data from ClC-1 expression systems suggest that this ClC-1 activation may arise from loss of regulation by adenosine nucleotides and/or oxidation. The present review summarizes the current knowledge of the physiological factors that control ClC-1 function in active muscle.
Collapse
Affiliation(s)
| | - Anders Riisager
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | | |
Collapse
|
63
|
Seong JY, Ha K, Hong C, Myeong J, Lim HH, Yang D, So I. Helix O modulates voltage dependency of CLC-1. Pflugers Arch 2016; 469:183-193. [PMID: 27921211 DOI: 10.1007/s00424-016-1907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/14/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
The chloride channel (CLC) family of proteins consists of channels and transporters that share similarities in architecture and play essential roles in physiological functions. Among the CLC family, CLC-1 channels have the representative homodimeric double-barreled structure carrying two gating processes. One is protopore gating that acts on each pore independently by glutamate residue (Eext). The other is common gating that closes both pores simultaneously in association with large conformational changes across each subunit. In skeletal muscle, CLC-1 is associated with maintaining normal sarcolemmal excitability, and a number of myotonic mutants were reported to modify the channel gating of CLC-1. In this study, we characterized highly conserved helix O as a key determinant of structural stability in CLC-1. Supporting this hypothesis, myotonic mutant (G523D) at N-terminal of helix O showed the activation at hyperpolarizing membrane potentials with a reversed voltage dependency. However, introducing glutamate at serine residue (S537) at the C-terminal of the helix O on G523D restored WT-like voltage dependency of the common gate and showed proton insensitive voltage dependency. To further validate this significant site, site-specific mutagenesis experiments was performed on V292 that is highly conserved as glutamate in antiporter and closely located to S537 and showed that this area is essential for channel function. Taken together, the results of our study suggest the importance of helix O as the main contributor for stable structure of evolutionary conserved CLC proteins and its key role in voltage dependency of the CLC-1. Furthermore, the C-terminal of the helix O can offer a clue for possible proton involvement in CLC-1 channel.
Collapse
Affiliation(s)
- Ju Yong Seong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Hyun-Ho Lim
- Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, 461-701, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
64
|
Hoque MN, Manna U, Das G. Discrepancy in anion coordination directed by isomeric pyridine–urea receptors: Solid state recognition of hydrated anions. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Cell 2016; 164:937-49. [PMID: 26919430 PMCID: PMC4771873 DOI: 10.1016/j.cell.2016.02.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.
Collapse
Affiliation(s)
- Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | | | - Han Sun
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marianne Musinszki
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Giovanna Bucci
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative, University of Oxford, Oxford OX1 3PU, UK
| | - Markus Rapedius
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany; Nanion Technologies GmbH, 80636 Munich, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany.
| |
Collapse
|
66
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
67
|
Liu Q, Wen L, Xiao K, Lu H, Zhang Z, Xie G, Kong XY, Bo Z, Jiang L. A Biomimetic Voltage-Gated Chloride Nanochannel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3181-3186. [PMID: 26917448 DOI: 10.1002/adma.201505250] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/03/2016] [Indexed: 06/05/2023]
Abstract
A novel biomimetic voltage-gated chloride nanochannel is described. This artificial nanochannel can realize reversible switching between the "on" and "off" states upon addition and removal of Cl(-) and can realize the selective and directional transport of Cl(-) driven by voltage. Moreover, it also has high sensitivity, good selectivity, responsive switchability, and good stability.
Collapse
Affiliation(s)
- Qian Liu
- Beijing Key Laboratory of Energy Conversionand Storage Materials, College of Chemistry, Key Laboratory of Theoretical and ComputationalPhotochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Liping Wen
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Heng Lu
- Beijing Key Laboratory of Energy Conversionand Storage Materials, College of Chemistry, Key Laboratory of Theoretical and ComputationalPhotochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversionand Storage Materials, College of Chemistry, Key Laboratory of Theoretical and ComputationalPhotochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
68
|
Riisager A, de Paoli FV, Yu WP, Pedersen TH, Chen TY, Nielsen OB. Protein kinase C-dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating. J Physiol 2016; 594:3391-406. [PMID: 26857341 DOI: 10.1113/jp271556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/26/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Regulation of ion channel function during repeated firing of action potentials is commonly observed in excitable cells. Recently it was shown that muscle activity is associated with rapid, protein kinase C (PKC)-dependent ClC-1 Cl(-) channel inhibition in rodent muscle. While this PKC-dependent ClC-1 inhibition during muscle activity was shown to be important for the maintenance of contractile endurance in rat muscle it is unknown whether a similar regulation exists in human muscle. Also, the molecular mechanisms underlying the observed PKC-dependent ClC-1 inhibition are unclear. Here we present the first demonstration of ClC-1 inhibition in active human muscle fibres, and we determine the changes in ClC-1 gating that underlie the PKC-dependent ClC-1 inhibition in active muscle using human ClC-1 expressed in Xenopus oocytes. This activity-induced ClC-1 inhibition is suggested to represent a mechanism by which human muscle fibres maintain their excitability during sustained activity. ABSTRACT Repeated firing of action potentials (APs) is known to trigger rapid, protein kinase C (PKC)-dependent inhibition of ClC-1 Cl(-) ion channels in rodent muscle and this inhibition is important for contractile endurance. It is currently unknown whether similar regulation exists in human muscle, and the molecular mechanisms underlying PKC-dependent ClC-1 inhibition are unclear. This study first determined whether PKC-dependent ClC-1 inhibition exists in active human muscle, and second, it clarified how PKC alters the gating of human ClC-1 expressed in Xenopus oocytes. In human abdominal and intercostal muscles, repeated AP firing was associated with 30-60% reduction of ClC-1 function, which could be completely prevented by PKC inhibition (1 μm GF109203X). The role of the PKC-dependent ClC-1 inhibition was evaluated from rheobase currents before and after firing 1000 APs: while rheobase current was well maintained after activity under control conditions it rose dramatically if PKC-dependent ClC-1 inhibition had been prevented with the inhibitor. This demonstrates that the ClC-1 inhibition is important for maintenance of excitability in active human muscle fibres. Oocyte experiments showed that PKC activation lowered the overall open probability of ClC-1 in the voltage range relevant for AP initiation in muscle fibres. More detailed analysis of this reduction showed that PKC mostly affected the slow gate of ClC-1. Indeed, there was no effect of PKC activation in C277S mutated ClC-1 in which the slow gate is effectively locked open. It is concluded that regulation of excitability of active human muscle fibres relies on PKC-dependent ClC-1 inhibition via a gating mechanism.
Collapse
Affiliation(s)
- Anders Riisager
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark.,Centre for Neuroscience and Department of Neurology, University of California, Davis, CA, 95618, USA
| | - Frank Vincenzo de Paoli
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark.,Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Wei-Ping Yu
- Centre for Neuroscience and Department of Neurology, University of California, Davis, CA, 95618, USA
| | - Thomas Holm Pedersen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark
| | - Tsung-Yu Chen
- Centre for Neuroscience and Department of Neurology, University of California, Davis, CA, 95618, USA
| | - Ole Baekgaard Nielsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark
| |
Collapse
|
69
|
Pottosin I, Shabala S. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions. MOLECULAR PLANT 2016; 9:356-370. [PMID: 26597501 DOI: 10.1016/j.molp.2015.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Centre, University of Colima, Colima, Colima 28045, Mexico; School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia.
| |
Collapse
|
70
|
Whitlock JM, Hartzell HC. A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflugers Arch 2016; 468:455-73. [PMID: 26739711 PMCID: PMC4751199 DOI: 10.1007/s00424-015-1777-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Since their first descriptions, ion channels have been conceived as proteinaceous conduits that facilitate the passage of ionic cargo between segregated environments. This concept is reinforced by crystallographic structures of cation channels depicting ion conductance pathways completely lined by protein. Although lipids are sometimes present in fenestrations near the pore or may be involved in channel gating, there is little or no evidence that lipids inhabit the ion conduction pathway. Indeed, the presence of lipid acyl chains in the conductance pathway would curse the design of the channel's aqueous pore. Here, we make a speculative proposal that anion channels in the TMEM16/ANO superfamily have ion conductance pathways composed partly of lipids. Our reasoning is based on the idea that TMEM16 ion channels evolved from a kind of lipid transporter that scrambles lipids between leaflets of the membrane bilayer and the modeled structural similarity between TMEM16 lipid scramblases and TMEM16 anion channels. This novel view of the TMEM16 pore offers explanation for the biophysical and pharmacological oddness of TMEM16A. We build upon the recent X-ray structure of nhTMEM16 and develop models of both TMEM16 ion channels and lipid scramblases to bolster our proposal. It is our hope that this model of the TMEM16 pore will foster innovative investigation into TMEM16 function.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
71
|
Kaur H, Singh J, Chopra S, Kaur N. Calix[4]arene based dipodal receptor nanohybrids for selective determination of chloride ions in aqueous media. Talanta 2016; 146:122-9. [DOI: 10.1016/j.talanta.2015.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
|
72
|
Pottosin I, Dobrovinskaya O. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies. Front Physiol 2015; 6:396. [PMID: 26733887 PMCID: PMC4686732 DOI: 10.3389/fphys.2015.00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, Mexico
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, Mexico
| |
Collapse
|
73
|
De Jesús-Pérez JJ, Castro-Chong A, Shieh RC, Hernández-Carballo CY, De Santiago-Castillo JA, Arreola J. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. ACTA ACUST UNITED AC 2015; 147:25-37. [PMID: 26666914 PMCID: PMC4692487 DOI: 10.1085/jgp.201511424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Intracellular permeant anions, and not extracellular protons, are the predominant driver of fast gating in the hyperpolarization-activated CLC-2 chloride channel. CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl−, Br−, SCN−, and I−) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl−]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate.
Collapse
Affiliation(s)
- José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, 78290 San Luis Potosí, México
| | - Alejandra Castro-Chong
- Physics Institute, Universidad Autónoma de San Luis Potosí, 78290 San Luis Potosí, México
| | - Ru-Chi Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | | | | | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, 78290 San Luis Potosí, México
| |
Collapse
|
74
|
Cruz-Rangel S, De Jesús-Pérez JJ, Contreras-Vite JA, Pérez-Cornejo P, Hartzell HC, Arreola J. Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B. J Physiol 2015; 593:5283-98. [PMID: 26728431 DOI: 10.1113/jp271256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Calcium-activated chloride channels TMEM16A and TMEM16B support important physiological processes such as fast block of polyspermy, fluid secretion, control of blood pressure and sensory transduction. Given the physiological importance of TMEM16 channels, it is important to study how incoming stimuli activate these channels. Here we study how channels open and close and how the process of gating is regulated. We show that TMEM16A and TMEM16B display fast and slow gating. These gating modes are regulated by voltage and external chloride. Dual gating explains the complex time course of the anion current. Residues within the first intracellular loop of the channel influence the slow gating mode. Dual gating is an intrinsic property observed in endogenous calcium-activated chloride channels and could be relevant to physiological processes that require sustained chloride ion movement. ABSTRACT TMEM16A and TMEM16B are molecular components of the physiologically relevant calcium-activated chloride channels (CaCCs) present in many tissues. Their gating is dictated by membrane voltage (Vm ), intracellular calcium concentrations ([Ca(2+) ]i ) and external permeant anions. As a consequence, the chloride current (ICl ) kinetics is complex. For example, TMEM16A ICl activates slowly with a non-mono-exponential time course while TMEM16B ICl activates rapidly following a mono-exponential behaviour. To understand the underlying mechanism responsible for the complex activation kinetics, we recorded ICl from HEK-293 cells transiently transfected with either TMEM16A or TMEM16B as well as from mouse parotid acinar cells. Two distinct Vm -dependent gating modes were uncovered: a fast-mode on the millisecond time scale followed by a slow mode on the second time scale. Using long (20 s) depolarizing pulses both gating modes were activated, and a slowly rising ICl was recorded in whole-cell and inside-out patches. The amplitude of ICl at the end of the long pulse nearly doubled and was blocked by 100 μm tannic acid. The slow gating mode was strongly reduced by decreasing the [Cl(-) ]o from 140 to 30 mm and by altering the sequence of the first intracellular loop. Mutating 480 RSQ482 to AVK in the first intracellular loop of TMEM16B nearly abolished slow gating, but, mutating 448 AVK451 to RSQ in TMEM16A has little effect. Deleting 448 EAVK451 residues in TMEM16A reduced slow gating. We conclude that TMEM16 CaCCs have intrinsic Vm - and Cl(-) -sensitive dual gating that elicits complex ICl kinetics.
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - Juan A Contreras-Vite
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - Patricia Pérez-Cornejo
- Department of Physiology, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, Mexico
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| |
Collapse
|
75
|
Gravel J, Kempf J, Schmitzer A. Host-Guest Strategy to Reversibly Control a Chloride Carrier Process with Cyclodextrins. Chemistry 2015; 21:18642-8. [DOI: 10.1002/chem.201503714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 01/13/2023]
|
76
|
Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proc Natl Acad Sci U S A 2015; 112:E5796-804. [PMID: 26460012 DOI: 10.1073/pnas.1511462112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.
Collapse
|
77
|
Last NB, Miller C. Functional Monomerization of a ClC-Type Fluoride Transporter. J Mol Biol 2015; 427:3607-3612. [PMID: 26449639 DOI: 10.1016/j.jmb.2015.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Anion channels and antiporters of the ClC superfamily have been found to be exclusively dimeric in nature, even though each individual monomer contains the complete transport pathway. Here, we describe the destabilization through mutagenesis of the dimer interface of a bacterial F(-)/H(+) antiporter, ClC(F)-eca. Several mutations that produce monomer/dimer equilibrium of the normally dimeric transporter were found, simply by shortening a hydrophobic side chain in some cases. One mutation, L376W, leads to a wholly monomeric variant that shows full activity. Furthermore, we discovered a naturally destabilized homologue, ClC(F)-rla, which undergoes partial monomerization in detergent without additional mutations. These results, in combination with the previous functional monomerization of the distant relative ClC-ec1, demonstrate that the monomer alone is the functional unit for several clades of the ClC superfamily.
Collapse
Affiliation(s)
- Nicholas B Last
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Christopher Miller
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
78
|
Accardi A. Structure and gating of CLC channels and exchangers. J Physiol 2015; 593:4129-38. [PMID: 26148215 DOI: 10.1113/jp270575] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 06/28/2015] [Indexed: 11/08/2022] Open
Abstract
Since their serendipitous discovery the CLC family of Cl(-) transporting proteins has been a never ending source of surprises. From their double-barrelled architecture to their complex structure and divergence as channels and transporters, the CLCs never cease to amaze biophysicists, biochemists and physiologists alike. These unusual functional properties allow the CLCs to fill diverse physiological niches, regulating processes that range from muscle contraction to acidification of intracellular organelles, nutrient accumulation and survival of bacteria to environmental stresses. Over the last 15 years, the availability of atomic-level information on the structure of the CLCs, coupled to the discovery that the family is divided into passive channels and secondary active transporters, has revolutionized our understanding of their function. These breakthroughs led to the identification of the key structural elements regulating gating, transport, selectivity and regulation by ligands. Unexpectedly, many lines of evidence indicate that the CLC exchangers function according to a non-conventional transport mechanism that defies the fundamental tenets of the alternating-access paradigm for exchange transport, paving the way for future unexpected insights into the principles underlying active transport and channel gating.
Collapse
Affiliation(s)
- Alessio Accardi
- Departments of Anaesthesiology, Physiology & Biophysics, and Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| |
Collapse
|
79
|
Zifarelli G. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes. J Physiol 2015; 593:4139-50. [PMID: 26036722 DOI: 10.1113/jp270604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/22/2015] [Indexed: 11/08/2022] Open
Abstract
The CLC protein family comprises both Cl(-) channels and H(+) -coupled anion transporters. The understanding of the critical role of CLC proteins in a number of physiological functions has greatly contributed to a revision of the classical paradigm that attributed to Cl(-) ions only a marginal role in human physiology. The endosomal ClC-5 and the lysosomal ClC-7 are the best characterized human CLC transporters. Their dysfunction causes Dent's disease and osteopetrosis, respectively. It had been originally proposed that they would provide a Cl(-) shunt conductance allowing efficient acidification of intracellular compartments. However, this model seems to conflict with the transport properties of these proteins and with recent physiological evidence. Currently, there is no consensus on their specific physiological role. CLC proteins present also a number of peculiar biophysical properties, such as the dimeric architecture, the co-existence of intrinsically different thermodynamic modes of transport based on similar structural principles, and the gating mechanism recently emerging for the transporters, just to name a few. This review focuses on the biophysical properties and physiological roles of ClC-5 and ClC-7.
Collapse
Affiliation(s)
- Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
80
|
Abstract
Many bacterial species protect themselves against environmental F(-) toxicity by exporting this anion from the cytoplasm via CLC(F) F(-)/H(+) antiporters, a subclass of CLC superfamily anion transporters. Strong F(-) over Cl(-) selectivity is biologically essential for these membrane proteins because Cl(-) is orders of magnitude more abundant in the biosphere than F(-). Sequence comparisons reveal differences between CLC(F)s and canonical Cl(-)-transporting CLCs within regions that, in the canonical CLCs, coordinate Cl(-) ion and govern anion transport. A phylogenetic split within the CLC(F) clade, manifested in sequence divergence in the vicinity of this ion-binding center, raises the possibility that these two CLC(F) subclades might exhibit differences in anion selectivity. Several CLC(F) homologues from each subclade were examined for F(-)/Cl(-) selectivity of anion transport and equilibrium binding. Differences in both of these anion-selectivity metrics correlate with sequence divergence among CLC(F)s. Chimeric constructs identify two residues in this region that largely account for the subclade differences in selectivity. In addition, these experiments serendipitously uncovered an unusually steep, Cl(-)-specific voltage dependence of transport that greatly enhances F(-) selectivity at low voltage.
Collapse
Affiliation(s)
- Ashley E Brammer
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Randy B Stockbridge
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Christopher Miller
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| |
Collapse
|
81
|
Yu K, Whitlock JM, Lee K, Ortlund EA, Yuan Cui Y, Hartzell HC. Identification of a lipid scrambling domain in ANO6/TMEM16F. eLife 2015; 4:e06901. [PMID: 26057829 PMCID: PMC4477620 DOI: 10.7554/elife.06901] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Phospholipid scrambling (PLS) is a ubiquitous cellular mechanism involving the regulated bidirectional transport of phospholipids down their concentration gradient between membrane leaflets. ANO6/TMEM16F has been shown to be essential for Ca(2+)-dependent PLS, but controversy surrounds whether ANO6 is a phospholipid scramblase or an ion channel like other ANO/TMEM16 family members. Combining patch clamp recording with measurement of PLS, we show that ANO6 elicits robust Ca(2+)-dependent PLS coinciding with ionic currents that are explained by ionic leak during phospholipid translocation. By analyzing ANO1-ANO6 chimeric proteins, we identify a domain in ANO6 necessary for PLS and sufficient to confer this function on ANO1, which normally does not scramble. Homology modeling shows that the scramblase domain forms an unusual hydrophilic cleft that faces the lipid bilayer and may function to facilitate translocation of phospholipid between membrane leaflets. These findings provide a mechanistic framework for understanding PLS and how ANO6 functions in this process.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Kyleen Lee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Eric A Ortlund
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Yuan Yuan Cui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| |
Collapse
|
82
|
Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW, Gong S, Nakamoto RK, Maduke M. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. JOURNAL OF BIOMOLECULAR NMR 2015; 61:209-26. [PMID: 25631353 PMCID: PMC4398623 DOI: 10.1007/s10858-015-9898-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 05/03/2023]
Abstract
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).
Collapse
Affiliation(s)
- Sherwin J. Abraham
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Ricky C. Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Thomas A. Chew
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Chandra M. Khantwal
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, 299 Campus Drive West, D105 Fairchild Science Building, Stanford, CA 94305
| | - Shimei Gong
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
- corresponding author, , tel (650)-723-9075, fax (650)-725-8021
| |
Collapse
|
83
|
Samet M, Danesh-Yazdi M, Fattahi A, Kass SR. Power of a remote hydrogen bond donor: anion recognition and structural consequences revealed by IR spectroscopy. J Org Chem 2015; 80:1130-5. [PMID: 25490049 DOI: 10.1021/jo502652z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural and synthetic anion receptors are extensively employed, but the structures of their bound complexes are difficult to determine in the liquid phase. Infrared spectroscopy is used in this work to characterize the solution structures of bound anion receptors for the first time, and surprisingly only two of three hydroxyl groups of the neutral aliphatic triols are found to directly interact with Cl(–). The binding constants of these triols with zero to three CF3 groups were measured in a polar environment, and KCD3CN(Cl(–)) = 1.1 × 10(6) M(–1) for the tris(trifluoromethyl) derivative. This is a remarkably large value, and high selectivity with respect to interfering anions such as, Br(–), NO3(–) and NCS(–) is also displayed. The effects of the third “noninteracting” hydroxyl groups on the structures and binding constants were also explored, and surprisingly they are as large or larger than the OH substituents that hydrogen bond to Cl(–). That is, a remote hydroxyl group can play a larger role in binding than two OH substituents that directly interact with an anionic center.
Collapse
|
84
|
Miller C. In the beginning: a personal reminiscence on the origin and legacy of ClC-0, the 'Torpedo Cl(-) channel'. J Physiol 2015; 593:4085-90. [PMID: 25433078 DOI: 10.1113/jphysiol.2014.286260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/21/2014] [Indexed: 11/08/2022] Open
Abstract
This unapologetically subjective essay recalls the Torpedo Cl(-) channel in the years when it had neither a molecular identity nor proper name (ClC-0), and membership in a large superfamily. I discuss the circumstances surrounding its discovery and subsequent research through the 1980s that revealed its unusual molecular architecture and other strange mechanistic characteristics.
Collapse
Affiliation(s)
- Christopher Miller
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| |
Collapse
|
85
|
Samet M, Fattahi A, Kass SR. Stereoelectronic effects: a simple yet powerful tool to manipulate anion affinity. Org Biomol Chem 2015; 13:2170-6. [PMID: 25535926 DOI: 10.1039/c4ob02470b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stereoelectronic effects on anion binding were examined, IR spectroscopy was used to probe structures, and a well aligned non-interacting group can be more significant than a hydrogen bond donor.
Collapse
Affiliation(s)
- Masoud Samet
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | - Alireza Fattahi
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Steven R. Kass
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
86
|
Razi SS, Ali R, Srivastava P, Misra A. Simple Michael acceptor type coumarin derived turn-on fluorescence probes to detect cyanide in pure water. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
87
|
A Microscopic View of the Mechanisms of Active Transport Across the Cellular Membrane. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63378-1.00004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
88
|
Khairnar N, Tayade K, Bothra S, Sahoo SK, Singh J, Singh N, Bendre R, Kuwar A. Novel fluorescent chemosensing of CN− anions with nanomolar detection using the Zn2+–isonicotinohydrazide metal complex. RSC Adv 2014. [DOI: 10.1039/c4ra06358a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel chemosensor based on the Zn2+–isonicotinohydrazide complex ‘(ZnL)’ was developed for the selective detection of cyanide (CN−) over other tested anions, such as HSO4−, F−, Cl−, Br−, I−, NO3−, PO43−, SO42−, SCN−, S2−, CH3COO− and H2PO4− in 100% aqueous medium.
Collapse
Affiliation(s)
- Nilesh Khairnar
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
| | - Kundan Tayade
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
| | - Shilpa Bothra
- Department of Applied Chemistry
- SV National Institute Technology
- Surat-395007, India
| | - Suban K. Sahoo
- Department of Applied Chemistry
- SV National Institute Technology
- Surat-395007, India
| | - Jasminder Singh
- Department of Chemistry
- Indian Institute Technology
- Ropar-140 001, India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute Technology
- Ropar-140 001, India
| | - Ratnamala Bendre
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
| | - Anil Kuwar
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
| |
Collapse
|
89
|
Hoque MN, Das G. Hydrated anion glued capsular and non-capsular assembly of a tripodal host: Solid state recognition of bromide–water [Br5–(H2O)6]5− and iodide–water [I2–(H2O)4]2− clusters in cationic tripodal receptor. CrystEngComm 2014. [DOI: 10.1039/c4ce00149d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report we describe capsular and non-capsular assembly of polyammonium tripodal receptor into supramolecular network driven by anion or anion–water cluster and solid state recognition of unique bromide–water [Br5–(H2O)6]5− and iodide–water [I2–(H2O)4]2− clusters.
Collapse
Affiliation(s)
- Md. Najbul Hoque
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| | - Gopal Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| |
Collapse
|
90
|
Abstract
CLC transporters catalyze transmembrane exchange of chloride for protons. Although a putative pathway for Cl(-) has been established, the pathway of H(+) translocation remains obscure. Through a highly concerted computational and experimental approach, we characterize microscopic details essential to understanding H(+)-translocation. An extended (0.4 µs) equilibrium molecular dynamics simulation of membrane-embedded, dimeric ClC-ec1, a CLC from Escherichia coli, reveals transient but frequent hydration of the central hydrophobic region by water molecules from the intracellular bulk phase via the interface between the two subunits. We characterize a portal region lined by E202, E203, and A404 as the main gateway for hydration. Supporting this mechanism, site-specific mutagenesis experiments show that ClC-ec1 ion transport rates decrease as the size of the portal residue at position 404 is increased. Beyond the portal, water wires form spontaneously and repeatedly to span the 15-Å hydrophobic region between the two known H(+) transport sites [E148 (Glu(ex)) and E203 (Glu(in))]. Our finding that the formation of these water wires requires the presence of Cl(-) explains the previously mystifying fact that Cl(-) occupancy correlates with the ability to transport protons. To further validate the idea that these water wires are central to the H(+) transport mechanism, we identified I109 as the residue that exhibits the greatest conformational coupling to water wire formation and experimentally tested the effects of mutating this residue. The results, by providing a detailed microscopic view of the dynamics of water wire formation and confirming the involvement of specific protein residues, offer a mechanism for the coupled transport of H(+) and Cl(-) ions in CLC transporters.
Collapse
|
91
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|
92
|
Maeda H. Supramolecular Chemistry of Pyrrole-Based π-Conjugated Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20130219] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
93
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
94
|
Functional reconstitution of a chloride channel bares its soul. Proc Natl Acad Sci U S A 2013; 110:19185-6. [PMID: 24235136 DOI: 10.1073/pnas.1319415110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
95
|
Molecular determinants of common gating of a ClC chloride channel. Nat Commun 2013; 4:2507. [DOI: 10.1038/ncomms3507] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/27/2013] [Indexed: 11/08/2022] Open
|
96
|
Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter. Nat Chem Biol 2013; 9:721-5. [PMID: 24036509 PMCID: PMC3805709 DOI: 10.1038/nchembio.1336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
Cl−/H+ antiporters of the CLC superfamily transport anions across biological membranes in varied physiological contexts. These proteins are weakly selective among anions commonly studied, including Cl−, Br−, I−,NO3−, and SCN−, but appear to be very selective against F−. The recent discovery of a new CLC clade of F−/H+ antiporters, which are highly selective for F− over Cl−, led us to investigate the mechanism of Cl−-over-F− selectivity by a CLC Cl−/H+ antiporter, CLC-ec1. By subjecting purified CLC-ec1 to anion transport measurements, electrophysiological recording, equilibrium ligand-binding studies, and x-ray crystallography, we show that F− binds in the Cl− transport pathway with affinity similar to Cl−, but stalls the transport cycle. Examination of various mutant antiporters implies a “lock-down” mechanism of F− inhibition, in which F−, by virtue of its unique H-bonding chemistry, greatly retards a proton-linked conformational change essential for the transport cycle of CLC-ec1.
Collapse
|
97
|
Ludwig CF, Ullrich F, Leisle L, Stauber T, Jentsch TJ. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1. J Biol Chem 2013; 288:28611-9. [PMID: 23983121 DOI: 10.1074/jbc.m113.509364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CLC anion transporters form dimers that function either as Cl(-) channels or as electrogenic Cl(-)/H(+) exchangers. CLC channels display two different types of "gates," "protopore" gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl(-)/1H(+) exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7.
Collapse
Affiliation(s)
- Carmen F Ludwig
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and
| | | | | | | | | |
Collapse
|
98
|
Payandeh J, Pfoh R, Pai EF. The structure and regulation of magnesium selective ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2778-92. [PMID: 23954807 DOI: 10.1016/j.bbamem.2013.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
99
|
Noh JY, Hwang IH, Kim H, Song EJ, Kim KB, Kim C. Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.7.1985] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
100
|
Abstract
Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.
Collapse
Affiliation(s)
- Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|