51
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
52
|
A SURF4-to-proteoglycan relay mechanism that mediates the sorting and secretion of a tagged variant of sonic hedgehog. Proc Natl Acad Sci U S A 2022; 119:e2113991119. [PMID: 35271396 PMCID: PMC8931250 DOI: 10.1073/pnas.2113991119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?
Collapse
|
53
|
Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2022; 11:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Indexed: 01/04/2023]
Abstract
The dense and heterogeneous physical network of the extracellular matrix (ECM) in tumors represents a formidable barrier that limits intratumor drug delivery and the therapeutic efficacy of many anticancer therapies. Here, the two major nanomedicine strategies to circumvent intratumor ECM barriers: regulating the physiochemical properties of nanomedicines and remodeling the components and structure of the ECM are summarized. Nanomedicines can be rationally regulated by optimizing physiochemical properties or designed with biomimetic features to promote ECM permeation capability. Meanwhile, they can also be designed to remodel the ECM by modulating signaling pathways or destroying the components and architecture of the ECM via chemical, biological, or physical treatments. These efforts produce profound improvements in intratumor drug delivery and anticancer efficacy. Moreover, to aid in their anticancer efficacy, feasible approaches for improving ECM-circumventing nanomedicines are proposed.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
54
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
55
|
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021; 28:77. [PMID: 34781949 PMCID: PMC8591907 DOI: 10.1186/s12929-021-00772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.
Collapse
Affiliation(s)
- Guzide Bender
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Rezan Fahrioglu Yamaci
- Faculty of Applied Natural Sciences and Cultural Studies, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, via Mersin-10, Famagusta, 99628, North Cyprus, Turkey.
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
56
|
Majumder D. An Analysis of Structure-function Co-relation between GLI Oncoprotein and HLA Immune-gene Transcriptional Regulation through Molecular Docking. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210805115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
GLI proteins play a significant role in the transduction of the Hedgehog
(Hh) signaling pathway. A variety of human cancers, including the brain, gastrointestinal, lung,
breast, and prostate cancers, demonstrate inappropriate activation of this pathway. GLI helps in proliferation
and has an inhibitory role in the differentiation of hematopoietic stem cells. Malignancies
may have a defect in differentiation. Different types of malignancies and undifferentiated cells
have a low level of HLA expression on their cell surface.
Objective:
Human Leukocytic Antigen (HLA) downregulation is frequently observed in cancer
cells. This work is aimed to hypothesize whether this downregulation of HLA molecules is GLI oncoprotein
mediated or not. To understand the roles of different types of GLI oncoproteins on different
classes of HLA transcriptional machinery was carried out through structure-based modeling
and molecular docking studies.
Methods:
To investigate the role of GLI in HLA expression /downregulation is Hh-GLI mediated
or not, molecular docking based computational interaction studies were performed between different
GLI proteins (GLI1, GLI2, and GLI3) with TATA box binding protein (TBP) and compare the
binding efficiencies of different HLA gene (both HLA class I and –II) regulating transcription factors
(RelA, RFX5, RFXAP, RFXANK, CIITA, CREB1, and their combinations) with TBP. Due to
unavailability of 3D protein structures of GLI2 and cyclin D2 (a natural ligand of GLI1) were modelled
followed by structural validation by Ramachandran plot analysis.
Results:
GLI proteins especially, GLI1 and GLI2, have almost similar binding energy of RFX5-RFXANK-
RFXAP and CIITA multi-protein complex to TBP but has lower binding energy between
RelA to TBP.
Conclusion:
This study suggests that HLA class I may not be downregulated by GLI; however,
over-expression of GLI1 is may be responsible for HLA class II downregulation. Thus this protein
may be responsible for the maintenance of the undifferentiated state of malignant cells. This study
also suggests the implicative role of GLI1 in the early definitive stage of hematopoiesis.
Collapse
Affiliation(s)
- Durjoy Majumder
- Department of Physiology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, 700 126 Kolkata,India
| |
Collapse
|
57
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
58
|
Pakvasa M, Tucker AB, Shen T, He TC, Reid RR. The Pleiotropic Intricacies of Hedgehog Signaling: From Craniofacial Patterning to Carcinogenesis. FACE (THOUSAND OAKS, CALIF.) 2021; 2:260-274. [PMID: 35812774 PMCID: PMC9268505 DOI: 10.1177/27325016211024326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Andrew B. Tucker
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Timothy Shen
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| | - Tong-Chuan He
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Russell R. Reid
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
- Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
59
|
Suk FM, Wang YH, Chiu WC, Liu CF, Wu CY, Chen TL, Liao YJ. Secretory NPC2 Protein-Mediated Free Cholesterol Levels Were Correlated with the Sorafenib Response in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22168567. [PMID: 34445279 PMCID: PMC8395255 DOI: 10.3390/ijms22168567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor in the world. Sorafenib is the first-line drug for patients with advanced HCC. However, long-term treatment with sorafenib often results in reduced sensitivity of tumor cells to the drug, leading to acquired resistance. Identifying biomarkers which can predict the response to sorafenib treatment may represent a clinical challenge in the personalized treatment era. Niemann-Pick type C2 (NPC2), a secretory glycoprotein, plays an important role in regulating intracellular free cholesterol homeostasis. In HCC patients, downregulation of hepatic NPC2 is correlated with poor clinical pathological features through regulating mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation. This study aimed to investigate the roles of secretory NPC2-mediated free cholesterol levels as biomarkers when undergoing sorafenib treatment and evaluate its impact on acquired sorafenib resistance in HCC cells. Herein, we showed that NPC2 downregulation and free cholesterol accumulation weakened sorafenib’s efficacy through enhancing MAPK/AKT signaling in HCC cells. Meanwhile, NPC2 overexpression slightly enhanced the sorafenib-induced cytotoxic effect. Compared to normal diet feeding, mice fed a high-cholesterol diet had much higher tumor growth rates, whereas treatment with the free cholesterol-lowering agent, hydroxypropyl-β-cyclodextrin, enhanced sorafenib’s tumor-inhibiting ability. In addition, sorafenib treatment induced higher NPC2 secretion, which was mediated by inhibition of the Ras/Raf/MAPK kinase (MEK)/ERK signaling pathway in HCC cells. In both acquired sorafenib-resistant cell and xenograft models, NPC2 and free cholesterol secretion were increased in culture supernatant and serum samples. In conclusion, NPC2-mediated free cholesterol secretion may represent a candidate biomarker for the likelihood of HCC cells developing resistance to sorafenib.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Chiao-Fan Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
| | - Chien-Ying Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
- Correspondence: ; Tel.: +886-2-27361661-3333
| |
Collapse
|
60
|
Yang J, Wang J, Liu Y, Zhang Y, Huang W, Zou Y, Qiu Y, Cai W, Gao J, Zhou H, Wu Y, Liu W, Ding Q, Zhang Y, Yin PH, Tan W. PGE2-JNK signaling axis non-canonically promotes Gli activation by protecting Gli2 from ubiquitin-proteasomal degradation. Cell Death Dis 2021; 12:707. [PMID: 34267186 PMCID: PMC8282835 DOI: 10.1038/s41419-021-03995-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Both bench and bedside investigations have challenged the supportive role of Hedgehog (Hh) activity in the progression of colorectal cancers, thus raising a critical need to further deeply determine the contribution of Hh to the growth of colorectal cancer. Combining multiple complementary means, including in vitro and in vivo inflammatory colorectal cancer models, and pathological analysis of clinical colorectal cancer patients samples. We report that colorectal cancer cells hijack prostaglandin E2 (PGE2) to non-canonically promote Hh transcriptional factor Gli activity and Gli-dependent proliferation of colorectal cancer cells in a Smo-independent manner. Mechanistically, PGE2 activates c-Jun N-terminal kinase (JNK), which in turn enables Gli2 to evade ubiquitin-proteasomal degradation by phosphorylating Gli2 at Thr1546. This study not only presents evidence for understanding the contribution of Hh to colorectal cancers, but also provides a novel molecular portrait underlying how PGE2-activated JNK fine-tunes the evasion of Gli2 from ubiquitin-proteasomal degradation. Therefore, it proposes a rationale for the future evaluation of chemopreventive and selective therapeutic strategies for colorectal cancers by targeting PGE2-JNK-Gli signaling route.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yuan Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yu Zou
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.,Department of General Surgery, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230601, Hefei, Anhui, China
| | - Yanyan Qiu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.,Department of General Surgery, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230601, Hefei, Anhui, China
| | - Weiyang Cai
- Department of Oncology, Shanghai 9th pepople's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, 201999, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Liu
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Qingqing Ding
- Department of pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanjie Zhang
- Department of Oncology, Shanghai 9th pepople's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, 201999, Shanghai, China
| | - Pei-Hao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China. .,Department of General Surgery, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230601, Hefei, Anhui, China.
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
61
|
Abstract
Autophagy is a major intracellular degradation system and plays important roles in various physiological processes such as metabolic adaptation and intracellular homeostasis. It degrades intracellular components both randomly and selectively. Autophagic activity is tightly regulated primarily by nutrient availability, but also by other extracellular and intracellular signals. Growing evidence suggests that there are multiple links between autophagy and the primary cilium. The primary cilium is an organelle present on the cell surface and is important for keeping cellular integrity by transducing extracellular stimuli inside the cell. Recent studies have revealed that autophagy selectively degrades the ciliogenesis inhibitory proteins OFD1 and MYH9, promoting ciliogenesis. Conversely, autophagy also inhibits ciliogenesis under growth conditions. The primary cilium can also regulate autophagic activity. These findings suggest that the relationship between autophagy and the primary cilia is bidirectional, and that both are important for maintaining the normal function of various organs.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
62
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
63
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
64
|
Shen ZQ, Wang J, Tan WF, Huang TM. Berberine inhibits colorectal tumor growth by suppressing SHH secretion. Acta Pharmacol Sin 2021; 42:1190-1194. [PMID: 32958873 PMCID: PMC8209003 DOI: 10.1038/s41401-020-00514-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Hedgehog plays an important role in a wide range of physiological and pathological conditions. Paracrine activation of Hedgehog pathway in stromal cells increases the expression of VEGF, which promotes neovascularization in colorectal cancer and ultimately the growth of colorectal cancer. Berberine (BBR) has anticancer activity. In this study we investigated whether BBR inhibited the growth of colon cancer through suppressing the paracrine sonic hedgehog (SHH) signaling in vitro and in vivo. We showed that BBR (1-10 μM) dose-dependently inhibited the secretion and expression of SHH protein in HT-29 and SW480 cells. BBR did not influence the transcription of SHH, but promoted the degradation of SHH mRNA, thus decreased the SHH mRNA expression in the colorectal cancer cells. In nude mice bearing HT-29 xenograft, oral administration of BBR (100 mg · kg-1 · d-1) or a positive control drug GDC-0449 (100 mg · kg-1 · d-1) for 4 weeks markedly suppressed the growth of HT-29 tumor with BBR exhibiting a better antitumor efficacy. The tumor growth inhibition caused by BBR or GDC-0449 was comparable to their respective inhibitory effect on the mouse-specific Gli mRNA expression in the tumor. However, BBR (20 μM) did not affect the expression of human transcription factor Gli1 mRNA in HT-29 and SW480 cells. In conclusion, BBR promotes the degradation of SHH mRNA in colorectal cancer cells, interrupting the paracrine Hedgehog signaling pathway activity thus suppresses the colorectal cancer growth. This study reveals a novel molecular mechanism underlying the anticancer action of BBR.
Collapse
Affiliation(s)
- Zhu-Qing Shen
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Fu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Tao-Min Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
65
|
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead. Front Oncol 2021; 11:694320. [PMID: 34195095 PMCID: PMC8236857 DOI: 10.3389/fonc.2021.694320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.
Collapse
Affiliation(s)
- Sumana Shrestha
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Chiara Gorrini
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), and The Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
66
|
Ghasemi H, Mousavibahar SH, Hashemnia M, Karimi J, Khodadadi I, Tavilani H. Transitional cell carcinoma matrix stiffness regulates the osteopontin and YAP expression in recurrent patients. Mol Biol Rep 2021; 48:4253-4262. [PMID: 34086159 DOI: 10.1007/s11033-021-06440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Cells translate the mechanosensing of extracellular matrix component dysregulation and stiffness into the signal transduction including Osteopontin (OPN) through the Hippo pathway. But how extracellular matrix (ECM) component dysregulation and stiffness are ultimately linked to transitional cell carcinoma (TCC) development remains poorly understood. This study was aimed to evaluate the possible links between ECM component alteration after cancer surgery and OPN and Yes-associated protein (YAP) expression in TCC and adjacent tissues. In this study, we used 50 TCC (25 newly diagnosed and 25 recurrent) and 50 adjacent tissues to determine the tissue stiffness using atomic force microscopy. The mRNA expression of SPP1, Indian hedgehog (IHH), and YAP was also determined using qRT-PCR. Western blotting and ELISA were performed to assess the tissue and serum levels of OPN, respectively. To assess the glycoproteins and elastic fibers content, Periodic Acid Schiff, and Verhoeff-Van Gieson Staining were performed, respectively. Matrix stiffness was markedly higher in TCCs than adjacent tissues (p < 0.05). Gene expression analysis showed that YAP, SPP1, and IHH genes were upregulated in TCC tissues (p < 0.05). Additionally, the OPN protein overexpression was observed in the tissue and the serum of TCC patients (p < 0.05). We also found that glycoproteins, elastic fibers content of recurrent TCC tissues was remarkably higher as compared to adjacent tissues (p < 0.05). Our results suggest that glycoproteins and elastic fibers content modulation and ECM stiffness may upregulates the expression of YAP, SPP1 and IHH genes, and possibly contribute to the TCC development and relapse.
Collapse
Affiliation(s)
- Hadi Ghasemi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
67
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
68
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
69
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
70
|
Hirshorn ST, Steele N, Zavros Y. Modeling pancreatic pathophysiology using genome editing of adult stem cell-derived and induced pluripotent stem cell (iPSC)-derived organoids. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1142-G1150. [PMID: 33759566 PMCID: PMC8285587 DOI: 10.1152/ajpgi.00329.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 01/31/2023]
Abstract
In recent years, organoids have become a novel in vitro method to study gastrointestinal organ development, physiology, and disease. An organoid, in short, may be defined as a miniaturized organ that can be grown from adult stem cells in vitro and studied at the microscopic level. Organoids have been used in multitudes of different ways to study the physiology of different human diseases including gastrointestinal cancers such as pancreatic cancer. The development of genome editing based on the bacterial defense mechanism clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has emerged as a laboratory tool that provides the opportunity to study the effects of specific genetic changes on organ development, physiology, and disease. The CRISPR/Cas9 approach can be combined with organoid technology including the use of induced pluripotent stem cell (iPSC)-derived and tissue-derived organoids. The goal of this review is to provide highlights on the development of organoid technology, and the use of this culture system to study the pathophysiology of specific mutations in the development of pancreatic and gastric cancers.NEW & NOTEWORTHY The goal of this review is not only to provide highlights on the development of organoid technology but also to subsequently use this information to study the pathophysiology of those specific mutations in the formation of malignant pancreatic and gastric cancer.
Collapse
Affiliation(s)
- Sabrina T Hirshorn
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Nina Steele
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
71
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
72
|
Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, Doshi A, Hansma C, Espinoza C, Abbas A, The S, Irizarry-Negron V, Halbrook CJ, Franks NE, Hoffman MT, Brown K, Carpenter ES, Nwosu ZC, Johnson C, Lima F, Anderson MA, Park Y, Crawford HC, Lyssiotis CA, Frankel TL, Rao A, Bednar F, Dlugosz AA, Preall JB, Tuveson DA, Allen BL, Pasca di Magliano M. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res 2021; 27:2023-2037. [PMID: 33495315 PMCID: PMC8026631 DOI: 10.1158/1078-0432.ccr-20-3715] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - LiJyun Syu
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, New York
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Christa Hansma
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ahmed Abbas
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
73
|
Resh MD. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: roles in signalling and disease. Open Biol 2021; 11:200414. [PMID: 33653085 PMCID: PMC8061759 DOI: 10.1098/rsob.200414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase (MBOAT) family, catalyses the covalent attachment of palmitate to the N-terminus of Hedgehog proteins. Palmitoylation is a post-translational modification essential for Hedgehog signalling. This review explores the mechanisms involved in Hhat acyltransferase enzymatic activity, similarities and differences between Hhat and other MBOAT enzymes, and the role of palmitoylation in Hedgehog signalling. In vitro and cell-based assays for Hhat activity have been developed, and residues within Hhat and Hedgehog essential for palmitoylation have been identified. In cells, Hhat promotes the transfer of palmitoyl-CoA from the cytoplasmic to the luminal side of the endoplasmic reticulum membrane, where Shh palmitoylation occurs. Palmitoylation is required for efficient delivery of secreted Hedgehog to its receptor Patched1, as well as for the deactivation of Patched1, which initiates the downstream Hedgehog signalling pathway. While Hhat loss is lethal during embryogenesis, mutations in Hhat have been linked to disease states or abnormalities in mice and humans. In adults, aberrant re-expression of Hedgehog ligands promotes tumorigenesis in an Hhat-dependent manner in a variety of different cancers, including pancreatic, breast and lung. Targeting hedgehog palmitoylation by inhibition of Hhat is thus a promising, potential intervention in human disease.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10065, USA
| |
Collapse
|
74
|
Esposito M, Ganesan S, Kang Y. Emerging strategies for treating metastasis. NATURE CANCER 2021; 2:258-270. [PMID: 33899000 PMCID: PMC8064405 DOI: 10.1038/s43018-021-00181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
The systemic spread of tumor cells is the ultimate cause of the majority of deaths from cancer, yet few successful therapeutic strategies have emerged to specifically target metastasis. Here we discuss recent advances in our understanding of tumor-intrinsic pathways driving metastatic colonization and therapeutic resistance, as well as immune activating strategies to target metastatic disease. We focus on therapeutically exploitable mechanisms, promising strategies in preclinical and clinical development, and emerging areas with potential to become innovative treatments.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
75
|
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive blood cancer that proves fatal for the majority of affected individuals. Older patients are particularly vulnerable due to more unfavorable disease biology and diminished ability to tolerate intensive induction chemotherapy (ICT). Safer, more efficacious therapies are desperately needed. AREAS COVERED We briefly summarize the challenges facing AML treatment and introduce the rapidly expanding therapeutic landscape. Our focus is on the Hedgehog (Hh) pathway and how preclinical evidence has spurred the clinical development of selective inhibitors for oncology indications. Glasdegib is the first Hh pathway inhibitor approved for the treatment of a hematologic malignancy, and we review its pharmacology, safety, efficacy, and potential clinical impact in AML patients. EXPERT OPINION Advances in the mechanistic understanding of AML have started to translate into improved therapeutic options for patients with contraindications to ICT. Glasdegib improved overall survival in this population when combined with low-dose cytarabine. While an encouraging development for these difficult to treat patients, alternative combination therapy approaches such as venetoclax plus azacitidine have gained greater clinical traction. Further investigation of glasdegib combination strategies and predictive biomarkers, particularly in regard to overcoming chemoresistance and preventing relapse, is needed to better define its clinical utility.
Collapse
Affiliation(s)
- Shawn M Sarkaria
- Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, NY, USA
| | - Mark L Heaney
- Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
76
|
The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep 2021; 41:227597. [PMID: 33443534 PMCID: PMC7859322 DOI: 10.1042/bsr20203121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.
Collapse
|
77
|
Cochrane CR, Vaghjiani V, Szczepny A, Jayasekara WSN, Gonzalez-Rajal A, Kikuchi K, McCaughan GW, Burgess A, Gough DJ, Watkins DN, Cain JE. Trp53 and Rb1 regulate autophagy and ligand-dependent Hedgehog signaling. J Clin Invest 2021; 130:4006-4018. [PMID: 32568216 DOI: 10.1172/jci132513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Ligand-dependent activation of Hedgehog (Hh) signaling in cancer occurs without mutations in canonical pathway genes. Consequently, the genetic basis of Hh pathway activation in adult solid tumors, such as small-cell lung cancer (SCLC), is unknown. Here we show that combined inactivation of Trp53 and Rb1, a defining genetic feature of SCLC, leads to hypersensitivity to Hh ligand in vitro, and during neural tube development in vivo. This response is associated with the aberrant formation of primary cilia, an organelle essential for canonical Hh signaling through smoothened, a transmembrane protein targeted by small-molecule Hh inhibitors. We further show that loss of both Trp53 and Rb1 disables transcription of genes in the autophagic machinery necessary for the degradation of primary cilia. In turn, we also demonstrate a requirement for Kif3a, a gene essential for the formation of primary cilia, in a mouse model of SCLC induced by conditional deletion of both Trp53 and Rb1 in the adult airway. Our results provide a mechanistic framework for therapeutic targeting of ligand-dependent Hh signaling in human cancers with somatic mutations in both TP53 and RB1.
Collapse
Affiliation(s)
- Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine and.,Department of Paediatrics, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vijesh Vaghjiani
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Paediatrics, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Alvaro Gonzalez-Rajal
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Saint Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Geoffrey W McCaughan
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Concord, New South Wales, Australia.,Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine and
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine and.,Department of Paediatrics, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
78
|
Hajimolaali M, Mohammadian H, Torabi A, Shirini A, Khalife Shal M, Barazandeh Nezhad H, Iranpour S, Baradaran Eftekhari R, Dorkoosh F. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin Drug Deliv 2021; 18:877-889. [PMID: 33455479 DOI: 10.1080/17425247.2021.1873272] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adequate transfection efficiency is indispensable to safe and effective delivery of therapeutically active agents, particularly in cancer. Endosomal escape is regarded as a critical and determining step devoted a significant number of studies of the drug/gene delivery field. AREAS COVERED This paper critically reviews the fundamental properties of chloroquine (CQ), its pharmacokinetics, pharmacodynamics, and clinical applications and the present knowledge of CQ application as an endosomal escape enhancing agent. Different approaches to enhance the endosomal escape process of nanoparticles have been introduced including use of endosomal escape enhancing agents. Application of CQ as either a pre-treatment modality in which cells or animals are exposed to CQ prior to the main treatment or a component of co-delivery systems where CQ and other anti-cancer agents are simultaneously entered the cancer cells, is discussed with recent studies. EXPERT OPINION CQ is founded to intervene with the natural process of endosomal maturation. Moreover, CQ seems to increase the effectiveness of gene delivery by its electrostatic interaction with negatively charged components of the transferred genetic molecules. Endosomal escape might be regarded as the bottleneck of efficient gene delivery and CQ as an effective and available endosomal escape enhancing agent deserves more sophisticated studies.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Pátrai, Greece
| | - Hosein Mohammadian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Torabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Shirini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Khalife Shal
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sheida Iranpour
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
79
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
80
|
Loe AKH, Rao-Bhatia A, Kim JE, Kim TH. Mesenchymal Niches for Digestive Organ Development, Homeostasis, and Disease. Trends Cell Biol 2020; 31:152-165. [PMID: 33349527 DOI: 10.1016/j.tcb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal-epithelial crosstalk plays a crucial role in organ development and stem cell function. However, the identity of the mesenchymal cells involved in this exchange was unclear. Recent significant advances in single-cell transcriptomics have defined the heterogeneity of these mesenchymal niches. By combining multiomic profiling, animal models, and organoid culture, new studies have not only demonstrated the roles of diverse mesenchymal cell populations but also defined the mechanisms underlying their regulation of niche signals. Focusing on several digestive organs, we describe how similar and diverse mesenchymal cell populations promote organ development and maintain proper stem cell activity, and how the heterogeneity of mesenchymal niches is altered in digestive diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
81
|
Sunami Y, Häußler J, Kleeff J. Cellular Heterogeneity of Pancreatic Stellate Cells, Mesenchymal Stem Cells, and Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123770. [PMID: 33333727 PMCID: PMC7765115 DOI: 10.3390/cancers12123770] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is projected to become the second deadliest cancer by 2030 in the United States, and the overall five-year survival rate stands still at around 9%. The stroma compartment can make up more than 90% of the pancreatic tumor mass, contributing to the hypoxic tumor microenvironment. The dense stroma with extracellular matrix proteins can be a physical and metabolic barrier reducing therapeutic efficacy. Cancer-associated fibroblasts are a source of extracellular matrix proteins. Therefore, targeting these cells, or extracellular matrix proteins, have been considered as therapeutic strategies. However, several studies show that deletion of cancer-associated fibroblasts may have tumor-promoting effects. Cancer-associated fibroblasts are derived from a variety of different cell types, such as pancreatic stellate cells and mesenchymal stem cells, and constitute a diverse cell population consisting of several functionally heterogeneous subtypes. Several subtypes of cancer-associated fibroblasts exhibit a tumor-restraining function. This review article summarizes recent findings regarding origin and functional heterogeneity of tumor-promoting as well as tumor-restraining cancer-associated fibroblasts. A better understanding of cancer-associated fibroblast heterogeneity could provide more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
|
82
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
83
|
Chen J, Qiu S, Kim JT, Cho JS, Moon JH, Zhou Y, Auh JH, Lee HJ. Garcinone C suppresses colon tumorigenesis through the Gli1-dependent hedgehog signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153334. [PMID: 32920288 DOI: 10.1016/j.phymed.2020.153334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although garcinone C, a natural xanthone derivative identified in the pericarp of Garcinia mangostana, has been demonstrated to exert different health beneficial activities in oxidative stress and β-amyloid aggregation, the role of garcinone C in colon tumorigenesis has not been investigated. In addition, aberrant Hedgehog (Hh) signaling activation is associated with tumorigenesis including colon cancer. Here, we hypothesized that garcinone C can prevent colon tumorigenesis through regulating the Hh signaling pathway. METHOD Colony formation assay and flow cytometry were used to evaluate the effect of garcinone C on the proliferation and cell cycle progression of colon cancer cells. Protein expression of cell cycle related markers and Hh/Gli1 signaling mediators were determined. The regulatory effect of orally administered garcinone C on the Hh/Gli1 signaling pathway and colon tumorigenesis was evaluated in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer animal model. RESULTS Garcinone C suppressed the proliferation of colon cancer cells, induced G0/G1 cell cycle arrest, as well as regulated the expression of cell cycle-related markers such as cyclin D1, cyclin E, CDK6, and p21. Garcinone C inhibited the expression of Gli1, a key mediator of Hedgehog signaling, and protein kinase B (AKT) phosphorylation in Smo-independent colon cancer cells. In the AOM/DSS-induced colon tumorigenesis model, garcinone C significantly inhibited tumor development, regulated the expression of cell cycle markers and Gli1, and reduced AKT phosphorylation in colon tumor tissues, which is consistent with our in vitro results. CONCLUSION Garcinone C can suppress colon tumorigenesis in vitro and in vivo through Gli1-dependent non-canonical Hedgehog signaling, suggesting that it may serve as a potent chemopreventive agent against colon tumorigenesis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Jae Seok Cho
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Ji Hyun Moon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea.
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, South Korea.
| |
Collapse
|
84
|
Sun H, Zhang B, Li H. The Roles of Frequently Mutated Genes of Pancreatic Cancer in Regulation of Tumor Microenvironment. Technol Cancer Res Treat 2020; 19:1533033820920969. [PMID: 32372692 PMCID: PMC7225789 DOI: 10.1177/1533033820920969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma has extremely high malignancy and patients with pancreatic ductal adenocarcinoma have dismal prognosis. The failure of pancreatic ductal adenocarcinoma treatment is largely due to the tumor microenvironment, which is featured by ample stromal cells and complicated extracellular matrix. Recent genomic analysis revealed that pancreatic ductal adenocarcinoma harbors frequently mutated genes including KRAS, TP53, CDKN2A, and SMAD4, which can widely alter cellular processes and behaviors. As shown by accumulating studies, these mutant genes may also change tumor microenvironment, which in turn affects pancreatic ductal adenocarcinoma progression. In this review, we summarize the role of such genetic mutations in tumor microenvironment regulation and potential mechanisms.
Collapse
Affiliation(s)
- Hongzhi Sun
- Department of General Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Bo Zhang
- Department of General Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haijun Li
- Department of General Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
85
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
86
|
Freitas RD, Dias RB, Vidal MTA, Valverde LDF, Gomes Alves Costa R, Damasceno AKA, Sales CBS, Siquara da Rocha LDO, Dos Reis MG, Soares MBP, Coletta RD, Pereira TA, Bezerra DP, Gurgel Rocha CA. Inhibition of CAL27 Oral Squamous Carcinoma Cell by Targeting Hedgehog Pathway With Vismodegib or Itraconazole. Front Oncol 2020; 10:563838. [PMID: 33312948 PMCID: PMC7703359 DOI: 10.3389/fonc.2020.563838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) presents an important challenge for the health systems worldwide. Thus, unraveling the biological mechanisms involved in OSCC pathogenesis is essential to the discovery of new drugs with anticancer potential. The Hedgehog (HH) pathway has shown promising results as a therapeutic target both in vitro and in vivo. This study aimed to investigate the effects of vismodegib and itraconazole on the expression of Hedgehog (HH) genes (PTCH1, SMO, and GLI1), cell cycle and cell death in OSCC cells. Alamar Blue assay was used to assess the cytotoxicity of vismodegib and itraconazole in a panel of oral cancer cell lines, including CAL27. The expression of HH signaling components after treatment with vismodegib and itraconazole, at concentrations of 25 or 50 μg/ml was evaluated by qPCR. Cell cycle and apoptosis were evaluated by flow cytometry after 72 h treatment with 50 μg/ml of vismodegib or itraconazole. HH signaling was activated in OSCC cell lines CAL27, SCC4, SCC9, and HSC3. Vismodegib and itraconazole significantly reduced CAL27 cell viability after 48 h of treatment. Gene expression of PTCH1, SMO, and GLI1 decreased in response to 24 h of treatment with vismodegib or itraconazole. Furthermore, CAL27 cells exhibited alterations in morphology, cell size, and cellular granularity. An increase in the DNA fragmentation was observed after treatment and both inhibitors induced apoptosis after 72 h. In conclusion, SMO inhibitors vismodegib and itraconazole demonstrably reduced the expression of HH genes in CAL27 OSCC cell line. In addition, treatment with vismodegib and itraconazole reduced cellular viability and altered the morphology of CAL27 cells, and also induced apoptosis.
Collapse
Affiliation(s)
- Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Brazil
| | - Rosane Borges Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Bahia, Brazil
| | - Manuela Torres Andion Vidal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Brazil
| | - Ludmila de Faro Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Brazil
| | | | | | | | | | - Mitermayer Galvão Dos Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Brazil
| | | | - Ricardo Della Coletta
- Department of Oral Diagnostics, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | | | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Brazil.,Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
87
|
Mateska I, Nanda K, Dye NA, Alexaki VI, Eaton S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J Biophys Biochem Cytol 2020; 219:211483. [PMID: 33090184 PMCID: PMC7588141 DOI: 10.1083/jcb.201910087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
The signaling protein Sonic Hedgehog (SHH) is crucial for the development and function of many vertebrate tissues. It remains largely unclear, however, what defines the range and specificity of pathway activation. The adrenal gland represents a useful model to address this question, where the SHH pathway is activated in a very specific subset of cells lying near the SHH-producing cells, even though there is an abundance of lipoproteins that would allow SHH to travel and signal long-range. We determine that, whereas adrenal cells can secrete SHH on lipoproteins, this form of SHH is inactive due to the presence of cosecreted inhibitors, potentially explaining the absence of long-range signaling. Instead, we find that SHH-producing cells signal at short range via membrane-bound SHH, only to receiving cells with primary cilia. Finally, our data from NCI-H295R adrenocortical carcinoma cells suggest that adrenocortical tumors may evade these regulatory control mechanisms by acquiring the ability to activate SHH target genes in response to TGF-β.
Collapse
Affiliation(s)
- Ivona Mateska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany,Correspondence to Ivona Mateska:
| | - Kareena Nanda
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Natalie A. Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
88
|
Jiang B, Zhou L, Lu J, Wang Y, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020; 10:576399. [PMID: 33178608 PMCID: PMC7593693 DOI: 10.3389/fonc.2020.576399] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with one of the worst prognoses worldwide and has an overall 5-year survival rate of only 9%. Although chemotherapy is the recommended treatment for patients with advanced PDAC, its efficacy is not satisfactory. The dense dysplastic stroma of PDAC is a major obstacle to the delivery of chemotherapy drugs and plays an important role in the progression of PDAC. Therefore, stroma-targeting therapy is considered a potential treatment strategy to improve the efficacy of chemotherapy and patient survival. While several preclinical studies have shown encouraging results, the anti-tumor potential of the PDAC stroma has also been revealed, and the extreme depletion might promote tumor progression and undermine patient survival. Therefore, achieving a balance between stromal abundance and depletion might be the further of stroma-targeting therapy. This review summarized the current progress of stroma-targeting therapy in PDAC and discussed the double-edged sword of its therapeutic effects.
Collapse
Affiliation(s)
- Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
89
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
90
|
Matusek T, Marcetteau J, Thérond PP. Functions of Wnt and Hedgehog-containing extracellular vesicles in development and disease. J Cell Sci 2020; 133:133/18/jcs209742. [PMID: 32989011 DOI: 10.1242/jcs.209742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.
Collapse
Affiliation(s)
- Tamás Matusek
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
91
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
92
|
Sustained hedgehog signaling in medulloblastoma tumoroids is attributed to stromal astrocytes and astrocyte-derived extracellular matrix. J Transl Med 2020; 100:1208-1222. [PMID: 32457352 PMCID: PMC7442735 DOI: 10.1038/s41374-020-0443-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the hedgehog (Hh) signaling pathway is associated with the formation of medulloblastoma (MB), the most common malignant pediatric brain tumor. However, tumor cells from human and mouse MB can not be passaged or preserved after being adherently cultured. Moreover, Hh signaling in MB cells is inactivated in such culture. Here we demonstrate that MB cells are capable of forming tumoroids (tumor spheroids) in vitro under optimized conditions, which can be further passaged and cryopreserved. More importantly, MB cells maintain Hh pathway activation and cell proliferation in tumoroids. Our studies further reveal that tumoroids-forming capacity of MB cells relies on astrocytes, a major component of the MB microenvironment. Astrocytes facilitate the formation of MB tumoroids by secreting sonic hedgehog (Shh) and generating astrocyte-derived extracellular matrix. These findings demonstrate the critical role of stromal astrocytes in supporting the survival and proliferation of MB cells in vitro. This study establishes a valid model for long-term culture of primary MB cells, which could be greatly beneficial for future investigation of MB tumorigenicity and the development of improved approaches to treat MB.
Collapse
|
93
|
Bordignon P, Bottoni G, Xu X, Popescu AS, Truan Z, Guenova E, Kofler L, Jafari P, Ostano P, Röcken M, Neel V, Dotto GP. Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Rep 2020; 28:2358-2372.e6. [PMID: 31461652 PMCID: PMC6718812 DOI: 10.1016/j.celrep.2019.07.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Heterogeneity of cancer-associated fibroblasts (CAFs) can result from activation of distinct signaling pathways. We show that in primary human dermal fibroblasts (HDFs), fibroblast growth factor (FGF) and transforming growth factor β (TGF-β) signaling oppositely modulate multiple CAF effector genes. Genetic abrogation or pharmacological inhibition of either pathway results in induction of genes responsive to the other, with the ETV1 transcription factor mediating the FGF effects. Duality of FGF/TGF-β signaling and differential ETV1 expression occur in multiple CAF strains and fibroblasts of desmoplastic versus non-desmoplastic skin squamous cell carcinomas (SCCs). Functionally, HDFs with opposite TGF-β versus FGF modulation converge on promoting cancer cell proliferation. However, HDFs with increased TGF-β signaling enhance invasive properties and epithelial-mesenchymal transition (EMT) of SCC cells, whereas HDFs with increased FGF signaling promote macrophage infiltration. The findings point to a duality of FGF versus TGF-β signaling in distinct CAF populations that promote cancer development through modulation of different processes. FGF and TGF-β signaling exert opposite control over multiple CAF effector genes ETV1 transcription factor mediates FGF effects and suppresses those of TGF-β Modulation of either pathway leads to different tumor-promoting CAF populations TGF-β-activated CAFs promote EMT, but FGF-activated CAFs increase inflammation
Collapse
Affiliation(s)
- Pino Bordignon
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Giulia Bottoni
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiaoying Xu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Alma S Popescu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Zinnia Truan
- Department of Otolaryngology-Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lukas Kofler
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Paris Jafari
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella 13900, Italy
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland.
| |
Collapse
|
94
|
Melissari MT, Chalkidi N, Sarris ME, Koliaraki V. Fibroblast Reprogramming in Gastrointestinal Cancer. Front Cell Dev Biol 2020; 8:630. [PMID: 32760726 PMCID: PMC7373725 DOI: 10.3389/fcell.2020.00630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancers are a significant cause of cancer mortality worldwide and have been strongly linked with chronic inflammation. Current therapies focus on epithelial/cancer cells; however, the importance of the tumor microenvironment in the development and treatment of the disease is also now well established. Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment, and are actively participating in tumor initiation, promotion and metastasis. They structurally and functionally affect cancer cell proliferation, tumor immunity, angiogenesis, extracellular matrix remodeling and metastasis through a variety of signaling pathways. CAFs originate predominantly from resident mesenchymal cells, which are activated and reprogrammed in response to cues from cancer cells. In recent years, chronic inflammation of the gastrointestinal tract has also proven an important driver of mesenchymal cell activation and subsequent CAF development, which in turn are capable of regulating the transition from acute to chronic inflammation and cancer. In this review, we will provide a concise overview of the mechanisms that drive fibroblast reprogramming in cancer and the recent advances on the downstream signaling pathways that regulate the functional properties of the activated mesenchyme. This new mechanistic insight could pave the way for new therapeutic strategies and better prognosis for cancer patients.
Collapse
Affiliation(s)
- Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michalis E Sarris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|
95
|
Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. Ann Biomed Eng 2020; 48:1864-1884. [PMID: 31686312 PMCID: PMC7196499 DOI: 10.1007/s10439-019-02399-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.
Collapse
Affiliation(s)
- D M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - M N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - J Wang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - E S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA.
| |
Collapse
|
96
|
Petty AJ, Li A, Wang X, Dai R, Heyman B, Hsu D, Huang X, Yang Y. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J Clin Invest 2020; 129:5151-5162. [PMID: 31638600 DOI: 10.1172/jci128644] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) usually display an antiinflammatory M2-like phenotype to facilitate tumor growth. However, what drives M2 polarization of TAMs and how TAMs suppress antitumor immunity within the tumor microenvironment (TME) remain largely undefined. Using several murine tumor models, we showed that hedgehog (Hh) signaling in myeloid cells is critical for TAM M2 polarization and tumor growth. We also found that tumor cells secrete sonic hedgehog (SHH), an Hh ligand, and that tumor-derived SHH drives TAM M2 polarization. Furthermore, Hh-induced functional polarization in TAMs suppresses CD8+ T cell recruitment to the TME through the inhibition of CXCL9 and CXCL10 production by TAMs. Last, we demonstrated that Krüppel-like factor 4 (Klf4) mediates Hh-dependent TAM M2 polarization and the immunosuppressive function. Collectively, these findings highlight a critical role for tumor-derived SHH in promoting TAM M2 polarization, a mechanism for TAM-mediated immunosuppression, and may provide insights into the design of new cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Amy J Petty
- Department of Pharmacology and Cancer Biology.,Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Ang Li
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Xinyi Wang
- Department of Pharmacology and Cancer Biology.,Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Rui Dai
- Department of Pharmacology and Cancer Biology.,Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - David Hsu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and.,Department of Immunology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
97
|
Oliphant MUJ, Kong D, Zhou H, Lewis MT, Ford HL. Two Sides of the Same Coin: The Role of Developmental pathways and pluripotency factors in normal mammary stem cells and breast cancer metastasis. J Mammary Gland Biol Neoplasia 2020; 25:85-102. [PMID: 32323111 PMCID: PMC7395869 DOI: 10.1007/s10911-020-09449-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer initiation and progression are often observed as the result of dysregulation of normal developmental processes and pathways. Studies focused on normal mammary stem/progenitor cell activity have led to an understanding of how breast cancer cells acquire stemness-associated properties including tumor initiation, survival and multi-lineage differentiation into heterogeneous tumors that become difficult to target therapeutically. Importantly, more recent investigations have provided valuable insight into how key developmental regulators can impact multiple phases of metastasis, where they are repurposed to not only promote metastatic phenotypes such as migration, invasion and EMT at the primary site, but also to regulate the survival, initiation and maintenance of metastatic lesions at secondary organs. Herein, we discuss findings that have led to a better understanding of how embryonic and pluripotency factors contribute not only to normal mammary development, but also to metastatic progression. We further examine the therapeutic potential of targeting these developmental pathways, and discuss how a better understanding of compensatory mechanisms, crosstalk between pathways, and novel experimental models could provide critical insight into how we might exploit embryonic and pluripotency regulators to inhibit tumor progression and metastasis.
Collapse
Affiliation(s)
- M U J Oliphant
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, 240 Longwood Avenue, Building C1, Room 513B, Boston, MA, 02115, USA
| | - Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - M T Lewis
- Departments of Molecular and Cellular Biology and Radiology. Lester and Sue Smith Breast Center, Baylor College of Medicine. One Baylor Plaza BCM600, Room N1210, Houston, TX, 77030, USA
| | - H L Ford
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
98
|
Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, Wellik DM, Crawford HC, Pasca di Magliano M. Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cell Mol Gastroenterol Hepatol 2020; 10:581-599. [PMID: 32454112 PMCID: PMC7399194 DOI: 10.1016/j.jcmgh.2020.05.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Although the healthy pancreas consists mostly of epithelial cells, pancreatic cancer and the precursor lesions known as pancreatic intraepithelial neoplasia, are characterized by an extensive accumulation of fibroinflammatory stroma that includes a substantial and heterogeneous fibroblast population. The cellular origin of fibroblasts within the stroma has not been determined. Here, we show that the Gli1 and Hoxb6 markers label distinct fibroblast populations in the healthy mouse pancreas. We then set out to determine whether these distinct fibroblast populations expanded during carcinogenesis. METHODS We developed genetically engineered models using a dual-recombinase approach that allowed us to induce pancreatic cancer formation through codon-optimized Flp recombinase-driven epithelial recombination of Kirsten rat sarcoma viral oncogene homolog while labeling Gli1+ or Hoxb6+ fibroblasts in an inducible manner. By using these models, we lineage-traced these 2 fibroblast populations during the process of carcinogenesis. RESULTS Although in the healthy pancreas Gli1+ fibroblasts and Hoxb6+ fibroblasts are present in similar numbers, they contribute differently to the stroma in carcinogenesis. Namely, Gli1+ fibroblasts expand dramatically, whereas Hoxb6+ cells do not. CONCLUSIONS Fibroblasts present in the healthy pancreas expand during carcinogenesis, but with a different prevalence for different subtypes. Here, we compared Gli1+ and Hoxb6+ fibroblasts and found only Gli1+ expanded to contribute to the stroma during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Paloma E Garcia
- Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan
| | - Maeva Adoumie
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Esther C Kim
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yara S El-Tawil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Amara Z Shaikh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Ben L Allen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Deneen M Wellik
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
99
|
Bausch D, Fritz S, Bolm L, Wellner UF, Fernandez-Del-Castillo C, Warshaw AL, Thayer SP, Liss AS. Hedgehog signaling promotes angiogenesis directly and indirectly in pancreatic cancer. Angiogenesis 2020; 23:479-492. [PMID: 32444947 DOI: 10.1007/s10456-020-09725-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The inhibition of Hedgehog (Hh) signaling in pancreatic ductal adenocarcinoma (PDAC) reduces desmoplasia and promotes increased vascularity. In contrast to these findings, the Hh ligand Sonic Hedgehog (SHH) is a potent proangiogenic factor in non-tumor models. The aim of this study was to determine the molecular mechanisms by which SHH affects the tumor stroma and angiogenesis. METHODS Mice bearing three different xenografted human PDAC (n = 5/group) were treated with neutralizing antibodies to SHH. After treatment for 7 days, tumors were evaluated and the expression of 38 pro- and antiangiogenic factors was assessed in the tumor cells and their stroma. The effect of SHH on the regulation of pro- and antiangiogenic factors in fibroblasts and its impact on endothelial cells was then further assessed in in vitro model systems. RESULTS Inhibition of SHH affected tumor growth, stromal content, and vascularity. Its effect on the Hh signaling pathway was restricted to the stromal compartment of the three cancers. SHH-stimulated angiogenesis indirectly through the reduction of antiangiogenic THBS2 and TIMP2 in stromal cells. An additional direct effect of SHH on endothelial cells depended on the presence of VEGF. CONCLUSION Inhibition of Hh signaling reduces tumor vascularity, suggesting that Hh plays a role in the maintenance or formation of the tumor vasculature. Whether the reduction in tumor growth and viability seen in the epithelium is a direct consequence of Hh pathway inhibition, or indirectly caused by its effect on the stroma and vasculature, remains to be evaluated.
Collapse
Affiliation(s)
- Dirk Bausch
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA.,Department of Surgery, Marien Hospital Herne, University Hospital of Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Stefan Fritz
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA.,Department of General, Visceral, Thoracic and Transplantation Surgery, Katharinenhospital Klinikum Stuttgart, Kriegsbergstraße 60, 70174, Stuttgart, Germany
| | - Louisa Bolm
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA
| | - Ulrich F Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Carlos Fernandez-Del-Castillo
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA
| | - Sarah P Thayer
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA. .,Division of Surgical Oncology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6895, USA.
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA.
| |
Collapse
|
100
|
Hauge A, Rofstad EK. Antifibrotic therapy to normalize the tumor microenvironment. J Transl Med 2020; 18:207. [PMID: 32434573 PMCID: PMC7240990 DOI: 10.1186/s12967-020-02376-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Most tumors develop abnormal fibrotic regions consisting of fibroblasts, immune cells, and a dense extracellular matrix (ECM) immersed in a viscous interstitial fluid, and an abundant fibrotic tumor microenvironment (TME) is associated with poor outcome of treatment. It has been hypothesized that the treatment of cancer may be improved by interventions aiming to normalize this TME. The approaches used in attempts to normalize the fibrotic TME can be categorized into three strategies of targeted antifibrotic therapy: targeting of components of the ECM, targeting of the producers of the ECM components-the activated cancer-associated fibroblasts (CAFs), and targeting of the signaling pathways activating CAFs. To target the ECM, enzymes against components of the ECM have been used, including collagenase, relaxin, hyaluronidase, and lyxyl oxidase. Targeting of CAFs have been investigated by using agents aiming to eliminate or reprogram CAFs. CAFs are activated primarily by transforming growth factor-β (TGF-β), hedgehog, or focal adhesion kinase signaling, and several agents have been used to target these signaling pathways, including angiotensin II receptor I blockers (e.g., losartan) to inhibit the TGF-β pathway. Taken together, these studies have revealed that antifibrotic therapy is a two-edged sword: while some studies suggest enhanced response to treatment after antifibrotic therapy, others suggest that antifibrotic therapy may lead to increased tumor growth, metastasis, and impaired outcome of treatment. There are several possible explanations of these conflicting observations. Most importantly, tumors contain different subpopulations of CAFs, and while some subpopulations may promote tumor growth and metastasis, others may inhibit malignant progression. Furthermore, the outcome of antifibrotic therapy may depend on stage of disease, duration of treatment, treatment-induced activation of alternative profibrotic signaling pathways, and treatment-induced recruitment of tumor-supporting immune cells. Nevertheless, losartan-induced suppression of TGF-β signaling appears to be a particularly promising strategy. Losartan is a widely prescribed antihypertensive drug and highly advantageous therapeutic effects have been observed after losartan treatment of pancreatic cancer. However, improved understanding of the mechanisms governing the development of fibrosis in tumors is needed before safe antifibrotic treatments can be established.
Collapse
Affiliation(s)
- Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|