51
|
Royet A, Broutier L, Coissieux MM, Malleval C, Gadot N, Maillet D, Gratadou-Hupon L, Bernet A, Nony P, Treilleux I, Honnorat J, Liebl D, Pelletier L, Berger F, Meyronet D, Castets M, Mehlen P. Ephrin-B3 supports glioblastoma growth by inhibiting apoptosis induced by the dependence receptor EphA4. Oncotarget 2017; 8:23750-23759. [PMID: 28423606 PMCID: PMC5410341 DOI: 10.18632/oncotarget.16077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
Abstract
EphA4, an Ephrins tyrosine kinase receptor, behaves as a dependence receptor (DR) by triggering cell apoptosis in the absence of its ligand Ephrin-B3. DRs act as conditional tumor suppressors, engaging cell death based on ligand availability; this mechanism is bypassed by overexpression of DRs ligands in some aggressive cancers. The pair EphA4/Ephrin-B3 favors survival of neuronal progenitors of the brain subventricular zone, an area where glioblastoma multiform (GBM) are thought to originate. Here, we report that Ephrin-B3 is highly expressed in human biopsies and that it inhibits EphA4 pro-apoptotic activity in tumor cells. Angiogenesis is directly correlated with GBM aggressiveness and we demonstrate that Ephrin-B3 also supports the survival of endothelial cells in vitro and in vivo. Lastly, silencing of Ephrin-B3 decreases tumor vascularization and growth in a xenograft mice model. Interference with EphA4/Ephrin-B3 interaction could then be envisaged as a relevant strategy to slow GBM growth by enhancing EphA4-induced cell death.
Collapse
Affiliation(s)
- Amélie Royet
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France
| | - Laura Broutier
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Marie-May Coissieux
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Céline Malleval
- Lyon Neurosciences Research Center, Neuro-Oncology and Neuro-Inflammation laboratory, INSERM UMR1028, CNRS UMR5292, Université de Lyon, 69372 Lyon Cedex 08, France
| | - Nicolas Gadot
- Research Pathology, Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Denis Maillet
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lise Gratadou-Hupon
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France
| | - Agnès Bernet
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France
| | | | - Isabelle Treilleux
- Research Pathology, Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Jérôme Honnorat
- Lyon Neurosciences Research Center, Neuro-Oncology and Neuro-Inflammation laboratory, INSERM UMR1028, CNRS UMR5292, Université de Lyon, 69372 Lyon Cedex 08, France
| | - Daniel Liebl
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Miami, Fl 33136, USA
| | - Laurent Pelletier
- Grenoble Institut des Neurosciences, Nanomedicine and Brain Laboratory, INSERM U 836, BP 170, F38042 Grenoble Cedex 9, France
| | - François Berger
- Grenoble Institut des Neurosciences, Nanomedicine and Brain Laboratory, INSERM U 836, BP 170, F38042 Grenoble Cedex 9, France
| | - David Meyronet
- Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marie Castets
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France.,Research Pathology, Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
52
|
Abstract
Fell et al. deleted KIF1Bβ in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. They discovered that KIF1Bβ is required for NGF-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. We recently identified pathogenic KIF1Bβ mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted KIF1Bβ in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bβ is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. Moreover, pathogenic KIF1Bβ mutations identified in neuroblastoma impair TRKA transport. Expression of neuronal differentiation markers is ablated in both KIF1Bβ-deficient mouse neuroblasts and human neuroblastomas that lack KIF1Bβ. Transcriptomic analyses show that unfavorable neuroblastomas resemble mouse sympathetic neuroblasts lacking KIF1Bβ independent of MYCN amplification and the loss of genes neighboring KIF1B on chromosome 1p36. Thus, defective precursor cell differentiation, a common trait of aggressive childhood malignancies, is a pathogenic effect of KIF1Bβ loss in neuroblastomas. Furthermore, neuropathy-associated KIF1Bβ mutations impede cargo transport, providing a direct link between neuroblastomas and neurodegeneration.
Collapse
|
53
|
Feinberg K, Kolaj A, Wu C, Grinshtein N, Krieger JR, Moran MF, Rubin LL, Miller FD, Kaplan DR. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J Cell Biol 2017; 216:3655-3675. [PMID: 28877995 PMCID: PMC5674898 DOI: 10.1083/jcb.201705085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
The pan-kinase inhibitor foretinib is identified as a potent suppressor of sympathetic, sensory, and motor neuron axon degeneration, acting in part by inhibiting the activity of the unliganded TrkA/nerve growth factor receptor and by preserving mitochondria in die-back and Wallerian degeneration models. Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaida Kolaj
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chen Wu
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Natalie Grinshtein
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan R Krieger
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
54
|
Vaughan SK, Stanley OL, Valdez G. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice. J Gerontol A Biol Sci Med Sci 2017; 72:771-779. [PMID: 27688482 DOI: 10.1093/gerona/glw175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Graduate Program in Translational Biology, Medicine, and Health and
| | - Olivia L Stanley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Department of Biological Sciences, Virginia Tech, Blacksburg
| |
Collapse
|
55
|
Proliferation and Survival of Embryonic Sympathetic Neuroblasts by MYCN and Activated ALK Signaling. J Neurosci 2017; 36:10425-10439. [PMID: 27707976 DOI: 10.1523/jneurosci.0183-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Neuroblastoma (NB) is a childhood tumor that arises from the sympathoadrenal lineage. MYCN amplification is the most reliable marker for poor prognosis and MYCN overexpression in embryonic mouse sympathetic ganglia results in NB-like tumors. MYCN cooperates with mutational activation of anaplastic lymphoma kinase (ALK), which promotes progression to NB, but the role of MYCN and ALK in tumorigenesis is still poorly understood. Here, we use chick sympathetic neuroblasts to examine the normal function of MYCN and MYC in the control of neuroblast proliferation, as well as effects of overexpression of MYCN, MYC, and activated ALK, alone and in combination. We demonstrate that MYC is more strongly expressed than MYCN during neurogenesis and is important for in vitro neuroblast proliferation. MYC and MYCN overexpression elicits increased proliferation but does not sustain neuroblast survival. Unexpectedly, long-term expression of activated ALKF1174L leads to cell-cycle arrest and promotes differentiation and survival of postmitotic neurons. ALKF1174L induces NEFM, RET, and VACHT and results in decreased expression of proapototic (BMF, BIM), adrenergic (TH), and cell-cycle genes (e.g., CDC25A, CDK1). In contrast, neuroblast proliferation is maintained when MYCN and ALKF1174L are coexpressed. Proliferating MYCN/ALKF1174L neuroblasts display a differentiated phenotype but differ from ALK-expressing neurons by the upregulation of SKP2, CCNA2, E2F8, and DKC1 Inhibition of the ubiquitin ligase SKP2 (S-phase kinase-associated protein 2), which targets the CDK inhibitor p27 for degradation, reduces neuroblast proliferation, implicating SKP2 in the maintained proliferation of MYCN/ALKF1174L neuroblasts. Together, our results characterize MYCN/ALK cooperation leading to neuroblast proliferation and survival that may represent initial steps toward NB development. SIGNIFICANCE STATEMENT MYCN overexpression combined with activated anaplastic lymphoma kinase (ALK) is sufficient to induce neuroblastoma (NB) in mouse sympathoadrenal cells. To address cellular and molecular effects elicited by MYCN/ALK cooperation, we used cultures of chick sympathetic neuroblasts. We demonstrate that MYCN increases proliferation but not survival, whereas long-term expression of ALKF1174L elicits cell-cycle exit, differentiation, and survival of postmitotic neurons. Combined MYCN/ALKF1174L expression allows long-term proliferation and survival of neuroblasts with differentiated characteristics. In the presence of ALKF1174L signaling, MYCN induces the expression of the ubiquitin ligase SKP2 (S-phase kinase-associated protein 2), which targets p27 for degradation and is also upregulated in high-risk NB. SKP2 inhibition supports a function for SKP2 in the maintained neuroblast proliferation downstream of MYCN/ALK, which may represent an early step toward tumorigenesis.
Collapse
|
56
|
Zheng Y, Huang C, Liu F, Lin H, Yang X, Zhang Z. Comparison of the neuronal differentiation abilities of bone marrow‑derived and adipose tissue‑derived mesenchymal stem cells. Mol Med Rep 2017; 16:3877-3886. [PMID: 28731172 PMCID: PMC5646965 DOI: 10.3892/mmr.2017.7069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (ADSCs) are able to differentiate into neuron-like cells when exposed to small molecule compounds, however the specific differences in their neuronal differentiation abilities remain to be fully elucidated. The present study aimed to compare the neuronal differentiation abilities of BMSCs and ADSCs. BMSCs and ADSCs from the same Sprague Dawley rats were isolated and cultured for use. The proliferation capacity was revealed using a cell counting method. Following BMSCs and ADSCs induction by four types of small-molecular compounds, the expression of various neuronal markers and the secretion of several neurotrophic factors were detected by immunofluorescence, western blotting, reverse transcription-quantitative polymerase chain reaction and ELISA. It was demonstrated that the ADSCs exhibited an increased proliferation capacity compared with BMSCs, according to cumulative population doubling analyses. Following a 7-day neuronal induction period, BMSCs and ADSCs exhibited a neuron-like morphology, and were termed neuronal induced (NI)-BMSCs and NI-ADSCs. They expressed neuronal markers including β-tubulin III, microtubule associated protein 2 and choline acetyltransferase. The number of NI-BMSCs that positively expressed the neuronal markers was significantly decreased compared with NI-ADSCs, and the expression and secretion of the neurotrophic factors nerve growth factor and 3′-nucleotidase in NI-BMSCs were additionally decreased compared with NI-ADSCs. The findings of the present study indicated that the neuronal differentiation abilities and neurotrophic factor secretion abilities of ADSCs were increased compared with BMSCs. ADSCs may therefore act as efficient candidates in cell transplantation therapy for diseases and injuries of the nervous system.
Collapse
Affiliation(s)
- Yani Zheng
- Department of Anatomy, Institute of Biomedical Engineering, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Huang
- Department of Anatomy, Institute of Biomedical Engineering, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Fang Liu
- Department of Anatomy, Institute of Biomedical Engineering, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Haiyan Lin
- Department of Anatomy, Institute of Biomedical Engineering, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiangqun Yang
- Department of Anatomy, Institute of Biomedical Engineering, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhiying Zhang
- Department of Anatomy, Institute of Biomedical Engineering, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
57
|
Lin S, Negulescu A, Bulusu S, Gibert B, Delcros JG, Ducarouge B, Rama N, Gadot N, Treilleux I, Saintigny P, Meurette O, Mehlen P. Non-canonical NOTCH3 signalling limits tumour angiogenesis. Nat Commun 2017; 8:16074. [PMID: 28719575 PMCID: PMC5520050 DOI: 10.1038/ncomms16074] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/25/2017] [Indexed: 01/22/2023] Open
Abstract
Notch signalling is a causal determinant of cancer and efforts have been made to develop targeted therapies to inhibit the so-called canonical pathway. Here we describe an unexpected pro-apoptotic role of Notch3 in regulating tumour angiogenesis independently of the Notch canonical pathway. The Notch3 ligand Jagged-1 is upregulated in a fraction of human cancer and our data support the view that Jagged-1, produced by cancer cells, is inhibiting the apoptosis induced by the aberrant Notch3 expression in tumour vasculature. We thus present Notch3 as a dependence receptor inducing endothelial cell death while this pro-apoptotic activity is blocked by Jagged-1. Along this line, using Notch3 mutant mice, we demonstrate that tumour growth and angiogenesis are increased when Notch3 is silenced in the stroma. Consequently, we show that the well-documented anti-tumour effect mediated by γ-secretase inhibition is at least in part dependent on the apoptosis triggered by Notch3 in endothelial cells. Notch signalling is deregulated in several cancers; therefore, strategies targeting this pathway are currently being explored. Here the authors report a pro-apoptotic function of Notch3 in endothelial cells; consequently, when Notch3 is silenced in stroma cells, tumour growth and angiogenesis are increased.
Collapse
Affiliation(s)
- Shuheng Lin
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Ana Negulescu
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Sirisha Bulusu
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Guy Delcros
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Gadot
- Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Isabelle Treilleux
- Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Pierre Saintigny
- Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Meurette
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
58
|
Modulation of Autophagy by BDNF Underlies Synaptic Plasticity. Cell Metab 2017; 26:230-242.e5. [PMID: 28683289 DOI: 10.1016/j.cmet.2017.06.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/10/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023]
Abstract
Autophagy is crucial for neuronal integrity. Loss of key autophagic components leads to progressive neurodegeneration and structural defects in pre- and postsynaptic morphologies. However, the molecular mechanisms regulating autophagy in the brain remain elusive. Similarly, while it is widely accepted that protein turnover is required for synaptic plasticity, the contribution of autophagy to the degradation of synaptic proteins is unknown. Here, we report that BDNF signaling via the tropomyosin receptor kinase B (TrkB) and the phosphatidylinositol-3' kinase (PI3K)/Akt pathway suppresses autophagy in vivo. In addition, we demonstrate that suppression of autophagy is required for BDNF-induced synaptic plasticity and for memory enhancement under conditions of nutritional stress. Finally, we identify three key remodelers of postsynaptic densities as cargo of autophagy. Our results establish autophagy as a pivotal component of BDNF signaling, which is essential for BDNF-induced synaptic plasticity. This molecular mechanism underlies behavioral adaptations that increase fitness in times of scarcity.
Collapse
|
59
|
Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex. Neuroscience 2017; 358:190-200. [PMID: 28663094 DOI: 10.1016/j.neuroscience.2017.06.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
Abstract
An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. While it is well established that neurotrophic factors play a central role in controlling neuronal survival and apoptosis in the peripheral nervous system (PNS), the situation is less clear in the central nervous system (CNS). In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this article, we review recent results that demonstrate the important role of electrical activity for neuronal survival in the neocortex, describe the role of Ca2+ and neurotrophic factors in translating electrical activity into pro-survival signals, and finally discuss the clinical impact of the tight relation between electrical activity and neuronal survival versus apoptosis.
Collapse
|
60
|
Gugliandolo A, Rajan TS, Scionti D, Diomede F, Bramanti P, Mazzon E, Trubiani O. Reprogramming of Oncogene Expression in Gingival Mesenchymal Stem Cells Following Long-Term Culture In Vitro. Cell Reprogram 2017; 19:159-170. [DOI: 10.1089/cell.2016.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | | | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
61
|
PROneurotrophins and CONSequences. Mol Neurobiol 2017; 55:2934-2951. [DOI: 10.1007/s12035-017-0505-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
62
|
Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch 2017; 469:593-610. [PMID: 28280960 PMCID: PMC5438432 DOI: 10.1007/s00424-017-1964-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of secreted proteins. Signaling cascades induced by BDNF and its receptor, the receptor tyrosine kinase TrkB, link neuronal growth and differentiation with synaptic plasticity. For this reason, interference with BDNF signaling has emerged as a promising strategy for potential treatments in psychiatric and neurological disorders. In many brain circuits, synaptically released BDNF is essential for structural and functional long-term potentiation, two prototypical cellular models of learning and memory formation. Recent studies have revealed an unexpected complexity in the synaptic communication of mature BDNF and its precursor proBDNF, not only between local pre- and postsynaptic neuronal targets but also with participation of glial cells. Here, we consider recent findings on local actions of the BDNF family of ligands at the synapse and discuss converging lines of evidence which emerge from per se conflicting results.
Collapse
Affiliation(s)
- Manju Sasi
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078, Würzburg, Germany
| | - Beatrice Vignoli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123, Povo, TN, Italy
| | - Marco Canossa
- Centre for Integrative Biology (CIBIO), University of Trento, 38123, Povo, TN, Italy.,European Brain Research Institute (EBRI) "Rita Levi-Montalcini", 00143, Rome, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078, Würzburg, Germany.
| |
Collapse
|
63
|
Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis 2017; 8:e2643. [PMID: 28252642 PMCID: PMC5386560 DOI: 10.1038/cddis.2017.64] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
64
|
Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 2017; 13:135-147. [PMID: 28134254 DOI: 10.1038/nrneurol.2016.201] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- The International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Christian B Vægter
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Henning Andersen
- Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Leif Østergaard
- Department of Neuroradiology and Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, Gilman Drive, La Jolla, California 92093, USA
| | - Troels S Jensen
- Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| |
Collapse
|
65
|
Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res 2017; 12:549-557. [PMID: 28553325 PMCID: PMC5436343 DOI: 10.4103/1673-5374.205084] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise essential secreted proteins that have several functions in neural and non-neural tissues, mediating the development, survival and maintenance of peripheral and central nervous system. Therefore, neurotrophic factor issue has been extensively investigated into the context of neurodegenerative diseases. Alzheimer's disease and Parkinson's disease show changes in the regulation of specific neurotrophic factors and their receptors, which appear to be critical for neuronal degeneration. Indeed, neurotrophic factors prevent cell death in degenerative processes and can enhance the growth and function of affected neurons in these disorders. Based on recent reports, this review discusses the main findings related to the neurotrophic factor support – mainly brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor – in the survival, proliferation and maturation of affected neurons in Alzheimer's disease and Parkinson's disease as well as their putative application as new therapeutic approach for these diseases management.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Anne Suely Savall
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | | | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| |
Collapse
|
66
|
Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J Neurol Sci 2016; 375:430-441. [PMID: 28320183 DOI: 10.1016/j.jns.2016.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.
Collapse
|
67
|
Villarin JM, McCurdy EP, Martínez JC, Hengst U. Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands. Nat Commun 2016; 7:13865. [PMID: 28000671 PMCID: PMC5187584 DOI: 10.1038/ncomms13865] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023] Open
Abstract
Cytoplasmic dynein mediates retrograde transport in axons, but it is unknown how its transport characteristics are regulated to meet acutely changing demands. We find that stimulus-induced retrograde transport of different cargos requires the local synthesis of different dynein cofactors. Nerve growth factor (NGF)-induced transport of large vesicles requires local synthesis of Lis1, while smaller signalling endosomes require both Lis1 and p150Glued. Lis1 synthesis is also triggered by NGF withdrawal and required for the transport of a death signal. Association of Lis1 transcripts with the microtubule plus-end tracking protein APC is required for their translation in response to NGF stimulation but not for their axonal recruitment and translation upon NGF withdrawal. These studies reveal a critical role for local synthesis of dynein cofactors for the transport of specific cargos and identify association with RNA-binding proteins as a mechanism to establish functionally distinct pools of a single transcript species in axons.
The molecular mechanisms underlying retrograde transport in axons are only partially understood. Villarin et al. show that in cultured DRG neurons, extracellular trophic cues such as NGF dynamically regulate local protein synthesis of dynein cofactors, thus controlling retrograde trafficking in neurons.
Collapse
Affiliation(s)
- Joseph M Villarin
- Medical Scientist Training Program, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Ethan P McCurdy
- Integrated Program in Cellular, Molecular and Biomedical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - José C Martínez
- Medical Scientist Training Program, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
68
|
Kim JY, Jeong JE, Rhee JK, Cho H, Chun JW, Kim TM, Choi SW, Choi JS, Kim DJ. Targeted exome sequencing for the identification of a protective variant against Internet gaming disorder at rs2229910 of neurotrophic tyrosine kinase receptor, type 3 (NTRK3): A pilot study. J Behav Addict 2016; 5:631-638. [PMID: 27826991 PMCID: PMC5370368 DOI: 10.1556/2006.5.2016.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background and aims Internet gaming disorder (IGD) has gained recognition as a potential new diagnosis in the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders, but genetic evidence supporting this disorder remains scarce. Methods In this study, targeted exome sequencing was conducted in 30 IGD patients and 30 control subjects with a focus on genes linked to various neurotransmitters associated with substance and non-substance addictions, depression, and attention deficit hyperactivity disorder. Results rs2229910 of neurotrophic tyrosine kinase receptor, type 3 (NTRK3) was the only single nucleotide polymorphism (SNP) that exhibited a significantly different minor allele frequency in IGD subjects compared to controls (p = .01932), suggesting that this SNP has a protective effect against IGD (odds ratio = 0.1541). The presence of this potentially protective allele was also associated with less time spent on Internet gaming and lower scores on the Young's Internet Addiction Test and Korean Internet Addiction Proneness Scale for Adults. Conclusions The results of this first targeted exome sequencing study of IGD subjects indicate that rs2229910 of NTRK3 is a genetic variant that is significantly related to IGD. These findings may have significant implications for future research investigating the genetics of IGD and other behavioral addictions.
Collapse
Affiliation(s)
| | - Jo-Eun Jeong
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Je-Keun Rhee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Cho
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Chun
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sam-Wook Choi
- Korea Institute on Behavioral Addictions, True Mind Mental Health Clinic, Seoul, Republic of Korea, and Health Care & Information Research Institute, Namseoul University, Cheonan, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea, and Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Corresponding author: Dai-Jin Kim; Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 202 Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea; Phone: +82 2 2258 6086; Fax: +82 2 594 3870; E-mail:
| |
Collapse
|
69
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
70
|
Behrouz Sharif S, Hashemzadeh S, Mousavi Ardehaie R, Eftekharsadat A, Ghojazadeh M, Mehrtash AH, Estiar MA, Teimoori-Toolabi L, Sakhinia E. Detection of aberrant methylated SEPT9 and NTRK3 genes in sporadic colorectal cancer patients as a potential diagnostic biomarker. Oncol Lett 2016; 12:5335-5343. [PMID: 28105243 DOI: 10.3892/ol.2016.5327] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, and the third leading cause of cancer mortality worldwide. Timely detection of CRC in patients with earlier stages provides the highest rate of survival. Epigenetic alterations are important in the occurrence and progression of CRC, and represent the primary modifications of cancer cells. Therefore, detection of these alterations in CRC cases are thought to hold great promise as diagnostic biomarkers. It has been shown that the SEPT9 and NTRK3 genes are aberrantly methylated and their detection can be used as biomarkers for early diagnosis of CRC. The present study analyzed promoter methylation status of these genes in CRC patients. Genomic DNA was extracted from 45 CRC and paired adjacent healthy tissues and undergone bisulfite conversion, and the methylation status of NTRK3 and SEPT9 were defined using the MS-HRM assay. Our results showed that there are statistically significant differences in methylation status of NTRK3 and specially SEPT9 between CRC and adjacent normal tissues (P<0.001). High sensitivity and specificity for a specific location in SEPT9 gene promoter as a diagnostic biomarker was observed. SEPT9 promoter hypermethylation may serve as a promising biomarker for the detection of CRC development. However, to validate the biomarker potential of NTRK3 there is a requirement for further investigation.
Collapse
Affiliation(s)
- Shahin Behrouz Sharif
- Department of Biochemistry and Clinical Laboratory, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; Department of Molecular Medicine, Pasteur Institute of Iran, Tehran 1316943551, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614731, Iran
| | - Shahriar Hashemzadeh
- Department of General & Vascular Surgery, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Reza Mousavi Ardehaie
- Department of Biochemistry and Clinical Laboratory, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; Department of Molecular Medicine, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Amirtaher Eftekharsadat
- Department of Pathology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Mortaza Ghojazadeh
- Liver and Gastrointestinal Disease Research Center and Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Amir Hossein Mehrtash
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehrdad Asghari Estiar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | | | - Ebrahim Sakhinia
- Department of Biochemistry and Clinical Laboratory, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
71
|
Kung JE, Jura N. Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure 2016; 24:7-24. [PMID: 26745528 DOI: 10.1016/j.str.2015.10.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 01/07/2023]
Abstract
Protein kinases are known primarily for their ability to phosphorylate protein substrates, which constitutes an essential biological process. Recently, compelling evidence has accumulated that the functions of many protein kinases extend beyond phosphorylation and include an impressive spectrum of non-catalytic roles, such as scaffolding, allosteric regulation, or even protein-DNA interactions. How the conserved kinase fold shared by all metazoan protein kinases can accomplish these diverse tasks in a specific and regulated manner is poorly understood. In this review, we analyze the molecular mechanisms supporting phosphorylation-independent signaling by kinases and attempt to identify common and unique structural characteristics that enable kinases to perform non-catalytic functions. We also discuss how post-translational modifications, protein-protein interactions, and small molecules modulate these non-canonical kinase functions. Finally, we highlight current efforts in the targeted design of small-molecule modulators of non-catalytic kinase functions, a new pharmacological challenge for which structural considerations are more important than ever.
Collapse
Affiliation(s)
- Jennifer E Kung
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
72
|
Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 2016; 111:266-282. [PMID: 27618740 DOI: 10.1016/j.neuropharm.2016.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Nerve growth factor (NGF) holds a pivotal role in brain development and maintenance, been also involved in the pathophysiology of neurodegenerative diseases. Here, we provide evidence that a novel C17-spiroepoxy steroid derivative, BNN27, specifically interacts with and activates the TrkA receptor of NGF, inducing phosphorylation of TrkA tyrosine residues and down-stream neuronal survival-related kinase signaling. Additionally, BNN27 potentiates the efficacy of low levels of NGF, by facilitating its binding to the TrkA receptors and differentially inducing fast return of internalized TrkA receptors into neuronal cell membranes. Furthermore, BNN27 synergizes with NGF in promoting axonal outgrowth, effectively rescues from apoptosis NGF-dependent and TrkA positive sympathetic and sensory neurons, in vitro, ex vivo and in vivo in NGF null mice. Interestingly, BNN27 does not possess the hyperalgesic properties of NGF. BNN27 represents a lead molecule for the development of neuroprotective TrkA receptor agonists, with potential therapeutic applications in neurodegenerative diseases and in brain trauma.
Collapse
|
73
|
Thalamus Degeneration and Inflammation in Two Distinct Multiple Sclerosis Animal Models. J Mol Neurosci 2016; 60:102-14. [PMID: 27491786 DOI: 10.1007/s12031-016-0790-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e., damage to axons, synapses, and nerve cell bodies. While several accepted paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early and late neurodegeneration are still in their infancy and have not been convincingly validated. It was speculated that the thalamus with its multiple reciprocal connections is sensitive to inflammatory processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. To what extent the thalamus is affected in commonly applied MS animal models is, however, not known. In this article we describe direct and indirect damage to the thalamus in two distinct MS animal models. In the cuprizone model, we observed primary oligodendrocyte stress which is followed by demyelination, microglia/astrocyte activation, and acute axonal damage. These degenerative cuprizone-induced lesions were found to be more severe in the lateral compared to the medial part of the thalamus. In MOG35-55-induced EAE, in contrast, most parts of the forebrain, including the thalamus were not directly involved in the autoimmune attack. However, important thalamic afferent fiber tracts, such as the spinothalamic tract were inflamed and demyelinated on the spinal cord level. Quantitative immunohistochemistry revealed that this spinal cord inflammatory-demyelination is associated with neuronal loss within the target region of the spinothalamic tract, namely the sensory ventral posterolateral nucleus of the thalamus. This study highlights the possibility of trans-neuronal degeneration as one mechanism of secondary neuronal damage in MS. Further studies are now warranted to investigate involved cell types and cellular mechanisms.
Collapse
|
74
|
Zheng M, Duan J, He Z, Wang Z, Mu S, Zeng Z, Qu J, Zhang J, Wang D. Overexpression of tropomyosin receptor kinase A improves the survival and Schwann-like cell differentiation of bone marrow stromal cells in nerve grafts for bridging rat sciatic nerve defects. Cytotherapy 2016; 18:1256-69. [PMID: 27497699 DOI: 10.1016/j.jcyt.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND AIMS Bone marrow stromal cells (BMSCs) can differentiate into Schwann-like cells in vivo and effectively promote nerve regeneration and functional recovery as the seed cells for peripheral nerve repair. However, the survival rate and neural differentiation rate of the transplanted BMSCs are very low, which would limit their efficacy. METHODS In this work, rat BMSCs were infected by recombinant lentiviruses to construct tropomyosin receptor kinase A (TrkA)-overexpressing BMSCs and TrkA-shRNA-expressing BMSCs, which were then used in transplantation for rat sciatic nerve defects. RESULTS We showed that lentivirus-mediated overexpression of TrkA in BMSCs can promote cell survival and protect against serum-starve-induced apoptosis in vitro. At 8 weeks after transplantation, the Schwann-like differentiated ratio of the existing implanted cells had reached 74.8 ± 1.6% in TrkA-overexpressing BMSCs-laden nerve grafts, while 40.7 ± 2.3% and 42.3 ± 1.5% in vector and control BMSCs-laden nerve grafts, but only 8.2 ± 1.8% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. The cell apoptosis ratio of the existing implanted cells in TrkA-overexpressing BMSCs-laden nerve grafts was 16.5 ± 1.2%, while 33.9 ± 1.9% and 42.6 ± 2.9% in vector and control BMSCs-laden nerve grafts, but 87.2 ± 2.5% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. CONCLUSIONS These results demonstrate that TrkA overexpression can improve the survival and Schwann-like cell differentiation of BMSCs and prevent cell death in nerve grafts, which may have potential implication in advancing cell transplantation for peripheral nerve repair.
Collapse
Affiliation(s)
- Meige Zheng
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junxiu Duan
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhendan He
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhiwei Wang
- Department of Neurology, Shenzhen Shekou People's Hospital, Shenzhen, China
| | - Shuhua Mu
- Psychology & Social College, Shenzhen University, Shenzhen, China
| | - Zhiwen Zeng
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- School of Medicine, Shenzhen University, Shenzhen, China.
| | - Dong Wang
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, China.
| |
Collapse
|
75
|
Abstract
The nerve growth factor family of growth factors, collectively known as neurotrophins, are evolutionarily ancient regulators with an enormous range of biological functions. Reflecting this long history and functional diversity, mechanisms for cellular responses to neurotrophins are exceptionally complex. Neurotrophins signal through p75
NTR, a member of the TNF receptor superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC), often with opposite functional outcomes. The two classes of receptors are activated preferentially by proneurotrophins and mature processed neurotrophins, respectively. However, both receptor classes also possess neurotrophin-independent signaling functions. Signaling functions of p75
NTR and Trk receptors are each influenced by the other class of receptors. This review focuses on the mechanisms responsible for the functional interplay between the two neurotrophin receptor signaling systems.
Collapse
Affiliation(s)
- Mark Bothwell
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
76
|
Jung EJ, Chung KH, Bae DW, Kim CW. Proteomic analysis of novel targets associated with the enhancement of TrkA-induced SK-N-MC cancer cell death caused by NGF. Exp Mol Med 2016; 48:e235. [PMID: 27229480 PMCID: PMC4910151 DOI: 10.1038/emm.2016.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 12/27/2022] Open
Abstract
Nerve growth factor (NGF) is known to regulate both cancer cell survival and death signaling, depending on the cellular circumstances, in various cell types. In this study, we showed that NGF strongly upregulated the protein level of tropomyosin-related kinase A (TrkA) in TrkA-inducible SK-N-MC cancer cells, resulting in increases in various TrkA-dependent cellular processes, including the phosphorylation of c-Jun N-terminal kinase (JNK) and caspase-8 cleavage. In addition, NGF enhanced TrkA-induced morphological changes and cell death, and this effect was significantly suppressed by the JNK inhibitor SP600125, but not by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. To investigate novel targets associated with the enhancement of TrkA-induced SK-N-MC cell death caused by NGF, we performed Coomassie Brilliant Blue staining and two-dimensional (2D) proteomic analysis in TrkA-inducible SK-N-MC cells. We identified 31 protein spots that were either greatly upregulated or downregulated by TrkA during NGF treatment using matrix-associated laser desorption/ionization time of flight/time of flight mass spectrometry, and we analyzed the effects of SP600125 and wortmannin on the spots. Interestingly, 11 protein spots, including heterogeneous nuclear ribonucleoprotein K (hnRNP K), lamin B1 and TAR DNA-binding protein (TDP43), were significantly influenced by SP600125, but not by wortmannin. Moreover, the NGF/TrkA-dependent inhibition of cell viability was significantly enhanced by knockdown of hnRNP K using small interfering RNA, demonstrating that hnRNP K is a novel target associated with the regulation of TrkA-dependent SK-N-MC cancer cell death enhanced by NGF.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ky Hyun Chung
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Department of Urology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju, Republic of Korea
| | - Choong Won Kim
- Department of Biochemistry, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
77
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|
78
|
Tung YT, Lu YL, Peng KC, Yen YP, Chang M, Li J, Jung H, Thams S, Huang YP, Hung JH, Chen JA. Mir-17∼92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN. Cell Rep 2016; 11:1305-18. [PMID: 26004179 DOI: 10.1016/j.celrep.2015.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Motor neurons (MNs) are unique because they project their axons outside of the CNS to innervate the peripheral muscles. Limb-innervating lateral motor column MNs (LMC-MNs) travel substantially to innervate distal limb mesenchyme. How LMC-MNs fine-tune the balance between survival and apoptosis while wiring the sensorimotor circuit en route remains unclear. Here, we show that the mir-17∼92 cluster is enriched in embryonic stem cell (ESC)-derived LMC-MNs and that conditional mir-17∼92 deletion in MNs results in the death of LMC-MNs in vitro and in vivo. mir-17∼92 overexpression rescues MNs from apoptosis, which occurs spontaneously during embryonic development. PTEN is a primary target of mir-17∼92 responsible for LMC-MN degeneration. Additionally, mir-17∼92 directly targets components of E3 ubiquitin ligases, affecting PTEN subcellular localization through monoubiquitination. This miRNA-mediated regulation modulates both target expression and target subcellular localization, providing LMC-MNs with an intricate defensive mechanism that controls their survival.
Collapse
|
79
|
Raba M, Palgi J, Lehtivaara M, Arumäe U. Microarray Analysis Reveals Increased Transcriptional Repression and Reduced Metabolic Activity but Not Major Changes in the Core Apoptotic Machinery during Maturation of Sympathetic Neurons. Front Cell Neurosci 2016; 10:66. [PMID: 27013977 PMCID: PMC4792887 DOI: 10.3389/fncel.2016.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023] Open
Abstract
Postnatal maturation of the neurons whose main phenotype and basic synaptic contacts are already established includes neuronal growth, refinement of synaptic contacts, final steps of differentiation, programmed cell death period (PCD) etc. In the sympathetic neurons, postnatal maturation includes permanent end of the PCD that occurs with the same time schedule in vivo and in vitro suggesting that the process could be genetically determined. Also many other changes in the neuronal maturation could be permanent and thus based on stable changes in the genome expression. However, postnatal maturation of the neurons is poorly studied. Here we compared the gene expression profiles of immature and mature sympathetic neurons using Affymetrix microarray assay. We found 1310 significantly up-regulated and 1151 significantly down-regulated genes in the mature neurons. Gene ontology analysis reveals up-regulation of genes related to neuronal differentiation, chromatin and epigenetic changes, extracellular factors and their receptors, and cell adhesion, whereas many down-regulated genes were related to metabolic and biosynthetic processes. We show that termination of PCD is not related to major changes in the expression of classical genes for apoptosis or cell survival. Our dataset is deposited to the ArrayExpress database and is a valuable source to select candidate genes in the studies of neuronal maturation. As an example, we studied the changes in the expression of selected genes Igf2bp3, Coro1A, Zfp57, Dcx, and Apaf1 in the young and mature sympathetic ganglia by quantitative PCR and show that these were strongly downregulated in the mature ganglia.
Collapse
Affiliation(s)
- Mikk Raba
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Jaan Palgi
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Maria Lehtivaara
- Biomedicum Functional Genomics Unit, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Urmas Arumäe
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia; Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
80
|
Simon DJ, Pitts J, Hertz NT, Yang J, Yamagishi Y, Olsen O, Tešić Mark M, Molina H, Tessier-Lavigne M. Axon Degeneration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling. Cell 2016; 164:1031-45. [PMID: 26898330 DOI: 10.1016/j.cell.2016.01.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/22/2015] [Accepted: 01/20/2016] [Indexed: 11/16/2022]
Abstract
During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.
Collapse
Affiliation(s)
- David J Simon
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jason Pitts
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nicholas T Hertz
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jing Yang
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yuya Yamagishi
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Olav Olsen
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Milica Tešić Mark
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
81
|
Gürgör P, Pallesen LT, Johnsen L, Ulrichsen M, de Jong IEM, Vaegter CB. Neuronal death in the dorsal root ganglion after sciatic nerve injury does not depend on sortilin. Neuroscience 2016; 319:1-8. [PMID: 26812033 DOI: 10.1016/j.neuroscience.2016.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/20/2023]
Abstract
Injury to the sciatic nerve induces loss of sensory neurons in the affected dorsal root ganglia (DRGs). Previous studies have suggested the involvement of the neurotrophin receptors p75 neurotrophin receptor (p75(NTR)) and sortilin, proposing that sensory neuron subpopulations undergo proneurotrophin-induced apoptosis in a similar manner to what can be observed in the CNS following injury. To further investigate this hypothesis we induced sciatic nerve injury in sortilin-deficient mice, thereby preventing apoptotic signaling of proneurotrophins via the sortilin-p75(NTR) receptor complex. Using an unbiased stereological approach we found that loss of sortilin did not prevent the injury-induced loss of DRG neurons. This result demonstrates that previous findings linking p75(NTR) and proneurotrophins to loss of sensory neurons need to involve sortilin-independent pathways and suggests that proneurotrophins may elicit different functions in the CNS and PNS.
Collapse
Affiliation(s)
- P Gürgör
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - L T Pallesen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - L Johnsen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - M Ulrichsen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - I E M de Jong
- H. Lundbeck A/S, Division of Neurodegeneration, Ottiliavej 9, Valby DK-2500, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark.
| |
Collapse
|
82
|
Hillis J, O'Dwyer M, Gorman AM. Neurotrophins and B-cell malignancies. Cell Mol Life Sci 2016; 73:41-56. [PMID: 26399960 PMCID: PMC11108515 DOI: 10.1007/s00018-015-2046-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
Neurotrophins and their receptors act as important proliferative and pro-survival factors in a variety of cell types. Neurotrophins are produced by multiple cell types in both pro- and mature forms, and can act in an autocrine or paracrine fashion. The p75(NTR) and Trk receptors can elicit signalling in response to the presence or absence of their corresponding neurotrophin ligands. This signalling, along with neurotrophin and receptor expression, varies between different cell types. Neurotrophins and their receptors have been shown to be expressed by and elicit signalling in B lymphocytes. In general, most neurotrophins are expressed by activated B-cells and memory B-cells. Likewise, the TrkB95 receptor is seen on activated B-cells, while TrkA and p75(NTR) are expressed by both resting and active B-cells as well as memory B-cells. Nerve growth factor stimulates B-cell proliferation, memory B-cell survival, antibody production and CD40 expression. Brain-derived neurotrophic factor is involved in B-cell maturation in the bone marrow through TrkB95. Overall neurotrophins and their receptors have been shown to be involved in B-cell proliferation, development, differentiation, antibody secretion and survival. As well as expression and activity in healthy B-cells, the neurotrophins and their receptors can contribute to B-cell malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, Burkitt's lymphoma and multiple myeloma. They are involved in B-cell malignancy survival and potentially in drug resistance.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Nerve Growth Factors/analysis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Jennifer Hillis
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Michael O'Dwyer
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Haematology, University College Hospital, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
83
|
Overexpression of NTRK1 Promotes Differentiation of Neural Stem Cells into Cholinergic Neurons. BIOMED RESEARCH INTERNATIONAL 2015; 2015:857202. [PMID: 26509167 PMCID: PMC4609807 DOI: 10.1155/2015/857202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022]
Abstract
Neurotrophic tyrosine kinase type 1 (NTRK1) plays critical roles in proliferation, differentiation, and survival of cholinergic neurons; however, it remains unknown whether enhanced expression of NTRK1 in neural stem cells (NSCs) can promote their differentiation into mature neurons. In this study, a plasmid encoding the rat NTRK1 gene was constructed and transfected into C17.2 mouse neural stem cells (NSCs). NTRK1 overexpression in C17.2 cells was confirmed by western blot. The NSCs overexpressing NTRK1 and the C17.2 NSCs transfected by an empty plasmid vector were treated with or without 100 ng/mL nerve growth factor (NGF) for 7 days. Expression of the cholinergic cell marker, choline acetyltransferase (ChAT), was detected by florescent immunocytochemistry (ICC). In the presence of NGF induction, the NSCs overexpressing NTRK1 differentiated into ChAT-immunopositive cells at 3-fold higher than the NSCs transfected by the plasmid vector (26% versus 9%, P < 0.05). The data suggest that elevated NTRK1 expression increases differentiation of NSCs into cholinergic neurons under stimulation of NGF. The approach also represents an efficient strategy for generation of cholinergic neurons.
Collapse
|
84
|
Harada C, Azuchi Y, Noro T, Guo X, Kimura A, Namekata K, Harada T. TrkB Signaling in Retinal Glia Stimulates Neuroprotection after Optic Nerve Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3238-47. [PMID: 26476348 DOI: 10.1016/j.ajpath.2015.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/13/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neural cell survival mainly by activating TrkB receptors. Several lines of evidence support a key role for BDNF-TrkB signaling in survival of adult retinal ganglion cells in animal models of optic nerve injury (ONI), but the neuroprotective effect of exogenous BDNF is transient. Glial cells have recently attracted considerable attention as mediators of neural cell survival, and TrkB expression in retinal glia suggests its role in neuroprotection. To elucidate this point directly, we examined the effect of ONI on TrkB(flox/flox):glial fibrillary acidic protein (GFAP)-Cre+ (TrkB(GFAP)) knockout (KO) mice, in which TrkB is deleted in retinal glial cells. ONI markedly increased mRNA expression levels of basic fibroblast growth factor (bFGF) in wild-type (WT) mice but not in TrkB(GFAP) KO mice. Immunohistochemical analysis at 7 days after ONI (d7) revealed bFGF up-regulation mainly occurred in Müller glia. ONI-induced retinal ganglion cell loss in WT mice was consistently mild compared with TrkB(GFAP) KO mice at d7. On the other hand, ONI severely decreased TrkB expression in both WT and TrkB(GFAP) KO mice after d7, and the severity of retinal degeneration was comparable with TrkB(GFAP) KO mice at d14. Our data provide direct evidence that glial TrkB signaling plays an important role in the early stage of neural protection after traumatic injury.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
85
|
Tsenkina Y, Ricard J, Runko E, Quiala- Acosta MM, Mier J, Liebl DJ. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis 2015; 6:e1922. [PMID: 26469970 PMCID: PMC4632292 DOI: 10.1038/cddis.2015.262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery.
Collapse
Affiliation(s)
- Y Tsenkina
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Ricard
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - E Runko
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - M M Quiala- Acosta
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Mier
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - D J Liebl
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| |
Collapse
|
86
|
Abstract
In multicellular organisms, a tight control of cell death is required to ensure normal development and tissue homeostasis. Improper function of apoptotic or survival pathways can not only affect developmental programs but also favor cancer progression. Here we describe a novel apoptotic signaling pathway involving the transmembrane receptor Kremen1 and its ligand, the Wnt-antagonist Dickkopf1. Using a whole embryo culture system, we first show that Dickkopf1 treatment promotes cell survival in a mouse model exhibiting increased apoptosis in the developing neural plate. Remarkably, this effect was not recapitulated by chemical Wnt inhibition. We then show that Dickkopf1 receptor Kremen1 is a bona fide dependence receptor, triggering cell death unless bound to its ligand. We performed Wnt-activity assays to demonstrate that the pro-apoptotic and anti-Wnt functions mediated by Kremen1 are strictly independent. Furthermore, we combined phylogenetic and mutagenesis approaches to identify a specific motif in the cytoplasmic tail of Kremen1, which is (i) specifically conserved in the lineage of placental mammals and (ii) strictly required for apoptosis induction. Finally, we show that somatic mutations of kremen1 found in human cancers can affect its pro-apoptotic activity, supporting a tumor suppressor function. Our findings thus reveal a new Wnt-independent function for Kremen1 and Dickkopf1 in the regulation of cell survival with potential implications in cancer therapies.
Collapse
|
87
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
88
|
The Acquisition of Target Dependence by Developing Rat Retinal Ganglion Cells. eNeuro 2015; 2:eN-NWR-0044-14. [PMID: 26464991 PMCID: PMC4586937 DOI: 10.1523/eneuro.0044-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
Similar to neurons in the peripheral nervous system, immature CNS-derived RGCs become dependent on target-derived neurotrophic support as their axons reach termination sites in the brain. To study the factors that influence this developmental transition we took advantage of the fact that rat RGCs are born, and target innervation occurs, over a protracted period of time. Early-born RGCs have axons in the SC by birth (P0), whereas axons from late-born RGCs do not innervate the SC until P4-P5. Birth dating RGCs using EdU allowed us to identify RGCs (1) with axons still growing toward targets, (2) transitioning to target dependence, and (3) entirely dependent on target-derived support. Using laser-capture microdissection we isolated ∼34,000 EdU+ RGCs and analyzed transcript expression by custom qPCR array. Statistical analyses revealed a difference in gene expression profiles in actively growing RGCs compared with target-dependent RGCs, as well as in transitional versus target-dependent RGCs. Prior to innervation RGCs expressed high levels of BDNF and CNTFR α but lower levels of neurexin 1 mRNA. Analysis also revealed greater expression of transcripts for signaling molecules such as MAPK, Akt, CREB, and STAT. In a supporting in vitro study, purified birth-dated P1 RGCs were cultured for 24-48 h with or without BDNF; lack of BDNF resulted in significant loss of early-born but not late-born RGCs. In summary, we identified several important changes in RGC signaling that may form the basis for the switch from target independence to dependence.
Collapse
|
89
|
de Cubas AA, Korpershoek E, Inglada-Pérez L, Letouzé E, Currás-Freixes M, Fernández AF, Comino-Méndez I, Schiavi F, Mancikova V, Eisenhofer G, Mannelli M, Opocher G, Timmers H, Beuschlein F, de Krijger R, Cascon A, Rodríguez-Antona C, Fraga MF, Favier J, Gimenez-Roqueplo AP, Robledo M. DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers. Clin Cancer Res 2015; 21:3020-30. [DOI: 10.1158/1078-0432.ccr-14-2804] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/14/2015] [Indexed: 11/16/2022]
|
90
|
Kipp M, Wagenknecht N, Beyer C, Samer S, Wuerfel J, Nikoubashman O. Thalamus pathology in multiple sclerosis: from biology to clinical application. Cell Mol Life Sci 2015; 72:1127-47. [PMID: 25417212 PMCID: PMC11113280 DOI: 10.1007/s00018-014-1787-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
There is a broad consensus that MS represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e. damage to axons, synapses and nerve cell bodies. While the clinician is equipped with appropriate tools to dampen peripheral cell recruitment and, thus, is able to prevent immune-cell driven relapses, effective therapeutic options to prevent the simultaneously progressing neurodegeneration are still missing. Furthermore, while several sophisticated paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early neurodegeneration are still in their infancy and have not been convincingly validated. In this review article, we aim to elaborate why the thalamus with its multiple reciprocal connections is sensitive to pathological processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. The thalamus might be, thus, an ideal region of interest to test the effectiveness of new neuroprotective MS drugs. Especially, we will address underlying pathological mechanisms operant during thalamus degeneration in MS, such as trans-neuronal or Wallerian degeneration. Furthermore, we aim at giving an overview about different paraclinical methods used to estimate the extent of thalamic pathology in MS patients, and we discuss their limitations. Finally, thalamus involvement in different MS animal models will be described, and their relevance for the design of preclinical trials elaborated.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany,
| | | | | | | | | | | |
Collapse
|
91
|
Stubbusch J, Narasimhan P, Hennchen M, Huber K, Unsicker K, Ernsberger U, Rohrer H. Lineage and stage specific requirement for Dicer1 in sympathetic ganglia and adrenal medulla formation and maintenance. Dev Biol 2015; 400:210-23. [PMID: 25661788 DOI: 10.1016/j.ydbio.2015.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
The development of sympathetic neurons and chromaffin cells is differentially controlled at distinct stages by various extrinsic and intrinsic signals. Here we use conditional deletion of Dicer1 in neural crest cells and noradrenergic neuroblasts to identify stage specific functions in sympathoadrenal lineages. Conditional Dicer1 knockout in neural crest cells of Dicer1(Wnt1Cre) mice results in a rapid reduction in the size of developing sympathetic ganglia and adrenal medulla. In contrast, Dicer1 elimination in noradrenergic neuroblasts of Dicer1(DbhiCre) animals affects sympathetic neuron survival starting at late embryonic stages and chromaffin cells persist at least until postnatal week 1. A differential function of Dicer1 signaling for the development of embryonic noradrenergic and cholinergic sympathetic neurons is demonstrated by the selective increase in the expression of Tlx3 and the cholinergic marker genes VAChT and ChAT at E16.5. The number of Dbh, Th and TrkA expressing noradrenergic neurons is strongly decreased in Dicer1-deficient sympathetic ganglia at birth, whereas Tlx3(+)/ Ret(+) cholinergic neurons cells are spared from cell death. The postnatal death of chromaffin cells is preceded by the loss of Ascl1, mir-375 and Pnmt and an increase in the markers Ret and NF-M, which suggests that Dicer1 is required for the maintenance of chromaffin cell differentiation and survival. Taken together, these findings demonstrate distinct stage and lineage specific functions of Dicer1 signaling in differentiation and survival of sympathetic neurons and adrenal chromaffin cells.
Collapse
Affiliation(s)
- Jutta Stubbusch
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany
| | - Priyanka Narasimhan
- Albert-Ludwigs-University Freiburg, Institute of Anatomy& Cell Biology, Albert-Street 17, 79104 Freiburg, Germany
| | - Melanie Hennchen
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany
| | - Katrin Huber
- Albert-Ludwigs-University Freiburg, Institute of Anatomy& Cell Biology, Albert-Street 17, 79104 Freiburg, Germany
| | - Klaus Unsicker
- Albert-Ludwigs-University Freiburg, Institute of Anatomy& Cell Biology, Albert-Street 17, 79104 Freiburg, Germany
| | - Uwe Ernsberger
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany; Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany; Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt/Main, Germany.
| |
Collapse
|
92
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
93
|
|
94
|
Zhang Q, Descamps O, Hart MJ, Poksay KS, Spilman P, Kane DJ, Gorostiza O, John V, Bredesen DE. Paradoxical effect of TrkA inhibition in Alzheimer's disease models. J Alzheimers Dis 2014; 40:605-617. [PMID: 24531152 DOI: 10.3233/jad-130017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An unbiased screen for compounds that block amyloid-β protein precursor (AβPP) caspase cleavage identified ADDN-1351, which reduced AβPP-C31 by 90%. Target identification studies showed that ADDN-1351 is a TrkA inhibitor, and, in complementary studies, TrkA overexpression increased AβPP-C31 and cell death. TrkA was shown to interact with AβPP and suppress AβPP-mediated transcriptional activation. Moreover, treatment of PDAPP transgenic mice with the known TrkA inhibitor GW441756 increased sAβPPα and the sAβPPα to Aβ ratio. These results suggest TrkA inhibition-rather than NGF activation-as a novel therapeutic approach, and raise the possibility that such an approach may counteract the hyperactive signaling resulting from the accumulation of active NGF-TrkA complexes due to reduced retrograde transport. The results also suggest that one component of an optimal therapy for Alzheimer's disease may be a TrkA inhibitor.
Collapse
Affiliation(s)
- Qiang Zhang
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | - Darci J Kane
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Varghese John
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Dale E Bredesen
- Buck Institute for Research on Aging, Novato, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
95
|
Joo W, Hippenmeyer S, Luo L. Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science 2014; 346:626-9. [PMID: 25359972 DOI: 10.1126/science.1258996] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurotrophins regulate diverse aspects of neuronal development and plasticity, but their precise in vivo functions during neural circuit assembly in the central brain remain unclear. We show that the neurotrophin receptor tropomyosin-related kinase C (TrkC) is required for dendritic growth and branching of mouse cerebellar Purkinje cells. Sparse TrkC knockout reduced dendrite complexity, but global Purkinje cell knockout had no effect. Removal of the TrkC ligand neurotrophin-3 (NT-3) from cerebellar granule cells, which provide major afferent input to developing Purkinje cell dendrites, rescued the dendrite defects caused by sparse TrkC disruption in Purkinje cells. Our data demonstrate that NT-3 from presynaptic neurons (granule cells) is required for TrkC-dependent competitive dendrite morphogenesis in postsynaptic neurons (Purkinje cells)--a previously unknown mechanism of neural circuit development.
Collapse
Affiliation(s)
- William Joo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Simon Hippenmeyer
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
96
|
Werner P, Paluru P, Simpson AM, Latney B, Iyer R, Brodeur GM, Goldmuntz E. Mutations in NTRK3 suggest a novel signaling pathway in human congenital heart disease. Hum Mutat 2014; 35:1459-68. [PMID: 25196463 DOI: 10.1002/humu.22688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/19/2014] [Indexed: 12/24/2022]
Abstract
Congenital heart defects (CHDs) are the most common major birth defects and the leading cause of death from congenital malformations. The etiology remains largely unknown, though genetic variants clearly contribute. In a previous study, we identified a large copy-number variant (CNV) that deleted 46 genes in a patient with a malalignment type ventricular septal defect (VSD). The CNV included the gene NTRK3 encoding neurotrophic tyrosine kinase receptor C (TrkC), which is essential for normal cardiogenesis in animal models. To evaluate the role of NTRK3 in human CHDs, we studied 467 patients with related heart defects for NTRK3 mutations. We identified four missense mutations in four patients with VSDs that were not found in ethnically matched controls and were predicted to be functionally deleterious. Functional analysis using neuroblastoma cell lines expressing mutant TrkC demonstrated that one of the mutations (c.278C>T, p.T93M) significantly reduced autophosphorylation of TrkC in response to ligand binding, subsequently decreasing phosphorylation of downstream target proteins. In addition, compared with wild type, three of the four cell lines expressing mutant TrkC showed altered cell growth in low-serum conditions without supplemental neurotrophin 3. These findings suggest a novel pathophysiological mechanism involving NTRK3 in the development of VSDs.
Collapse
Affiliation(s)
- Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
97
|
Mendoza E, Miranda-Barrientos J, Vázquez-Roque R, Morales-Herrera E, Ruelas A, De la Rosa G, Flores G, Hernández-Echeagaray E. In vivo mitochondrial inhibition alters corticostriatal synaptic function and the modulatory effects of neurotrophins. Neuroscience 2014; 280:156-70. [DOI: 10.1016/j.neuroscience.2014.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
|
98
|
Abstract
The research on colorectal cancer (CRC) biology has been leading the oncology field since the early 1990s. The search for genetic alterations has allowed the identification of the main tumour suppressors or oncogenes. Recent work obtained in CRC has unexpectedly proposed the existence of novel category of tumour suppressors, the so-called 'dependence receptors'. These transmembrane receptors behave as Dr Jekyll and Mr Hyde with two opposite sides: they induce a positive signalling (survival, proliferation, differentiation) in presence of their ligand, but are not inactive in the absence of their ligand and rather trigger apoptosis when unbound. This trait confers them a conditional tumour suppressor activity: they eliminate cells that grow abnormally in an environment offering a limited quantity of ligand. This review will describe how receptors such as deleted in colorectal carcinoma (DCC), uncoordinated 5 (UNC5), rearranged during transfection (RET) or TrkC constrain CRC progression and how this dependence receptor paradigm may open up therapeutical perspectives.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Servane Tauszig-Delamasure
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
99
|
Jung EJ, Park HC, Chung KH, Kim CW. Proteomic analysis of SP600125-controlled TrkA-dependent targets in SK-N-MC neuroblastoma cells: inhibition of TrkA activity by SP600125. Proteomics 2014; 14:202-15. [PMID: 24375967 DOI: 10.1002/pmic.201300023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 11/13/2013] [Accepted: 12/01/2013] [Indexed: 12/12/2022]
Abstract
The c-Jun N-terminal kinase (JNK) is well known to play an important role in cell death signaling of the p75 neurotrophin receptor. However, little has been studied about a role of JNK in the signaling pathways of the tropomyosin-related kinase A (TrkA) neurotrophin receptor. In this study, we investigated JNK inhibitor SP600125-controlled TrkA-dependent targets by proteomic analysis to better understand an involvement of JNK in TrkA-mediated signaling pathways. PDQuest image analysis and protein identification results showed that hnRNP C1/C2, α-tubulin, β-tubulin homolog, actin homolog, and eIF-5A-1 protein spots were upregulated by ectopic expression of TrkA, whereas α-enolase, peroxiredoxin-6, PROS-27, HSP70, PP1-gamma, and PDH E1-alpha were downregulated by TrkA, and these TrkA-dependent upregulation and downregulation were significantly suppressed by SP600125. Notably, TrkA largely affected certain PTM(s) but not total protein amounts of the SP600125-controlled TrkA-dependent targets. Moreover, SP600125 strongly suppressed TrkA-mediated tyrosine phosphorylation signaling pathways as well as JNK signaling, indicating that SP600125 could function as a TrkA inhibitor. Taken together, our results suggest that TrkA could play an important role in the cytoskeleton, cell death, cellular processing, and glucose metabolism through activation or inactivation of the SP600125-controlled TrkA-dependent targets.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | | | | | | |
Collapse
|
100
|
Fei D, Huang T, Krimm RF. The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development. Neural Dev 2014; 9:15. [PMID: 24961238 PMCID: PMC4083039 DOI: 10.1186/1749-8104-9-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) regulate the survival of gustatory neurons, axon growth and branching, and innervation of taste buds during development. These actions are largely, but not completely, mediated through the tyrosine kinase receptor, TrkB. Here, we investigated the role of p75, the other major receptor for BDNF and NT4, in the development of the taste system. RESULTS We found that p75-/-mice showed delayed axon outgrowth and reduced branching of gustatory axons at embryonic day (E)13.5. From E14.5 to E18.5, gustatory neurons innervated fewer papillae and completely failed to innervate the mid-region of the tongue in p75-/-mice. These early effects of the p75 mutation on gustatory axons preceded the loss of geniculate ganglion neurons starting at E14.5 and also contributed to a loss of taste buds at and after birth. Because knockouts for the TrkB receptor (TrkB-/-) do not lose as many taste buds as hybrid knockouts for its two ligands (BDNF and NT4), we asked if p75 maintains those additional taste buds in the absence of TrkB. It does not; hybrid TrkB-/-/p75-/-mice had more taste buds than TrkB-/-mice; these additional taste buds were not due to an increase in neurons or innervation. CONCLUSIONS p75 regulates gustatory neuron axon branching and tongue innervation patterns during taste system development. This function is likely accomplished independently of BDNF, NT4, and TrkB. In addition, p75 does not support the remaining neurons or taste buds in TrkB-/-mice.
Collapse
Affiliation(s)
| | | | - Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|