51
|
Hartuti ED, Inaoka DK, Komatsuya K, Miyazaki Y, Miller RJ, Xinying W, Sadikin M, Prabandari EE, Waluyo D, Kuroda M, Amalia E, Matsuo Y, Nugroho NB, Saimoto H, Pramisandi A, Watanabe YI, Mori M, Shiomi K, Balogun EO, Shiba T, Harada S, Nozaki T, Kita K. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:191-200. [PMID: 29269266 DOI: 10.1016/j.bbabio.2017.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.
Collapse
Affiliation(s)
- Endah Dwi Hartuti
- Master program of Biomedical Science, Faculty of Medicine, University of Indonesia, Indonesia; Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Miyazaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Russell J Miller
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wang Xinying
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Mohamad Sadikin
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Danang Waluyo
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Marie Kuroda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Matsuo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Nuki B Nugroho
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Amila Pramisandi
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia; Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
52
|
Nakatani Y, Jiao W, Aragão D, Shimaki Y, Petri J, Parker EJ, Cook GM. Crystal structure of type II NADH:quinone oxidoreductase from Caldalkalibacillus thermarum with an improved resolution of 2.15 Å. Acta Crystallogr F Struct Biol Commun 2017; 73:541-549. [PMID: 28994401 PMCID: PMC5633920 DOI: 10.1107/s2053230x17013073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 11/11/2022] Open
Abstract
Type II NADH:quinone oxidoreductase (NDH-2) is a respiratory enzyme found in the electron-transport chain of many species, with the exception of mammals. It is a 40-70 kDa single-subunit monotopic membrane protein that catalyses the oxidation of NADH and the reduction of quinone molecules via the cofactor FAD. NDH-2 is a promising new target for drug development given its essential role in many bacterial species and intracellular parasites. Only two bacterial NDH-2 structures have been reported and these structures are at moderate resolution (2.3-2.5 Å). In this communication, a new crystallization platform is reported that produced high-quality NDH-2 crystals that diffracted to high resolution (2.15 Å). The high-resolution NDH-2 structure was used for in silico quinone substrate-docking studies to investigate the binding poses of menadione and ubiquinone molecules. These studies revealed that a very limited number of molecular interactions occur at the quinone-binding site of NDH-2. Given that the conformation of the active site is well defined, this high-resolution structure is potentially suitable for in silico inhibitor-compound screening and ligand-docking applications.
Collapse
Affiliation(s)
- Yoshio Nakatani
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Wanting Jiao
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - David Aragão
- Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Australia
| | - Yosuke Shimaki
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Jessica Petri
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Emily J. Parker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
53
|
The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:823-832. [PMID: 28801048 DOI: 10.1016/j.bbabio.2017.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/04/2017] [Accepted: 08/05/2017] [Indexed: 11/22/2022]
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane bound enzymes that deliver electrons to the respiratory chain by oxidation of NADH and reduction of quinones. In this way, these enzymes also contribute to the regeneration of NAD+, allowing several metabolic pathways to proceed. As for the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, the enzymatic mechanism of NDH-2s is still little explored and elusive. In this work we addressed the role of the conserved glutamate 172 (E172) residue in the enzymatic mechanism of NDH-2 from Staphylococcus aureus. We aimed to test our earlier hypothesis that E172 plays a key role in proton transfer to allow the protonation of the quinone. For this we performed a complete biochemical characterization of the enzyme's variants E172A, E172Q and E172S. Our steady state kinetic measurements show a clear decrease in the overall reaction rate, and our substrate interaction studies indicate the binding of the two substrates is also affected by these mutations. Interestingly our fast kinetic results show quinone reduction is more affected than NADH oxidation. We have also determined the X-ray crystal structure of the E172S mutant (2.55Ǻ) and compared it with the structure of the wild type (2.32Ǻ). Together these results support our hypothesis for E172 being of central importance in the catalytic mechanism of NDH-2, which may be extended to other members of the tDBDF superfamily.
Collapse
|
54
|
SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability. G3-GENES GENOMES GENETICS 2017; 7:1861-1873. [PMID: 28404662 PMCID: PMC5473764 DOI: 10.1534/g3.117.041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.
Collapse
|
55
|
Lemire BD. Evolution, structure and membrane association of NDUFAF6, an assembly factor for NADH:ubiquinone oxidoreductase (Complex I). Mitochondrion 2017; 35:13-22. [PMID: 28476317 DOI: 10.1016/j.mito.2017.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
The NADH:ubiquinone oxidoreductase (complex I) is the largest member of the mitochondrial respiratory chain. Its FMN cofactor accepts two electrons from NADH and transfers them to ubiquinone via a chain of iron-sulphur centers. A central core of 14 highly conserved subunits can couple electron transfer to proton translocation. The mammalian enzyme has an additional ~30 accessory subunits. Complex I has important bioenergetic and metabolic functions and is a known source of reactive oxygen species; these functions link it to a number of hereditary and degenerative diseases. For many complex I deficiencies, the primary defect is not in a subunit-encoding gene, but rather in an assembly factor or chaperone that participates in the biogenesis of newly synthesized complex I from individual subunits and cofactors. NDUFAF6 encodes a complex I assembly factor and mutations result in complex I deficiency, Leigh syndrome or Acadian variant Fanconi syndrome. Human NDUFAF6 is a mitochondria-targeted 333-amino acid protein belonging to the family of squalene and phytoene synthases. Sequence and structural information suggests that NDUFAF6 likely has enzymatic activity, but one that has evolved considerable differences from canonical squalene and phytoene synthases. Most but not all metazoans have an NDUFAF6 ortholog, indicating that in some organisms, complex I biogenesis does not require this protein. NDUFAF6 is a peripheral membrane protein and predictions identify a conserved C-terminal attachment site that have implications for substrate access.
Collapse
Affiliation(s)
- Bernard D Lemire
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G2H7, Canada.
| |
Collapse
|
56
|
Yang Y, Yu Y, Li X, Li J, Wu Y, Yu J, Ge J, Huang Z, Jiang L, Rao Y, Yang M. Target Elucidation by Cocrystal Structures of NADH-Ubiquinone Oxidoreductase of Plasmodium falciparum (PfNDH2) with Small Molecule To Eliminate Drug-Resistant Malaria. J Med Chem 2017; 60:1994-2005. [DOI: 10.1021/acs.jmedchem.6b01733] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yiqing Yang
- MOE
Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - You Yu
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolu Li
- Department
of Biochemistry and Molecular Biology, State Key Laboratory of Medical
Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Li
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yue Wu
- MOE
Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Yu
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingpeng Ge
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenghui Huang
- Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lubin Jiang
- Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Rao
- MOE
Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Marreiros BC, Sena FV, Sousa FM, Oliveira ASF, Soares CM, Batista AP, Pereira MM. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family. Sci Rep 2017; 7:42303. [PMID: 28181562 PMCID: PMC5299459 DOI: 10.1038/srep42303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022] Open
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
58
|
The mechanism of catalysis by type-II NADH:quinone oxidoreductases. Sci Rep 2017; 7:40165. [PMID: 28067272 PMCID: PMC5220320 DOI: 10.1038/srep40165] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/01/2016] [Indexed: 11/08/2022] Open
Abstract
Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies.
Collapse
|
59
|
Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation. Sci Rep 2017; 7:40101. [PMID: 28067254 PMCID: PMC5220378 DOI: 10.1038/srep40101] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023] Open
Abstract
The Candidate Phyla Radiation (CPR) is a large group of bacteria, the scale of which approaches that of all other bacteria. CPR organisms are inferred to depend on other community members for many basic cellular building blocks and all appear to be obligate anaerobes. To date, there has been no evidence for any significant respiratory capacity in an organism from this radiation. Here we report a curated draft genome for 'Candidatus Parcunitrobacter nitroensis' a member of the Parcubacteria (OD1) superphylum of the CPR. The genome encodes versatile energy pathways, including fermentative and respiratory capacities, nitrogen and fatty acid metabolism, as well as the first complete electron transport chain described for a member of the CPR. The sequences of all of these enzymes are highly divergent from sequences found in other organisms, suggesting that these capacities were not recently acquired from non-CPR organisms. Although the wide respiration-based repertoire points to a different lifestyle compared to other CPR bacteria, we predict similar obligate dependence on other organisms or the microbial community. The results substantially expand the known metabolic potential of CPR bacteria, although sequence comparisons indicate that these capacities are very rare in members of this radiation.
Collapse
|
60
|
Wu K, Li W, Yu L, Tong W, Feng Y, Ling S, Zhang L, Zheng X, Yang M, Tian C. Temperature-dependent ESR and computational studies on antiferromagnetic electron transfer in the yeast NADH dehydrogenase Ndi1. Phys Chem Chem Phys 2017; 19:4849-4854. [DOI: 10.1039/c6cp08107j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The electron transfer mechanism of Ndi1.
Collapse
|
61
|
Affiliation(s)
- Hao Cheng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
62
|
Structure of Mammalian Respiratory Supercomplex I 1 III 2 IV 1. Cell 2016; 167:1598-1609.e10. [DOI: 10.1016/j.cell.2016.11.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 01/14/2023]
|
63
|
Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes. J Bioenerg Biomembr 2016; 48:451-67. [PMID: 27503613 DOI: 10.1007/s10863-016-9671-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The associations among respiratory complexes in energy-transducing membranes have been established. In fact, it is known that the Gram-negative bacteria Paracoccus denitrificans and Escherichia coli have respiratory supercomplexes in their membranes. These supercomplexes are important for channeling substrates between enzymes in a metabolic pathway, and the assembly of these supercomplexes depends on the protein subunits and membrane lipids, mainly cardiolipin, which is present in both the mitochondrial inner membrane and bacterial membranes. The Gram-positive bacterium Bacillus subtilis has a branched respiratory chain, in which some complexes generate proton motive force whereas others constitute an escape valve of excess reducing power. Some peculiarities of this respiratory chain are the following: a type II NADH dehydrogenase, a unique b 6 c complex that has a b 6 type cytochrome with a covalently bound heme, and a c-type heme attached to the third subunit, which is similar to subunit IV of the photosynthetic b 6 f complex. Cytochrome c oxygen reductase (caa 3 ) contains a c-type cytochrome on subunit I. We previously showed that the b 6 c and the caa 3 complexes form a supercomplex. Both the b 6 c and the caa 3 together with the quinol oxygen reductase aa 3 generate the proton motive force in B. subtilis. In order to seek proof that this supercomplex is important for bacterial growth in aerobic conditions we compared the b 6 c: caa 3 supercomplex from wild type membranes with membranes from two mutants lacking cardiolipin. Both mutant complexes were found to have similar activity and heme content as the wild type. Clear native electrophoresis showed that mutants lacking cardiolipin had b 6 c:caa 3 supercomplexes of lower mass or even individual complexes after membrane solubilization with digitonin. The use of dodecyl maltoside revealed a more evident difference between wild-type and mutant supercomplexes. Here we provide evidence showing that cardiolipin plays a role in the stability of the b 6 c:caa 3 supercomplex in B. subtilis.
Collapse
|
64
|
Hao MS, Rasmusson AG. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases. PHYSIOLOGIA PLANTARUM 2016; 157:338-351. [PMID: 27079180 DOI: 10.1111/ppl.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Most eukaryotic organisms, except some animal clades, have mitochondrial alternative electron transport enzymes that allow respiration to bypass the energy coupling in oxidative phosphorylation. The energy bypass enzymes in plants include the external type II NAD(P)H dehydrogenases (DHs) of the NDB family, which are characterized by an EF-hand domain for Ca(2+) binding. Here we investigate these plant enzymes by combining molecular modeling with evolutionary analysis. Molecular modeling of the Arabidopsis thaliana AtNDB1 with the yeast ScNDI1 as template revealed distinct similarities in the core catalytic parts, and highlighted the interaction between the pyridine nucleotide and residues correlating with NAD(P)H substrate specificity. The EF-hand domain of AtNDB1 has no counterpart in ScNDI1, and was instead modeled with Ca(2+) -binding signal transducer proteins. Combined models displayed a proximity of the AtNDB1 EF-hand domain to the substrate entrance side of the catalytic part. Evolutionary analysis of the eukaryotic NDB-type proteins revealed ancient and recent reversions between the motif observed in proteins specific for NADH (acidic type) and NADPH (non-acidic type), and that the clade of enzymes with acidic motifs in angiosperms derives from non-acidic-motif NDB-type proteins present in basal plants, fungi and protists. The results suggest that Ca(2+) -dependent external NADPH oxidation is an ancient process, indicating that it has a fundamental importance for eukaryotic cellular redox metabolism. In contrast, the external NADH DHs in plants are products of a recent expansion, mirroring the expansion of the alternative oxidase family.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
65
|
Marreiros BC, Sena FV, Sousa FM, Batista AP, Pereira MM. Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Environ Microbiol 2016; 18:4697-4709. [PMID: 27105286 DOI: 10.1111/1462-2920.13352] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins, crucial for the catabolic metabolism, because they contribute to the maintenance of the NADH/NAD+ balance. In several pathogenic bacteria and protists, NDH-2s are the only enzymes performing respiratory NADH:quinone oxidoreductase activity. For this reason and for being considered absent in mammals, NDH-2s were proposed as suitable targets for novel antimicrobial therapies. We selected all sequences of genes encoding NDH-2s from fully sequenced genomes present in the KEGG database. These genes were present in 61% of the 1805 species belonging to Eukarya (83%), Bacteria (60%) and Archaea (32%). Notably sequences from mammal species including humans were retrieved in our selection as NDH-2s. The data obtained and the already available information allowed systematizing several properties of NDH-2s: (i) the existence of additional sequence motifs with putative regulatory functions, (ii) specificity towards NADH or NADPH and (iii) the type of quinone binding motif. We observed that NDH-2 family distribution is not congruent with the taxonomic tree, suggesting different origins for the eukaryotic sequences and possible lateral gene transfer among prokaryotes. We note the absence of genes coding for NDH-2 in anaerobic phyla and the presence of multiple copies in several genomes, specifically in cyanobacteria. These observations inspired us to propose a metabolic hypothesis for the appearance of NDH-2s.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
66
|
Salewski J, Batista AP, Sena FV, Millo D, Zebger I, Pereira MM, Hildebrandt P. Substrate-Protein Interactions of Type II NADH:Quinone Oxidoreductase from Escherichia coli. Biochemistry 2016; 55:2722-34. [PMID: 27109164 DOI: 10.1021/acs.biochem.6b00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and responsible for the maintenance of NADH/NAD(+) balance in cells. NDH-2s are the only enzymes with NADH dehydrogenase activity present in the respiratory chain of many pathogens, and thus, they were proposed as suitable targets for antimicrobial therapies. In addition, NDH-2s were also considered key players for the treatment of complex I-related neurodegenerative disorders. In this work, we explored substrate-protein interaction in NDH-2 from Escherichia coli (EcNDH-2) combining surface-enhanced infrared absorption spectroscopic studies with electrochemical experiments, fluorescence spectroscopy assays, and quantum chemical calculations. Because of the specific stabilization of substrate complexes of EcNDH-2 immobilized on electrodes, it was possible to demonstrate the presence of two distinct substrate binding sites for NADH and the quinone and to identify a bound semiprotonated quinol as a catalytic intermediate.
Collapse
Affiliation(s)
- Johannes Salewski
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Diego Millo
- Biomolecular Spectroscopy/LaserLaB Amsterdam, Vrije Universiteit Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ingo Zebger
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
67
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
68
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
69
|
Abstract
Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3 -type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis.
Collapse
|
70
|
Hao MS, Jensen AM, Boquist AS, Liu YJ, Rasmusson AG. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH. PLoS One 2015; 10:e0139224. [PMID: 26413894 PMCID: PMC4587368 DOI: 10.1371/journal.pone.0139224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022] Open
Abstract
NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Department of Biology, Lund University, Lund, Sweden
| | - Anna M. Jensen
- Department of Biology, Lund University, Lund, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | | | - Yun-Jun Liu
- Department of Biology, Lund University, Lund, Sweden
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
71
|
Elguindy MM, Nakamaru-Ogiso E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). J Biol Chem 2015; 290:20815-20826. [PMID: 26063804 PMCID: PMC4543644 DOI: 10.1074/jbc.m115.641498] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
72
|
Matus-Ortega MG, Cárdenas-Monroy CA, Flores-Herrera O, Mendoza-Hernández G, Miranda M, González-Pedrajo B, Vázquez-Meza H, Pardo JP. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae. Yeast 2015; 32:629-41. [PMID: 26173916 DOI: 10.1002/yea.3086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 06/27/2015] [Indexed: 11/07/2022] Open
Abstract
Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.
Collapse
Affiliation(s)
- M G Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - C A Cárdenas-Monroy
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - O Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - G Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - M Miranda
- Department of Biological Sciences, University of Texas, El Paso, TX, USA
| | - B González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - H Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - J P Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| |
Collapse
|
73
|
Sena FV, Batista AP, Catarino T, Brito JA, Archer M, Viertler M, Madl T, Cabrita EJ, Pereira MM. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. Mol Microbiol 2015; 98:272-88. [PMID: 26172206 DOI: 10.1111/mmi.13120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/02/2023]
Abstract
A prerequisite for any rational drug design strategy is understanding the mode of protein-ligand interaction. This motivated us to explore protein-substrate interaction in Type-II NADH:quinone oxidoreductase (NDH-2) from Staphylococcus aureus, a worldwide problem in clinical medicine due to its multiple drug resistant forms. NDHs-2 are involved in respiratory chains and recognized as suitable targets for novel antimicrobial therapies, as these are the only enzymes with NADH:quinone oxidoreductase activity expressed in many pathogenic organisms. We obtained crystal and solution structures of NDH-2 from S. aureus, showing that it is a dimer in solution. We report fast kinetic analyses of the protein and detected a charge-transfer complex formed between NAD(+) and the reduced flavin, which is dissociated by the quinone. We observed that the quinone reduction is the rate limiting step and also the only half-reaction affected by the presence of HQNO, an inhibitor. We analyzed protein-substrate interactions by fluorescence and STD-NMR spectroscopies, which indicate that NADH and the quinone bind to different sites. In summary, our combined results show the presence of distinct binding sites for the two substrates, identified quinone reduction as the rate limiting step and indicate the establishment of a NAD(+)-protein complex, which is released by the quinone.
Collapse
Affiliation(s)
- Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Martin Viertler
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München Neuherberg and Biomolecular NMR- Spectroscopy, Medical University of Graz, 8010, Graz, Austria.,Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München Neuherberg and Biomolecular NMR- Spectroscopy, Medical University of Graz, 8010, Graz, Austria.,Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Eurico J Cabrita
- REQUIMTE, UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
74
|
Zheng Q, Song Y, Zhang W, Shaw N, Zhou W, Rao Z. Structural views of quinone oxidoreductase from Mycobacterium tuberculosis reveal large conformational changes induced by the co-factor. FEBS J 2015; 282:2697-707. [PMID: 25924579 DOI: 10.1111/febs.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED Energy generation, synthesis of biomass and detoxification of synthetic compounds are driven by electron transfer in all living organisms. Soluble quinone oxidoreductases (QORs) catalyze transfer of electrons from NADPH to substrates. The open reading frame Rv1454c of Mycobacterium tuberculosis (Mtb) encodes a NADPH-dependent QOR that is known to catalyze one-electron reduction of quinones to produce semiquinones. Here, we report the crystal structures of the apo-enzyme of MtbQOR and its binary complex with NADPH determined at 1.80 and 1.85 Å resolutions, respectively. The enzyme is bi-modular. Domain I binds the substrate, while domain II folds into a typical Rossmann fold for tethering NADPH. Binding of NADPH induces conformational changes. Among the known structures of QORs, MtbQOR exhibits the largest conformational change. Movement of Phe41 to stack against Ala244 results in partial closure of the active site. Comparison of the structure with homologs suggests a conserved topology. However, differences are observed in the region around the site of hydride transfer, highlighting differences in substrate specificities amongst the homologs. Unliganded as well as NADPH-bound MtbQOR crystallized as a dimer. Dimerization is mediated by homotypic intermolecular interactions involving main chain Cα as well as side-chain atoms of residues. The results of analytical ultracentrifugation analysis revealed that MtbQOR exists as a dimer in solution. Enzymatic assays indicate that MtbQOR prefers 9,10-phenanthrenequinone over 1,4-benzoquinone as a substrate. The ability to reduce quinones probably assists Mtb in detoxification of a range of harmful chemicals encountered in the host during invasion. DATABASE The coordinates and structure factors for apo- and NADPH-bound MtbQOR have been deposited in the Protein Data Bank under accession codes 4RVS and 4RVU, respectively.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yunlong Song
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Neil Shaw
- College of Life Sciences, Nankai University, Tianjin, China.,National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, China.,National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China.,Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
75
|
Gonçalves AP, Videira A. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death. MICROBIAL CELL 2015; 2:68-73. [PMID: 28357279 PMCID: PMC5349180 DOI: 10.15698/mic2015.03.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(P)H dehydrogenases (also called alternative NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(P)H dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF)-family.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Current address: Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
76
|
Gospodaryov DV, Lushchak OV, Rovenko BM, Perkhulyn NV, Gerards M, Tuomela T, Jacobs HT. Ciona intestinalis NADH dehydrogenase NDX confers stress-resistance and extended lifespan on Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1861-1869. [DOI: 10.1016/j.bbabio.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022]
|
77
|
Duarte M, Tomás AM. The mitochondrial complex I of trypanosomatids--an overview of current knowledge. J Bioenerg Biomembr 2014; 46:299-311. [PMID: 24961227 DOI: 10.1007/s10863-014-9556-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/17/2014] [Indexed: 01/23/2023]
Abstract
The contribution of trypanosomatid mitochondrial complex I for energy transduction has long been debated. Herein, we summarize current knowledge on the composition and relevance of this enzyme. Bioinformatic and proteomic analyses allowed the identification of many conserved and trypanosomatid-specific subunits of NADH:ubiquinone oxidoreductase, revealing a multifunctional enzyme capable of performing bioenergetic activities and possibly, also of functioning in fatty acid metabolism. A multimeric structure organized in 5 domains of more than 2 MDa is predicted, in contrast to the 1 MDa described for mammalian complex I. The relevance of mitochondrial complex I within the Trypanosomatidae family is quite diverse with its NADH oxidation activity being dispensable for both procyclic and bloodstream Trypanosoma brucei, whereas in Phytomonas serpens the enzyme is the only respiratory complex able to sustain membrane potential. Aside from complex I, trypanosomatid mitochondria contain a type II NADH dehydrogenase and a NADH-dependent fumarate reductase as alternative electron entry points into the respiratory chain and thus, some trypanosomatids may have bypassed the need for complex I. The involvement of each of these enzymes in the maintenance of the mitochondrial redox balance in trypanosomatids is still an open question and requires further investigation.
Collapse
Affiliation(s)
- Margarida Duarte
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal,
| | | |
Collapse
|
78
|
Wallström SV, Florez-Sarasa I, Araújo WL, Escobar MA, Geisler DA, Aidemark M, Lager I, Fernie AR, Ribas-Carbó M, Rasmusson AG. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. PLANT & CELL PHYSIOLOGY 2014; 55:881-96. [PMID: 24486764 PMCID: PMC4016682 DOI: 10.1093/pcp/pcu021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/16/2014] [Indexed: 05/18/2023]
Abstract
The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.
Collapse
Affiliation(s)
- Sabá V. Wallström
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Igor Florez-Sarasa
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Ctra Valldemossa Km. 7,5, 07122 Palma de Mallorca, Spain
- Present address: Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Present address: Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brasil
| | - Matthew A. Escobar
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Daniela A. Geisler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mari Aidemark
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Ida Lager
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Miquel Ribas-Carbó
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Ctra Valldemossa Km. 7,5, 07122 Palma de Mallorca, Spain
| | - Allan G. Rasmusson
- Department of Biology, Lund University, Biology building A, Sölvegatan 35, SE-22362 Lund, Sweden
| |
Collapse
|
79
|
Erhardt H, Dempwolff F, Pfreundschuh M, Riehle M, Schäfer C, Pohl T, Graumann P, Friedrich T. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane. Microbiologyopen 2014; 3:316-26. [PMID: 24729508 PMCID: PMC4082705 DOI: 10.1002/mbo3.163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022] Open
Abstract
The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called “segrazones.”
Collapse
Affiliation(s)
- Heiko Erhardt
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstraße 21, Freiburg, 79104, Germany
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Schurig-Briccio LA, Yano T, Rubin H, Gennis RB. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:954-63. [PMID: 24709059 DOI: 10.1016/j.bbabio.2014.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 02/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Lici A Schurig-Briccio
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Takahiro Yano
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harvey Rubin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
81
|
Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc Natl Acad Sci U S A 2014; 111:3389-94. [PMID: 24550478 DOI: 10.1073/pnas.1321621111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where L-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Å of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction.
Collapse
|
82
|
Yano T, Rahimian M, Aneja KK, Schechter NM, Rubin H, Scott CP. Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites. Biochemistry 2014; 53:1179-90. [PMID: 24447297 PMCID: PMC3985514 DOI: 10.1021/bi4013897] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Type
II NADH-quinone oxidoreductase (NDH-2) catalyzes the transfer
electrons from NADH to the quinone pool and plays an essential role
in the oxidative phosphorylation system of Mycobacterium tuberculosis (Mtb). The absence of NDH-2 in the mammalian mitochondrial electron
transport chain makes this enzyme an attractive target for antibiotic
development. To fully establish the kinetic properties of this enzyme,
we studied the interaction of Mtb NDH-2 with substrates, NADH, and
various quinone analogues and their products in both membrane and
soluble environments. These studies, and comparative analyses of the
kinetics with thio-NAD+ and quinone electron acceptors,
provided evidence that Mtb NDH-2 catalyzes the transfer electrons
from NADH to quinone substrates by a nonclassical, two-site ping-pong
kinetic mechanism whereby substrate quinones bind to a site that is
distinct from the NADH-binding site. Furthermore, the effects of quinols
on Mtb NDH-2 catalytic activity demonstrate the presence of two binding
sites for quinone ligands, one favoring the reduced form and the other
favoring the oxidized form.
Collapse
Affiliation(s)
- Takahiro Yano
- Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
83
|
Wallström SV, Florez-Sarasa I, Araújo WL, Aidemark M, Fernández-Fernández M, Fernie AR, Ribas-Carbó M, Rasmusson AG. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. MOLECULAR PLANT 2014; 7:356-368. [PMID: 23939432 DOI: 10.1093/mp/sst115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ca(2+)-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPH dehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript was suppressed by 80% in Arabidopsis thaliana plants, and external Ca(2+)-dependent NADPH dehydrogenase activity became undetectable in isolated mitochondria. This was linked to a decreased level of NADP(+) in rosettes of the transgenic lines. Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of (14)C-glucose was increased. On soil, NDB1-suppressing plants had a decreased vegetative biomass, but leaf maximum quantum efficiency of photosystem II and CO2 assimilation rates, as well as total respiration, were similar to the wild-type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealed decreased levels of sugars, citric acid cycle intermediates, and amino acids in the transgenic lines. The NDB1-suppression induced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. The transcriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thaliana overexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H) reduction levels, which in turn affect central metabolism and growth, and interact with defense signaling.
Collapse
Affiliation(s)
- Sabá V Wallström
- Department of Biology, Lund University, Biology building, Sölvegatan 35, SE-223 62 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, Cook GM. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol 2014; 91:950-64. [PMID: 24444429 DOI: 10.1111/mmi.12507] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2013] [Indexed: 11/30/2022]
Abstract
Non-proton pumping type II NADH dehydrogenase (NDH-2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH-2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH-2 enzyme at 2.5 Å resolution from Caldalkalibacillus thermarum. The NDH-2 structure reveals a homodimeric organization that has a unique dimer interface. NDH-2 is localized to the cytoplasmic membrane by two separated C-terminal membrane-anchoring regions that are essential for membrane localization and FAD binding, but not NDH-2 dimerization. Comparison of bacterial NDH-2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non-overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH-2 structure establishes a framework for the structure-based design of small-molecule inhibitors.
Collapse
Affiliation(s)
- Adam Heikal
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
FAD binding properties of a cytosolic version of Escherichia coli NADH dehydrogenase-2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:576-84. [PMID: 24418395 DOI: 10.1016/j.bbapap.2013.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 12/18/2022]
Abstract
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA=7.0(±0.8)×10(4)M(-1). Taken together, the FAD-protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.
Collapse
|
86
|
Abstract
Cultivation-independent surveys of microbial diversity have revealed many bacterial phyla that lack cultured representatives. These lineages, referred to as candidate phyla, have been detected across many environments. Here, we deeply sequenced microbial communities from acetate-stimulated aquifer sediment to recover the complete and essentially complete genomes of single representatives of the candidate phyla SR1, WWE3, TM7, and OD1. All four of these genomes are very small, 0.7 to 1.2 Mbp, and have large inventories of novel proteins. Additionally, all lack identifiable biosynthetic pathways for several key metabolites. The SR1 genome uses the UGA codon to encode glycine, and the same codon is very rare in the OD1 genome, suggesting that the OD1 organism could also transition to alternate coding. Interestingly, the relative abundance of the members of SR1 increased with the appearance of sulfide in groundwater, a pattern mirrored by a member of the phylum Tenericutes. All four genomes encode type IV pili, which may be involved in interorganism interaction. On the basis of these results and other recently published research, metabolic dependence on other organisms may be widely distributed across multiple bacterial candidate phyla. Few or no genomic sequences exist for members of the numerous bacterial phyla lacking cultivated representatives, making it difficult to assess their roles in the environment. This paper presents three complete and one essentially complete genomes of members of four candidate phyla, documents consistently small genome size, and predicts metabolic capabilities on the basis of gene content. These metagenomic analyses expand our view of a lifestyle apparently common across these candidate phyla.
Collapse
|
87
|
Nedielkov R, Steffen W, Steuber J, Möller HM. NMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na+-translocating NADH:Quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2013; 288:30597-30606. [PMID: 24003222 DOI: 10.1074/jbc.m112.435750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na(+)-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na(+)-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na(+)-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na(+)-NQR.
Collapse
Affiliation(s)
- Ruslan Nedielkov
- From the Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany and
| | - Wojtek Steffen
- the Department of Microbiology, University of Hohenheim (Stuttgart), 70599 Stuttgart, Germany
| | - Julia Steuber
- the Department of Microbiology, University of Hohenheim (Stuttgart), 70599 Stuttgart, Germany.
| | - Heiko M Möller
- From the Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany and.
| |
Collapse
|
88
|
Xu L, Law SR, Murcha MW, Whelan J, Carrie C. The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution. BMC PLANT BIOLOGY 2013; 13:100. [PMID: 23841539 PMCID: PMC3716789 DOI: 10.1186/1471-2229-13-100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/08/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Type II NAD(PH) dehydrogenases are located on the inner mitochondrial membrane of plants, fungi, protists and some primitive animals. However, recent observations have been made which identify several Arabidopsis type II dehydrogenases as dual targeted proteins. Targeting either mitochondria and peroxisomes or mitochondria and chloroplasts. RESULTS Members of the ND protein family were identified in various plant species. Phylogenetic analyses and subcellular targeting predictions were carried out for all proteins. All ND proteins from three model plant species Arabidopsis, rice and Physcomitrella were cloned as N- and C-terminal GFP fusions and subcellular localisations were determined. Dual targeting of plant type II dehydrogenases was observed to have evolved early in plant evolution and to be widespread throughout different plant species. In all three species tested dual targeting to both mitochondria and peroxisomes was found for at least one NDA and NDB type protein. In addition two NDB type proteins from Physcomitrella were also found to target chloroplasts. The dual targeting of NDC type proteins was found to have evolved later in plant evolution. CONCLUSIONS The functions of type II dehydrogenases within plant cells will have to be re-evaluated in light of this newly identified subcellular targeting information.
Collapse
Affiliation(s)
- Lin Xu
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia
| | - Simon R Law
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia
| | - Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
89
|
Abstract
Lactic acid bacteria (LAB) are of profound importance in food production and infection medicine. LAB do not rely on heme (protoheme IX) for growth and are unable to synthesize this cofactor but are generally able to assemble a small repertoire of heme-containing proteins if heme is provided from an exogenous source. These features are in contrast to other bacteria, which synthesize their heme or depend on heme for growth. We here present the cellular function of heme proteins so far identified in LAB and discuss their biogenesis as well as applications of the extraordinary heme physiology of LAB.
Collapse
|
90
|
Cui Y, Zhao S, Wu Z, Dai P, Zhou B. Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast. Mol Biol Cell 2012; 23:4373-82. [PMID: 22993213 PMCID: PMC3496611 DOI: 10.1091/mbc.e12-04-0281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ndi1, the yeast homologue of caspase-independent apoptosis inducer AMID, turns out to be a general, as well as a potent, yeast apoptotic factor. This protein normally acts at the first step in respiration but, when stressed, cleaves its protective N-terminal, escapes from the mitochondria, and switches to become apoptotic. Saccharomyces cerevisiae NDI1 codes for the internal mitochondrial ubiquinone oxidoreductase, which transfers electrons from NADH to ubiquinone in the respiratory chain. Previously we found that Ndi1 is a yeast homologue of the protein apoptosis-inducing factor–homologous mitochondrion-associated inducer of death and displays potent proapoptotic activity. Here we show that S. cerevisiae NDI1 is involved in apoptosis induced by various stimuli tested, including H2O2, Mn, and acetate acid, independent of Z-VAD-fmk (a caspase inhibitor) inhibition. Although Ndi1 also participates in respiration, its proapoptotic property is separable from the ubiquinone oxidoreductase activity. During apoptosis, the N-terminal of Ndi1 is cleaved off in the mitochondria, and this activated form then escapes out to execute its apoptotic function. The N-terminal cleavage appears to be essential for the manifestation of the full apoptotic activity, as the uncleaved form of Ndi1 exhibits much less growth-inhibitory activity. Our results thus indicate an important role of Ndi1 in the switch of life and death fates in yeast: during normal growth, Ndi1 assimilates electrons to the electron transport chain and initiates the respiration process to make ATP, whereas under stresses, it cleaves the toxicity-sequestering N-terminal cap, is released from the mitochondria, and becomes a cell killer.
Collapse
Affiliation(s)
- Yixian Cui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|