51
|
Jia W, Qi R, Zhang X, Liu K, Zhang L, Fan X, Yang B, Wang G, Han S, Ma S. Immune signature and pathways investigation of adrenal gland diffuse large B-cell lymphoma. Sci Rep 2025; 15:6837. [PMID: 40000781 PMCID: PMC11861668 DOI: 10.1038/s41598-025-90610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) accounts for approximately 30-40% of all non-Hodgkin lymphoma cases. Organs located DLBCL such as lymph node, stomach, gastrointestinal tract, or skin were reported. However, the adrenal gland DLBCL was not been well explored. We performed RNA sequencing of ten DLBCL samples from adrenal gland, integrated analyzed DLBCL RNA data from multiple organs, defined the new subtypes of adrenal gland DLBCL and explored their molecular signatures. The special expression pattern and microenvironment immunology scores of adrenal glands DLBCL were observed when compared with other organs. Natural killer T cells was predicted to significantly enrichment in adrenal gland DLBCL, canonical cancer pathways such as programmed death protein 1 signaling pathways, tumor necrosis factor signaling pathways and peptide antigen binding pathways were found to be correlated with adrenal gland DLBCL. Further analysis defined two distant adrenal gland DLBCL sub-type by RNA expression pattern. Our study revealed the special expression, defined the molecular subtype of adrenal gland DLBCL. These results expanded the organ related DLBCL data, provided the new knowledge of adrenal gland DLBCL expression profile.
Collapse
Affiliation(s)
- Weijing Jia
- Department of Hematology, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ruochen Qi
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoyan Zhang
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Longlong Zhang
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaozheng Fan
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Bo Yang
- Department of Urology, The Zheng He Hospital, Xi'an, Shaanxi, China
| | - Guohui Wang
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shichao Han
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shuaijun Ma
- Department of Urology, The First Affiliated Hospital of Air Force Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
52
|
Qian J, Shao X, Bao H, Fang Y, Guo W, Li C, Li A, Hua H, Fan X. Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution. Nat Commun 2025; 16:1693. [PMID: 39956823 PMCID: PMC11830827 DOI: 10.1038/s41467-025-57029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Deciphering the features, structure, and functions of the cell niche in tissues remains a major challenge. Here, we present scNiche, a computational framework to identify and characterize cell niches from spatial omics data at single-cell resolution. We benchmark scNiche with both simulated and biological datasets, and demonstrate that scNiche can effectively and robustly identify cell niches while outperforming other existing methods. In spatial proteomics data from human triple-negative breast cancer, scNiche reveals the influence of the microenvironment on cellular phenotypes, and further dissects patient-specific niches with distinct cellular compositions or phenotypic characteristics. By analyzing mouse liver spatial transcriptomics data across normal and early-onset liver failure donors, scNiche uncovers disease-specific liver injury niches, and further delineates the niche remodeling from normal liver to liver failure. Overall, scNiche enables decoding the cellular microenvironment in tissues from single-cell spatial omics data.
Collapse
Affiliation(s)
- Jingyang Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| | - Hudong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yin Fang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310013, China
| | - Wenbo Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Chengyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Anyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, SiChuan Institute for Translational Chinese Medicine, Chengdu, 610041, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China.
| |
Collapse
|
53
|
Gong B, Zhang Q, Chen J, Qu Y, Luo X, Wang W, Zheng X. Recent Advances in Glutathione Depletion-Enhanced Porphyrin-Based nMOFs for Photodynamic Therapy. Pharmaceutics 2025; 17:244. [PMID: 40006611 PMCID: PMC11860060 DOI: 10.3390/pharmaceutics17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Photodynamic therapy has established itself as a clinical treatment for certain superficial cancers by converting oxygen into cytotoxic singlet oxygen to eradicate cancer cells. Porphyrin-based nanoscale metal-organic frameworks have emerged as promising photosensitive platforms due to their ability to prevent the hydrophobic aggregation quenching of porphyrin molecules and enhance accumulation at the tumor site, thereby becoming a focal point in photodynamic materials research. However, the elevated levels of glutathione and other reductive substances within cancer cells can alleviate the oxidative stress induced by singlet oxygen from the photodynamic therapy process, thus protecting intracellular biomolecular structures from damage. Consequently, it is crucial to design functionalized nanoplatforms that integrate glutathione depletion with porphyrin-based metal-organic frameworks to significantly boost photodynamic therapy efficacy. Moreover, the excess glutathione within cells can disrupt the structure of porphyrin-based metal-organic frameworks, which not only increases the capacity of porphyrin molecules to generate singlet oxygen upon light exposure but also aids in the recovery of their fluorescence imaging capabilities. Additionally, this specificity minimizes the photosensitizing harm of porphyrin-based metal-organic frameworks to other normal tissues. This review compiles recent advancements in developing porphyrin-based metal-organic frameworks for enhanced phototherapy through glutathione depletion. It aims to promote the further application of porphyrin-based metal-organic frameworks in phototherapy and provide valuable insights for preclinical applications. By highlighting strategies that improve therapeutic outcomes while maintaining safety profiles, this summary seeks to advance the development of more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- Bin Gong
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
54
|
Wu Y, Hao C, Gao C, Hageman M, Lee S, Kirkland TA, Gray NS, Su Y, Lin MZ. Pharmacodynamics of Akt drugs revealed by a kinase-modulated bioluminescent indicator. Nat Chem Biol 2025:10.1038/s41589-025-01846-y. [PMID: 39934397 DOI: 10.1038/s41589-025-01846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Measuring pharmacodynamics (PD)-the biochemical effects of drug dosing-and correlating them with therapeutic efficacy in animal models is crucial for the development of effective drugs but traditional PD studies are labor and resource intensive. Here we developed a kinase-modulated bioluminescent indicator (KiMBI) for rapid, noninvasive PD assessment of Akt-targeted drugs, minimizing drug and animal use. Using KiMBI, we performed a structure-PD relationship analysis on the brain-active Akt inhibitor ipatasertib by generating and characterizing two novel analogs. One analog, ML-B01, successfully inhibited Akt in both the brain and the body. Interestingly, capivasertib, ipatasertib and ML-B01 all exhibited PD durations beyond their pharmacokinetic profiles. Furthermore, KiMBI revealed that the PD effects of an Akt-targeted proteolysis-targeting chimera degrader endured for over 3 days. Thus, bioluminescence imaging with Akt KiMBI provides a noninvasive and efficient method for in vivo visualization of the PD of Akt inhibitors and degraders.
Collapse
Affiliation(s)
- Yan Wu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Chao Gao
- Promega Corporation, San Luis Obispo, CA, USA
| | | | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Yichi Su
- Department of Nuclear Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
55
|
Arandhara A, Bhuyan P, Das BK. Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies. Discov Oncol 2025; 16:159. [PMID: 39934547 DOI: 10.1007/s12672-025-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer stands out as a significant global health burden, with staggering incidence and mortality rates primarily linked to smoking and environmental carcinogens. The tumor microenvironment (TME) emerges as a critical determinant of cancer progression and treatment outcomes, comprising a complex interplay of cells, signaling molecules, and extracellular matrix. Through a comprehensive literature review, we elucidate current research trends and therapeutic prospects, aiming to advance our understanding of TME modulation strategies and their clinical implications for lung cancer treatment. Dysregulated immune responses within the TME can facilitate tumor evasion, limiting the efficacy of immune checkpoint inhibitors (ICI). Consequently, TME modulation strategies have become potential avenues to enhance therapeutic responses. However, conventional TME-targeted therapies often face challenges. In contrast, nanoparticle (NP)-based therapies offer promising prospects for improved drug delivery and reduced toxicity, leveraging the enhanced permeability and retention (EPR) effect. Despite NP design and delivery advancements, obstacles like poor tumor cell uptake and off-target effects persist, necessitating further optimization. This review underscores the pivotal role of TME in lung cancer management, emphasizing the synergistic potential of immunotherapy and nano-therapy.
Collapse
Affiliation(s)
- Arunabh Arandhara
- Assam Pharmacy Institute, Titabar, Amgurikhat, Jorhat, Assam, 785632, India
| | - Pallabi Bhuyan
- School of Pharmacy, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam, 785006, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
56
|
Chen YL, Xu B, Pan ZF, Cai YP, Yang CY, Cao SL, Chen KH, Xie XT, Zhao M, Li PC, Xie XQ, Chen XY, Wang Q, Zhou L, Luo X. Glycyrrhizic acid reduces neutrophil extracellular trap formation to ameliorate colitis-associated colorectal cancer by inhibiting peptidylarginine deiminase 4. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119337. [PMID: 39788166 DOI: 10.1016/j.jep.2025.119337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, the radices of Glycyrrhiza uralensis Fisch., known as liquorice, have been used for relieving cough, alleviating pain and harmonizing the actions of all medicinals in a formula. Glycyrrhizic acid (GA), a natural compound derived from licorice, exhibits notable anti-inflammatory properties. AIM Neutrophil extracellular trap (NET) generated by peptidylarginine deiminase 4 (PAD4) has been implicated in the progression of colitis to colitis-associated colorectal cancer (CAC). This study aims to investigate whether GA can ameliorate CAC through the inhibition of PAD4 activity and reduction of NET formation. METHODS We investigated the correlation between PAD4 expression levels and immune cell infiltration in colorectal cancer utilizing the TIMER database, while also assessing PAD4 levels and activity in human CAC biopsy samples. To evaluate the therapeutic potential of licorice acid on CAC in vivo, we employed the AOM/DSS model and confirmed its inhibitory effects on NET formation in vitro. Furthermore, we explored whether licorice acid can restore immune cell cytotoxicity by diminishing NET formation through fluorescence transfection of CT26 cell lines and subsequent sorting of CD8+ T cells. Additionally, we elucidated the detrimental role of PAD4 in CAC progression using PAD4-/- mice. RESULTS We observed that GA ameliorated colonic inflammation, reduced tumorigenicity, and decreased NET formation, as evidenced by decreased levels of PAD4, citH3, MPO and MMP-9. In vitro experiments demonstrated that GA effectively bound to PAD4 and inhibited its enzyme activity. Furthermore, GA prevented epithelial cell destruction while enhancing CD8+ T-cell-mediated tumor killing through the suppression of NET formation in a coculture system. CONCLUSIONS We demonstrate that GA inhibits CAC occurrence by suppressing PAD4 activity and reducing NET formation.
Collapse
Affiliation(s)
- Yun-Liang Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeng-Feng Pan
- Medical Research and Experimental Center, Meizhou People's Hospital, No.63 Huangtang Road, Meijiang District, Meizhou, 514031, Guangdong, China
| | - Yan-Ping Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Cai-Yi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shui-Ling Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ke-Han Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xu-Ting Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meng Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Peng-Cheng Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue-Qian Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiao-Yun Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qing Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lian Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xia Luo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, 519000, China.
| |
Collapse
|
57
|
Okami H, Muranushi R, Yokobori T, Erkhem-Ochir B, Dorjkhorloo G, Seki T, Okuyama T, Fukushima R, Kawai S, Hoshino K, Dolgormaa G, Hagiwara K, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Araki K, Saeki H, Shirabe K. Human collagen type I‑based scaffold retains human‑derived fibroblasts in a patient‑derived tumor xenograft mouse model. Exp Ther Med 2025; 29:39. [PMID: 39781195 PMCID: PMC11707561 DOI: 10.3892/etm.2024.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/05/2024] [Indexed: 01/12/2025] Open
Abstract
The present study aimed to investigate the role of a recombinant protein based on human collagen type I (RCPhC1) as a scaffold in maintaining the human tumor microenvironment within a patient-derived tumor xenograft (PDTX) model. RCPhC1, synthesized under animal component-free conditions, was explored for its potential to support the human-specific stroma associated with tumor growth. PDTX models were established using resected colorectal cancer liver metastasis specimens, and stromal cell populations from humans and mice were compared using three scaffolds: No scaffold (control), Matrigel and recombinant human collagen type I, across two passages. Specific antibodies for human Lamin B and mouse Lamin B were used for immunostaining to distinguish between human and mouse cells. Additionally, the impact of each scaffold on the invasive ability of mouse fibroblasts was assessed using an invasion assay. Patient-derived tumor tissues embedded with RCPhC1 hydrogels had significantly more human Lamin B-positive cells and fewer mouse Lamin B cells than those embedded with no scaffolds or Matrigel. The human Lamin B-positive cells in PDTX tumors with RCPhC1 hydrogels were recognized as fibroblasts. Additionally, these hydrogels significantly reduced the invasion of mouse fibroblast cell lines in vitro compared with Matrigel. The present study investigated RCPhC1 hydrogels as a new scaffold material for tumor engraftment in PDTX mouse models, and identified a promising experimental tool for maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Haruka Okami
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ryo Muranushi
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Gendensuren Dorjkhorloo
- Department of General Surgical Science, Division of Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takaomi Seki
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Okuyama
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ryousuke Fukushima
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Shunsuke Kawai
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kouki Hoshino
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Gantumur Dolgormaa
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kei Hagiwara
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Yamanaka
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Norihiro Ishii
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Mariko Tsukagoshi
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takamichi Igarashi
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Akira Watanabe
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Norio Kubo
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kenichiro Araki
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Division of Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
58
|
Lu YY, Lu W, Zheng J, Luo JS. High APEX1 Expression Facilitates Osteosarcoma Cell Proliferation. Asian Pac J Cancer Prev 2025; 26:453-463. [PMID: 40022689 PMCID: PMC12118012 DOI: 10.31557/apjcp.2025.26.2.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
Osteosarcoma (OS) is a serious malignancy affecting children and young adults; however, there is limited improvement in the survival of patients with OS over the past four decades. Molecular targeted therapy is a promising treatment strategy for OS. Apurinic/apyrimidinic exonuclease 1 (APEX1)-a key factor for DNA damage repair-is associated with OS proliferation, but the underlying molecular mechanism remains unclear. APEX1 expression in OS tissues and paired paracancerous tissues and in human osteoblast cell line hFOB1.19 and OS cell lines was determined using real-time quantitative PCR (RT-qPCR). APEX1-shRNA and NC-shRNA lentiviral vectors were constructed and transfected into MG-63 cells. The effects of APEX1 knockdown on MG-63 cell proliferation and apoptosis were assessed using MTT, xenograft tumor growth, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Expression changes of apoptosis- and angiogenesis-related genes due to APEX1 knockdown were detected using RT-qPCR and immunohistochemistry. To preliminarily determine the mechanism by which APEX1 affects OS cell proliferation, transcription factors were predicted using three databases, and construction of protein-protein interaction network, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. APEX1 expression was higher in OS tissues than in paracancerous tissues. APEX1 expression was also higher in OS cell lines than in hFOB1.19 cells, with the highest APEX1 expression observed in MG-63 cells. APEX1 knockdown mediated by APEX1-shRNA lentivirus markedly suppressed MG-63 cell proliferation both in vitro and in vivo and induced their apoptosis. APEX1 knockdown downregulated CD31 expression but had no effect on the expression of P53 and Caspase3. Bioinformatics analyses suggested that USF1 or SP1 regulates APEX1 transcription and its recruitment in DNA damage response pathways, affecting OS cell proliferation. Thus, high APEX1 expression in OS facilitates cell proliferation likely via CD31, and USF1 or SP1 may regulate APEX1 transcription and its recruitment in DNA damage response pathways.
Collapse
Affiliation(s)
| | | | | | - Ju Shu Luo
- Division of Spinal Surgery, The First People’s Hospital of Yulin (The Sixth Affiliated Hospital of Guangxi Medical University), No. 495 Mid-way of education, Yulin, 537000, Guangxi, China.
| |
Collapse
|
59
|
Zhu M, Liu Q, Chen Z, Liu J, Zhang Z, Tian J, Wang X, Yang X, Chen Q, Huang X, Zhuang J. Rational Design of Dual-Targeted Nanomedicines for Enhanced Vascular Permeability in Low-Permeability Tumors. ACS NANO 2025; 19:3424-3438. [PMID: 39797815 DOI: 10.1021/acsnano.4c12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells. By leveraging a genetically engineered logic-gated strategy, we coassembled various Dt-FTn in E. coli with tunable ratios of RGD-targeting and intrinsic TfR1-targeting ligands. These Dt-FTn constructs were employed to investigate the interaction between receptor-mediated vascular permeability and dual-targeted nanomedicines in low-permeability tumors. Through machine learning-based single vessel analysis, we uncovered the crucial role of dual-receptor expression profiles in determining the vascular transport of dual-targeted nanomedicines in tumors with low permeability. Using a patient-derived colon cancer model, we demonstrated a proof-of-concept that the optimal proportions of dual ligands in these nanomedicines can be customized based on tumor cell receptor expression profiles. This study provides valuable insights and guiding principles for the rational design of dual-targeted nanomedicines for tumor-targeted delivery.
Collapse
Affiliation(s)
- Mingsheng Zhu
- School of Medicine, Nankai University, Tianjin 300071, China
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhengbang Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jinming Liu
- Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhixuan Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jingwei Tian
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiangyang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiong Yang
- Changwu County People's Hospital, Changwu 713699, China
| | - Quan Chen
- Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
60
|
Muniandy MT, Chee CF, Rahman NA, Wong TW. Enhancing Aqueous Solubility and Anticancer Efficacy of Oligochitosan-Folate-Cisplatin Conjugates through Oleic Acid Grafting for Targeted Nanomedicine Development. ACS OMEGA 2025; 10:2428-2441. [PMID: 39895753 PMCID: PMC11780459 DOI: 10.1021/acsomega.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 02/04/2025]
Abstract
Oligochitosan is an anticancer water-soluble biomaterial. Conjugating cisplatin (anticancer drug) and folic acid (targeting ligand) with oligochitosan reduces its aqueous solubility, thus requiring excessive drug dose to be biologically active and organic instead of aqueous processing into nanomedicine. Covalent grafting of oleic acid onto oligochitosan-folate-cisplatin conjugate is envisaged to promote aqueous solubility via reducing interchain interaction, but it is challenging where multiple functional moieties are covalently attached onto a short oligomer (<5 kDa). This study produced oligochitosan-oleate-folate-cisplatin conjugate dissolvable in aqueous media pH 3-7, which represents common processing pH in drug vehicle development and tumor microenvironmental pHs. Oligochitosan-oleate conjugation was effected through O-acylation to provide amino groups of oligochitosan for folate and cisplatin grafting. Oligochitosan-folate-cisplatin conjugate was poorly soluble in aqueous and organic media. A degree of oleic acid substitution (DS) < 10% conferred aqueous solubility beyond which became less soluble due to hydrophobicity rise. Oligochitosan-oleate-folate-cisplatin conjugate with 4.51 ± 0.32% DS, 8.50 ± 0.57% folate content, and 0.94 ± 0.80% cisplatin content was dissolvable in aqueous media pH 3.3-7, conferring processing safety with improved cancer cytotoxicity in the nanoparticulate form at the acidic tumor microenvironment.
Collapse
Affiliation(s)
- M. Tamilarasi Muniandy
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
- Non-Destructive
Biomedical and Pharmaceutical Research Centre, Smart Manufacturing
Research Institute, Universiti Teknologi
MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Chin Fei Chee
- Nanotechnology
and Catalysis Research Centre, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
- Institute
for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive
Biomedical and Pharmaceutical Research Centre, Smart Manufacturing
Research Institute, Universiti Teknologi
MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Particle
Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
61
|
Biswas N, Mori T, Ragava Chetty Nagaraj NK, Xin H, Diemer T, Li P, Su Y, Piermarocchi C, Ferrara N. Adenosine diphosphate stimulates VEGF-independent choroidal endothelial cell proliferation: A potential escape from anti-VEGF therapy. Proc Natl Acad Sci U S A 2025; 122:e2418752122. [PMID: 39835893 PMCID: PMC11789014 DOI: 10.1073/pnas.2418752122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts. ADP stimulated the growth of bovine choroidal EC (BCEC) and other bovine or human eye-derived EC. ADP induced rapid phosphorylation of extracellular signal-regulated kinase in a dose- and time-dependent manner. ADP-induced BCEC proliferation could be blocked by pretreatment with specific antagonists of the purinergic receptor P2Y1 but not with a vascular endothelial growth factor (VEGF) inhibitor, indicating that the EC mitogenic effects of ADP are not mediated by stimulation of the VEGF pathway. Intravitreal administration of ADP expanded the neovascular area in a mouse model of choroidal neovascularization. Single-cell transcriptomics from human choroidal datasets show the expression of P2RY1, but not other ADP receptors, in EC with a pattern similar to VEGFR2. Although ADP has been reported to be a growth inhibitor for vascular EC, here we describe its growth-stimulating effects for BCEC and other eye-derived EC.
Collapse
Affiliation(s)
- Nilima Biswas
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Tommaso Mori
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | | | - Hong Xin
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Tanja Diemer
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Pin Li
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Yongxuan Su
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI48824
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA92093
- Department of Ophthalmology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
62
|
Yuan J, Jiang Y, Chen F, Li T, Zeng Z, Ruan S, Yan J, Lu J, Li Q, Yuan J, Tong Q. Clinical implications of DNA ploidy, stroma, and nucleotyping in predicting peritoneal metastasis risk for gastric cancer. BMC Cancer 2025; 25:144. [PMID: 39863844 PMCID: PMC11762900 DOI: 10.1186/s12885-025-13564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis. METHODS A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital. Tumor tissues were sectioned and stained. DNA ploidy, stroma, and nucleotyping were quantified using microscopy and digital analysis software. Data analysis was employed by Pearson Chi-square, continuous correction Chi-square, and binary logistic regression. RESULTS Using both univariate and multivariate analysis, pathological T stage and nucleotyping exhibited a positive correlation with peritoneal metastasis. DNA ploidy and stroma showed a positive correlation in univariate analysis. Chi-square tests demonstrated a positive correlation of DNA ploidy, stroma, and nucleotyping with peritoneal metastasis. The combined application of these three indicators displayed heightened predictive value for peritoneal metastasis. Non-diploid status, high stroma, and chromosomal heterogeneity emerged as positive factors for peritoneal metastasis in gastric cancer. CONCLUSIONS DNA ploidy, stroma, and nucleotyping prove to be predictive factors for peritoneal metastasis, with enhanced predictive efficacy when combined in pairs.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin, 300100, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shasha Ruan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, 430060, Hubei, China
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Li
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
63
|
Zhang H, Wang Z, Wu J, Zheng YQ, Zhao Q, He S, Jiang H, Jiang C, Wang T, Liu Y, Cui L, Guo H, Yi J, Jin H, Xie C, Li M, Li J, Wang X, Xia L, Zhang XS, Xia X. Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity. J Clin Invest 2025; 135:e180622. [PMID: 39817453 PMCID: PMC11735096 DOI: 10.1172/jci180622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025] Open
Abstract
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity. STING activation in endothelium promoted vessel normalization and CD8+ T cell infiltration - which required type I IFN (IFN-I) signaling- but not IFN-γ or CD4+ T cells. Rather than an upstream adaptor for inducing IFN-I signaling, STING acted downstream of interferon-α/β receptor (IFNAR) in endothelium for the JAK1-STAT signaling activation. Mechanistically, IFN-I stimulation induced JAK1-STING interaction and promoted JAK1 phosphorylation, which involved STING palmitoylation at the Cysteine 91 site but not its C-terminal tail (CTT) domain. Endothelial STING and JAK1 expression was significantly associated with immune cell infiltration in patients with cancer, and STING palmitoylation level correlated positively with CD8+ T cell infiltration around STING-positive blood vessels in tumor tissues from patients with melanoma. In summary, our findings uncover a previously unrecognized function of STING in regulating JAK1/STAT activation downstream of IFN-I stimulation and provide a new insight for future design and clinical application of STING agonists for cancer therapy.
Collapse
Affiliation(s)
- Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahong Yi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
64
|
Zhu Y, Wen Y, Xie Y, Chen G, Hu S, Wu Y, Jiang L, Viana B, Richard C, Wong KL, Jiao J, Wang J, Zou R. Intelligent Hierarchical Targeting Near-Infrared Persistent Luminescence Nanosystem for Improved Nuclear Delivery and Simultaneous Visualization/Therapy of EBV-Associated Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3072-3083. [PMID: 39752553 DOI: 10.1021/acsami.4c20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO2-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO2 nanosheet, and a mesoporous ZnGa2O4:Cr3+, Sn4+ near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS). In our design, mZGOCS@MnO2-P5 enables primarily targeting of the EBV-specific oncoprotein LMP1 (an EBV-encoded transmembrane protein) via the LMP1 targeting motif within P5. Once internalized into cells, the MnO2 nanosheet would be degraded in the acidic and reducing tumor microenvironment, simultaneously releasing P5 and recovering the NIR-PL of ZnGa2O4:Cr3+, Sn4+ initially quenched by the MnO2 nanosheet, thereby providing an autofluorescence interference-free NIR-PL imaging signal for monitoring the delivery efficacy of P5. The released P5 can secondarily target EBNA1 via the EBNA1 binding motif, blocking its function and thus inhibiting the growth of EBV-positive tumors. The feasibility of our developed hierarchical targeting theranostic nanosystem is well demonstrated both in vitro and in vivo, highlighting the huge translational potential of mZGOCS@MnO2-P5 in EBV-associated cancer therapy.
Collapse
Affiliation(s)
- Yunfei Zhu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ya Wen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yanping Xie
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Guangfeng Chen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Siqi Hu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yue Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lijun Jiang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bruno Viana
- PSL Research University, Chimie ParisTech, Chemistry Research Institute of Paris (IRCP), French National Center for Scientific Research (CNRS), 75005 Paris, France
| | - Cyrille Richard
- CNRS, INSERM, UTCBS, Université Paris Cité, 75006 Paris, France
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| |
Collapse
|
65
|
Zhong W, Xu Y, Wang Z, Wang X, Li Y, Liu J, Zhao C, Shi X, He Z, Sun B, Tian C. Dual role of triglyceride structures facilitates anti-tumor drug delivery: Both as a self-assembling module and a responsive module. J Colloid Interface Sci 2025; 678:24-34. [PMID: 39277950 DOI: 10.1016/j.jcis.2024.09.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Small molecule prodrugs self-assembled nano-delivery systems with tumor responsive linkages are emerging as an effective platform. However, the heterogeneity of tumor microenvironment may limit the anti-tumor effect of prodrug nanomedicines with a single response module. Here, we chose disulfide bond as the response module and branched chain alcohol as the self-assembly modification module to construct a single-responsive prodrug. We also constructed a double-responsive paclitaxel prodrug combining triglyceride and disulfide bond, taking into account of the highly expressed lipase and glutathione levels in tumor cells. The results showed that the anti-tumor effect of single-responsive branched chain alcohol modified prodrug nanoparticles was inferior to triglyceride prodrug nanoparticles with dual response modules. The triglyceride structure can not only serve as a self-assembly modification module, but also serve as a response module for intelligent drug release in tumor. Such dual roles will facilitate the efficient delivery of small molecule self-assembled prodrugs to tumor sites.
Collapse
Affiliation(s)
- Wenxin Zhong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Yalin Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zixuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiyan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqi Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinrui Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Can Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China.
| |
Collapse
|
66
|
Ma Q, Zhang W, Wu K, Shi L. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy. Mol Cancer 2025; 24:14. [PMID: 39806421 PMCID: PMC11727292 DOI: 10.1186/s12943-024-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities. Given that cancer cells rely on these metabolic changes to sustain cell growth and survival, targeting these processes may represent a promising therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Qinglong Ma
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
67
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
68
|
Teng Y, Zhao H, Xue G, Zhang G, Huang Y, Guo W, Zou K, Zou L. Molecule interacting with CasL-2 enhances tumor progression and alters radiosensitivity in cervical cancer. J Transl Med 2025; 23:44. [PMID: 39799334 PMCID: PMC11725214 DOI: 10.1186/s12967-024-06065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVE Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes. METHODS The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC). Siha and Hela cells were used to examine the regulatory and biological functions of MICAL2 via knockdown and overexpression experiments. Assays including MTT, colony formation, wound healing, transwell migration, and sphere formation were employed, along with WB analysis. DNA damage in irradiated cells with MICAL2 knockdown or overexpression was evaluated using the comet assay, while γ-H2AX and Rad51 protein levels were detected by WB. In vivo experiments validated the tumorigenic and radioresistance functions of MICAL2. Additionally, the relationship between MICAL2 expression and radiotherapy response was analyzed in 62 patients with cervical cancer by assessing tumor regression and MICAL2 levels six months post-treatment. RESULTS MICAL2 expression was significantly elevated in cervical cancer tissues and cells. Functional analyses demonstrated that MICAL2 promotes cell proliferation, migration, and invasion by activating the MAPK and PI3K/AKT pathways, as confirmed through both in vitro and in vivo experiments. Silencing MICAL2 increased DNA damage, impeded DNA repair, and enhanced radiosensitivity. Among the 62 patients with cervical cancer, elevated MICAL2 expression was associated with a lower complete response rate to radiotherapy (25.6% vs. 60.9% in those with low expression), reduced progression-free survival, and advanced cancer stage (*p < 0.05). CONCLUSION MICAL2 plays a critical role in tumor progression and radiotherapy resistance in cervical cancer. These findings provide a foundation for developing targeted therapies to improve treatment outcomes in this population.
Collapse
Affiliation(s)
- Yun Teng
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Hongmei Zhao
- Department of Radiation Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Guoqing Xue
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Guohui Zhang
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Yanbin Huang
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Wei Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, No. 222 of Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
69
|
Li B, Zeng T, Chen C, Wu Y, Huang S, Deng J, Pang J, Cai X, Lin Y, Sun Y, Chong Y, Li X, Gong J, Tang G. Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data. Funct Integr Genomics 2025; 25:11. [PMID: 39798003 DOI: 10.1007/s10142-024-01521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming. This study aimed to construct a model based on PPP-related Genes for risk assessment and prognosis prediction in HCC patients. We integrated RNA-seq and microarray data from TCGA, GEO, and ICGC databases, along with single-cell RNA sequencing (scRNA-seq) data obtained from HCC patients via GEO. Based on the "Seurat" R package, we identified distinct gene clusters related to the PPP within the scRNA-seq data. Using a penalized Cox regression model with least absolute shrinkage and selection operator (LASSO) penalties, we constructed a risk prognosis model. The validity of our risk prognosis model was further confirmed in external cohorts. Additionally, we developed a nomogram capable of accurately predicting overall survival in HCC patients. Furthermore, we explored the predictive potential of our risk model within the immune microenvironment and assessed its relevance to biological function, particularly in the context of immunotherapy. Subsequently, we performed in vitro functional validation of the key genes (ATAD2 and SPP1) in our model. A ten-gene signature associated with the PPP was formulated to enhance the prediction of HCC prognosis and anti-tumor treatment response. Following this, the ROC curve, nomogram, and calibration curve outcomes corroborated the model's robust clinical predictive capability. Functional enrichment analysis unveiled the engagement of the immune system and notable variances in the immune infiltration landscape across the high and low-risk groups. Additionally, tumor mutation frequencies were observed to be elevated in the high-risk group. Based on our analyses, the IC50 values of most identified anticancer agents demonstrated a correlation with the RiskScore. Additionally, the high-risk and low-risk groups exhibited differential sensitivity to various drugs. Cytological experiments revealed that silencing ATAD2 or SPP1 suppresses malignant phenotypes, including viability and migration, in liver cancer cells. In this study, a novel gene signature related to the PPP was developed, demonstrating favorable predictive performance. This signature holds significant guiding value for assessing the prognosis of HCC patients and directing individualized treatment strategies.
Collapse
Affiliation(s)
- Bin Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Zeng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cui Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuankai Wu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Shuying Huang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jing Deng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiahui Pang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Cai
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuxi Lin
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yina Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xinhua Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Guofang Tang
- Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
| |
Collapse
|
70
|
Sabit H, Arneth B, Pawlik TM, Abdel-Ghany S, Ghazy A, Abdelazeem RM, Alqosaibi A, Al-Dhuayan IS, Almulhim J, Alrabiah NA, Hashash A. Leveraging Single-Cell Multi-Omics to Decode Tumor Microenvironment Diversity and Therapeutic Resistance. Pharmaceuticals (Basel) 2025; 18:75. [PMID: 39861138 PMCID: PMC11768313 DOI: 10.3390/ph18010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior. In-depth studies have uncovered immune evasion mechanisms, including the exhaustion of T cells and metabolic reprogramming in response to hypoxia from cancer cells. Single-cell multi-omics also revealed resistance mechanisms, such as stromal cell-secreted factors and physical barriers in the extracellular matrix. Future studies examining specific metabolic pathways and targeting approaches to reduce the heterogeneity in the TME will likely lead to better outcomes with immunotherapies, drug delivery, etc., for cancer treatments. Future studies will incorporate multi-omics data, spatial relationships in tumor micro-environments, and their translation into personalized cancer therapies. This review emphasizes how single-cell multi-omics can provide insights into the cellular and molecular heterogeneity of the TME, revealing immune evasion mechanisms, metabolic reprogramming, and stromal cell influences. These insights aim to guide the development of personalized and targeted cancer therapies, highlighting the role of TME diversity in shaping tumor behavior and treatment outcomes.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Aysha Ghazy
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtesam S. Al-Dhuayan
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Noof A. Alrabiah
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Ahmed Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
71
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
72
|
Zhao X, Yang L, Pan J, Zeng Z, Zhang T, Yang Y, Zhang J, Chen T, Xiao Z, Pan W. CXCL8 modulates M0 macrophage proliferation and polarization to influence tumor progression in cervical cancer. Sci Rep 2025; 15:790. [PMID: 39755693 PMCID: PMC11700176 DOI: 10.1038/s41598-024-81726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME. A nine-gene prognostic model constructed from immune gene signatures highlighted CXCL8 as a key regulator of M0 macrophage behavior. Functional experiments demonstrated that CXCL8 knockdown in M0 macrophages inhibited their proliferation, shifted polarization toward an M1-dominant phenotype, and reduced tumor-promoting M2 polarization. Co-culture experiments with CXCL8-deficient M0 macrophages further revealed a suppression of HeLa cell proliferation, migration, and invasion. These findings position M0 macrophages as central regulators within the TME and suggest that targeting pathways like CXCL8 could provide novel therapeutic strategies for improving outcomes in CESC patients.
Collapse
Affiliation(s)
- Xiyan Zhao
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Li Yang
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Medical Laboratory science, Guizhou Medical University, Guizhou, Guiyang, 550004, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Jingjing Zhang
- Affiliated Children's Hospital, Nanjing Medical University School of Pediatrics, Nanjing, Jiangsu, 210008, China
| | - Tengxiang Chen
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
| | - Ziwen Xiao
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
| |
Collapse
|
73
|
Chang X, Tamauchi S, Nakagawa A, Xinyuan W, Yoshida K, Yokoi A, Yoshikawa N, Kajiyama H. Chemotherapeutic hormesis induced by the tumor microenvironment in refractory ovarian cancer. Sci Rep 2025; 15:596. [PMID: 39747971 PMCID: PMC11696277 DOI: 10.1038/s41598-024-84290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Advanced ovarian cancer often presents with multiple lesions exhibiting varying responses to chemotherapy, highlighting the critical influence of the tumor microenvironment (TME). This study investigates the phenomenon of chemotherapeutic hormesis, wherein low doses of chemotherapeutic agents, such as cisplatin (CDDP) and paclitaxel (PTX), paradoxically stimulate rather than inhibit cancer cell proliferation. Our findings indicate that NOS3 ovarian cancer cells, particularly drug-resistant variants, exhibit enhanced proliferation when exposed to low concentrations of these drugs. This effect is further amplified under hypoxic conditions, suggesting that the TME plays a pivotal role in modulating chemotherapeutic outcomes. Mechanistically, low-dose CDDP upregulates pathways involved in cell cycle progression, specifically the G2/M checkpoint and mitotic spindle formation, accelerating rather than arresting the cell cycle. Furthermore, the activation of the reactive oxygen species (ROS) pathway and increased glutathione levels indicate increased cellular response to oxidative stress, further contributing to cell survival and proliferation. These findings challenge traditional treatment strategies that prioritize the maximization of drug dosage, suggesting that a more nuanced approach considering the influence of the TME and the potential for hormesis could improve therapeutic outcomes. Understanding the mechanisms driving chemotherapeutic hormesis is essential for developing more effective treatments for refractory ovarian cancer. Future research should focus on mitigating the impact of hormesis to enhance the efficacy of chemotherapy in resistant cancer types.
Collapse
Affiliation(s)
- Xuboya Chang
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Atsushi Nakagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Wang Xinyuan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
74
|
Jiang S, Gurram B, Zhu J, Lei S, Zhang Y, He T, Tagit O, Fang H, Huang P, Lin J. Self-Boosting Programmable Release of Multiple Therapeutic Agents by Activatable Heterodimeric Prodrug-Enzyme Assembly for Antitumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409960. [PMID: 39569709 PMCID: PMC11727268 DOI: 10.1002/advs.202409960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Endogenous stimuli-responsive prodrugs, due to their disease lesion specificity and reduced systemic toxicity, have been widely explored for antitumor therapy. However, reactive oxygen species (ROS) as classical endogenous stimuli in the tumor microenvironment (TME) are not enough to achieve the expected drug release. Herein, a ROS-activatable heterodimeric prodrug-loaded enzyme assembly is developed for self-boosting programmable release of multiple therapeutic agents. The heterodimeric prodrug NBS-TK-PTX (namely NTP) is composed of 5-(ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride analog (NBS), paclitaxel (PTX) and ROS-responsive thioketal (TK) linker, which shows a strong binding affinity with glucose oxidase (GOx), thus obtaining NTP@GOx assembly. Notably, the enzymatic activity of GOx in NTP@GOx is inhibited by NTP. The programmable release is achieved by following steps: i) NTP@GOx is partially dissociated in acidic TME, thus releasing a small segment of NTP and GOx. Thereupon, the enzymatic activity of GOx is recovered; ii) GOx-triggered pH reduction further facilitates the dissociation of NTP@GOx, thus accelerating a large amount of NTP and GOx release; iii) The TK linker of prodrug NTP is cleaved by hydrogen peroxide generated by GOx catalysis, thus expediting the release of NBS for Type-I photodynamic therapy and PTX for chemotherapy, respectively. The NTP@GOx shows great potential for multimodal synergistic cancer therapy.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
- Department of BioInterfacesInstitute for Chemistry and BioanalyticsSchool of Life SciencesFHNW University of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Junfei Zhu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Shan Lei
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Ting He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Oya Tagit
- Department of BioInterfacesInstitute for Chemistry and BioanalyticsSchool of Life SciencesFHNW University of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Hui Fang
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| |
Collapse
|
75
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
76
|
Li H, Lou L, Du J, Li M, Wen X, Zhang Y, Liu S, Zheng ZQ, Liu X. Multimodal profiling uncovers tertiary lymphoid structures as a critical determinant of immunotherapy response and prognosis in nasopharyngeal carcinoma. Oral Oncol 2025; 160:107129. [PMID: 39642574 DOI: 10.1016/j.oraloncology.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Nasopharyngeal carcinoma (NPC), historically termed 'lymphoepithelioma-like carcinoma' due to its rich lymphocyte infiltration, benefit from PD-1 blockade treatment. However, a comprehensive understanding of its tumor microenvironment (TME) remains elusive, hindering the identification of effective biomarkers for immunotherapy. We leveraged multimodal profiling data, including gene expression, immunohistochemistry, and multiplex immunohistochemistry, from three independent cohorts of NPC patients with a total of 327 patients to dissect the TME in NPC. Unsupervised hierarchical clustering of TME cell populations in the discovery cohort revealed two novel subtypes with distinct prognosis: 'Immune Inflamed' and 'Immune Deficient'. Intriguingly, the most significant differences between the two subtypes were the abundance of B cells and tertiary lymphoid structures (TLS), with a nearly two-fold increase in TLS presence in the Immune Inflamed subtype. The prognostic significance of TLS was confirmed in three independent NPC cohorts, surpassing the prognostic value of individual immune cell subsets. Mechanistically, TLS enhanced anti-tumor immunity by increasing T and B cell receptor repertoire diversity, promoting infiltration of plasma cells, macrophages, and natural killer cells, and consequently increasing antibody-dependent cell-mediated cytotoxicity and antibody-dependent phagocytosis. Finally, TLS status robustly predicted prognosis in a cohort of NPC patients treated with PD-1 blockade, and its prognostic value was consistent across a pan-cancer immunotherapy cohort of 10 tumors and 1158 patients, although with context-specific effects depending on cancer type and immunotherapy modality. In conclusion, this study provides compelling evidence that TLS is a robust indicator of overall immune response within TME and have great potential to guide individualized immunotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, China
| | - Liming Lou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Juan Du
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianhui Wen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.
| | - Songran Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Zi-Qi Zheng
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Xu Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.
| |
Collapse
|
77
|
Arafeh R, Shibue T, Dempster JM, Hahn WC, Vazquez F. The present and future of the Cancer Dependency Map. Nat Rev Cancer 2025; 25:59-73. [PMID: 39468210 DOI: 10.1038/s41568-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Despite tremendous progress in the past decade, the complex and heterogeneous nature of cancer complicates efforts to identify new therapies and therapeutic combinations that achieve durable responses in most patients. Further advances in cancer therapy will rely, in part, on the development of targeted therapeutics matched with the genetic and molecular characteristics of cancer. The Cancer Dependency Map (DepMap) is a large-scale data repository and research platform, aiming to systematically reveal the landscape of cancer vulnerabilities in thousands of genetically and molecularly annotated cancer models. DepMap is used routinely by cancer researchers and translational scientists and has facilitated the identification of several novel and selective therapeutic strategies for multiple cancer types that are being tested in the clinic. However, it is also clear that the current version of DepMap is not yet comprehensive. In this Perspective, we review (1) the impact and current uses of DepMap, (2) the opportunities to enhance DepMap to overcome its current limitations, and (3) the ongoing efforts to further improve and expand DepMap.
Collapse
Affiliation(s)
- Rand Arafeh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
78
|
Wang Q, Li S, Fan Y, Chen W, Jiang Q, Sun X, Lv Q, Li W, Jia Y. Yiqi Jianpi Kangai Decoction Enhances the Chemotherapy Effect by Inducing Apoptosis and Regulating Treg and Th17 Cells in Colorectal Cancer Mice Model with Spleen Qi Deficiency. J Evid Based Integr Med 2025; 30:2515690X241313097. [PMID: 39980387 PMCID: PMC11843709 DOI: 10.1177/2515690x241313097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/10/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Colorectal Cancer (CRC) is widely prevalent worldwide and its incidence is increasing. Chemotherapy is an important treatment method for colorectal cancer in addition to surgery, but it often causes physical and mental pain to patients due to its side effects. TCM emphasizes evidence-based treatment and a holistic concept, and the combination of TCM and chemotherapy can reduce chemotherapy side effects, improve chemotherapy efficacy, and enhance patients' immunity. Yiqi Jianpi Kangai Decoction (YQJP) has been used clinically to treat patients with advanced colorectal cancer and may improve their immune function and prognosis. However, its mechanism has not been elucidated. OBJECTIVE The study aims to explore the effect and mechanism of YQJP on enhancing the therapeutic effect of chemotherapy on spleen qi deficiency type CRC mice. METHODS We used HPLC/MS to characterize the active substance components in YQJP. We established the spleen qi deficiency model induced by using the compound methods of diarrhea of bitter and cold, starvation, and full and excessive labor. and then inoculated CT-26 mouse colon cancer cells subcutaneously to establish the CRC Mice. We also evaluated the efficacy and mechanism of YQJP by using oral Yiqi Jianpi Kangai Decoction combined with an intraperitoneal injection of chemotherapeutic drugs (FOLFOX regimen). We evaluated the efficacy and safety of YQJP by observing the general condition (body weight, tumor size, food intake, hair condition, stool condition), HE staining, blood routine, and organ index of the mice. The expression of CD8+, CD4+ T cells, Th17 cells, and Treg cells in the tumor and spleen were detected by flow cytometry, and the levels of IL-17, IL-10, IFN-γ and TGF-β in the tumor were detected by ELISA; the expression of Ki-67, PCNA, RORγt and FOXP3 proteins in the tumor was detected by immunohistochemistry. RESULTS YQJP contains 7 herbal compounds, which can effectively improve body weight, spleen condition, and bone marrow suppression in tumor-bearing mice inhibit tumor growth, and do not damage tissues and organs, which initially confirmed the anti-cancer effect and safety of YQJP. Further experiments showed that YQJP could elevate the proportion of CD8+, CD4+ T cells in the spleen, increase the proportion of Th17 cells in the tumor tissue of mice, and decrease the level of Treg cells. It can inhibit the expression of Ki-67 and PCNA. Meanwhile, it promotes the expression of IL-17 and IFN-γ and inhibits the expression of IL-10 and TGF-β. In addition, it can reduce the relative expression of FOXP3 and increase the relative expression of RORγt. CONCLUSION The combination of YQJP with chemotherapy had the effect of tumor suppression and enhanced chemotherapeutic efficacy in the spleen qi deficiency CRC mice. The related mechanism may be related to inhibiting proliferation, promoting apoptosis of tumor cells, increasing Th17 cells in tumor tissues, and decreasing Treg cell expression to improve the tumor microenvironment.
Collapse
Affiliation(s)
- Qinsha Wang
- The First Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, Guizhou Province, China
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Shichao Li
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yao Fan
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weidong Chen
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qingfeng Jiang
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xin Sun
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qijun Lv
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wusheng Li
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yingtian Jia
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
79
|
Sergazy S, Seydahmetova R, Gulyayev A, Shulgau Z, Aljofan M. The Role of Exosomes in Cancer Progression and Therapy. BIOLOGY 2025; 14:27. [PMID: 39857258 PMCID: PMC11763171 DOI: 10.3390/biology14010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are small extracellular vesicles and are crucial in intercellular communication. Interestingly, tumor-derived exosomes carry oncogenic molecules, such as proteins and microRNAs, which can reprogram recipient cells, promote angiogenesis, and stimulate cancer pre-metastatic niche, supporting cancer growth and metastasis. On the other hand, their biocompatibility, stability, and ability to cross biological barriers make them attractive candidates for drug delivery. Recent advances have shown the potential for exosomes to be used in early disease detection and in targeted drug therapy by delivering therapeutic agents specifically to tumor sites. Despite the promising applications, a number of challenges remain, including exosome isolation and characterization, as well as their inherent heterogeneity. Thus, the current review aims to describe the roles of exosomes in health and disease, and discuss the challenges that hinder their development into becoming useful medical tools.
Collapse
Affiliation(s)
- Shynggys Sergazy
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Roza Seydahmetova
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
| | - Alexandr Gulyayev
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zarina Shulgau
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Mohamad Aljofan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
80
|
Huang B, Chen Y, Yuan S. Application of Spatial Transcriptomics in Digestive System Tumors. Biomolecules 2024; 15:21. [PMID: 39858416 PMCID: PMC11761220 DOI: 10.3390/biom15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In the field of digestive system tumor research, spatial transcriptomics technologies are used to delve into the spatial structure and the spatial heterogeneity of tumors and to analyze the tumor microenvironment (TME) and the inter-cellular interactions within it by revealing gene expression in tumors. These technologies are also instrumental in the diagnosis, prognosis, and treatment of digestive system tumors. This review provides a concise introduction to spatial transcriptomics and summarizes recent advances, application prospects, and technical challenges of these technologies in digestive system tumor research. This review also discusses the importance of combining spatial transcriptomics with single-cell RNA sequencing (scRNA-seq), artificial intelligence, and machine learning in digestive system cancer research.
Collapse
Affiliation(s)
- Bowen Huang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| | - Yingjia Chen
- Health Science Center, Peking University, Beijing 100191, China
| | - Shuqiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| |
Collapse
|
81
|
Zhang S, Chen J, Cheng F, Zheng F. The Emerging Role of Schwann Cells in the Tumor Immune Microenvironment and Its Potential Clinical Application. Int J Mol Sci 2024; 25:13722. [PMID: 39769484 PMCID: PMC11679251 DOI: 10.3390/ijms252413722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
As the primary glial cells in the peripheral nervous system (PNS), Schwann cells (SCs) have been proven to influence the behavior of cancer cells profoundly and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Indeed, the tumor microenvironment (TME) is a critical factor that can significantly limit the efficacy of immunotherapeutic approaches. The TME promotes tumor progression in part by reshaping an immunosuppressive state. The immunosuppressive TME is the result of the crosstalk between the tumor cells and the different immune cell subsets, including macrophages, natural killer (NK) cells, dendritic cells (DCs), lymphocytes, myeloid-derived suppressor cells (MDSCs), etc. They are closely related to the anti-tumor immune status and the clinical prognosis of cancer patients. Increasing research demonstrates that SCs influence these immune cells and reshape the formation of the immunosuppressive TME via the secretion of various cytokines, chemokines, and other effector molecules, eventually facilitating immune evasion and tumor progression. In this review, we summarize the SC reprogramming in TME, the emerging role of SCs in tumor immune microenvironment, and the underlying mechanisms involved. We also discuss the possible therapeutic strategies to selectively target SCs, providing insights and perspectives for future research and clinical studies involving SC-targeted treatment.
Collapse
Affiliation(s)
- Shan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
82
|
Yang JP, Kulkarni NN, Yamaji M, Shiraishi T, Pham T, Do H, Aiello N, Shaw M, Nakamura T, Abiru A, Gavva NR, Horman SR. Unveiling immune cell response disparities in human primary cancer-associated fibroblasts between two- and three-dimensional cultures. PLoS One 2024; 19:e0314227. [PMID: 39700125 DOI: 10.1371/journal.pone.0314227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play pivotal roles in solid tumor initiation, growth, and immune evasion. However, the optimal biomimetic modeling conditions remain elusive. In this study, we investigated the effects of 2D and 3D culturing conditions on human primary CAFs integrated into a modular tumor microenvironment (TME). Using single-nucleus RNA sequencing (snRNAseq) and Proteomics' Proximity Extension Assays, we characterized CAF transcriptomic profiles and cytokine levels. Remarkably, when cultured in 2D, CAFs exhibited a myofibroblast (myCAF) subtype, whereas in 3D tumor spheroid cultures, CAFs displayed a more inflammatory (iCAF) pathological state. By integrating single-cell gene expression data with functional interrogations of critical TME-related processes [natural killer (NK)-mediated tumor killing, monocyte migration, and macrophage differentiation], we were able to reconcile form with function. In 3D TME spheroid models, CAFs enhance cancer cell growth and immunologically shield cells from NK cell-mediated cytotoxicity, in striking contrast with their 2D TME counterparts. Notably, 3D CAF-secreted proteins manifest a more immunosuppressive profile by enhancing monocyte transendothelial migration and differentiation into M2-like tumor-associated macrophages (TAMs). Our findings reveal a more immunosuppressive and clinically relevant desmoplastic TME model that can be employed in industrial drug discovery campaigns to expand the cellular target range of chemotherapeutics.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Nikhil Nitin Kulkarni
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Masashi Yamaji
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | | | - Thang Pham
- BioTuring, San Diego, California, United States of America
| | - Han Do
- BioTuring, San Diego, California, United States of America
| | - Nicole Aiello
- Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Shaw
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | | | - Akiko Abiru
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Narender R Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
83
|
Xu M, Hu Y, Wu J, Liu J, Pu K. Sonodynamic Nano-LYTACs Reverse Tumor Immunosuppressive Microenvironment for Cancer Immunotherapy. J Am Chem Soc 2024; 146:34669-34680. [PMID: 39644208 DOI: 10.1021/jacs.4c13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Extracellular and transmembrane proteins, which account for the products of approximately 40% of all protein-encoding genes in tumors, play a crucial role in shaping the tumor immunosuppressive microenvironment (TIME). While protein degradation therapy has been applied to membrane proteins of cancer cells, it has rarely been extended to immune cells. We herein report a polymeric nanolysosome targeting chimera (nano-LYTAC) that undergoes membrane protein degradation on M2 macrophages and generates a sonodynamic effect for combinational cancer immunotherapy. Nano-LYTAC is found to have higher degradation efficacy to the interleukin 4 receptor (IL-4R) compared to traditional inhibitors. More importantly, it is revealed that the effect of nano-LYTAC on the function of the M2 macrophage is concentration-dependent: downregulating CD206 expression and interleukin 10 (IL-10) secretion from M2 macrophages at low concentration, while triggering their apoptosis at high concentration. Moreover, nano-LYTAC is found to possess long tumor retention (>48 h), allowing for multiple sonodynamic treatments with a single dose. Such a synergistic sonodynamic immunotherapy mediated by nano-LYTAC effectively reprograms the TIME via inhibiting the functions of M2 macrophages and regulatory T cells (Tregs), as well as promoting the maturation of dendritic cells (DCs) and tumor infiltration of T effector cells (Teffs), completely suppressing tumor growth, inhibiting pulmonary metastasis, and preventing recurrence under preclinical animal models.
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
84
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
85
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
86
|
Takano Y, Suzuki J, Nomura K, Fujii G, Zenkoh J, Kawai H, Kuze Y, Kashima Y, Nagasawa S, Nakamura Y, Kojima M, Tsuchihara K, Seki M, Kanai A, Matsubara D, Kohno T, Noguchi M, Nakaya A, Tsuboi M, Ishii G, Suzuki Y, Suzuki A. Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development. Nat Commun 2024; 15:10637. [PMID: 39639005 PMCID: PMC11621540 DOI: 10.1038/s41467-024-54671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The interaction of tumor cells and their microenvironment is thought to be a key factor in tumor development. We present spatial RNA profiles obtained from 30 lung adenocarcinoma patients at the non-invasive and later invasive stages. We use spatial transcriptome sequencing data in conjunction with in situ RNA profiling to conduct higher resolution analyses. The detailed examination of each case, as well as the subsequent computational analyses based on the observed diverse profiles, reveals that significant changes in the phenotypic appearances of tumor cells are frequently associated with changes in immune cell features. The phenomenon coincides with the induction of a series of cellular expression programs that enable tumor cells to transform and break through the immune cell barrier, allowing them to progress further. The study shows how lung tumors develop through interaction in their microenvironments.
Collapse
Affiliation(s)
- Yuma Takano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Pharmaceutical Science Department, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Gento Fujii
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Junko Zenkoh
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hitomi Kawai
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Kuze
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoi Nagasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuka Nakamura
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Akihiro Nakaya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
87
|
Han E, Choi HY, Kwon HJ, Chung YR, Shin HC, Kim EK, Suh KJ, Kim SH, Kim JH, Park SY. Characterization of tumor-infiltrating lymphocytes and their spatial distribution in triple-negative breast cancer. Breast Cancer Res 2024; 26:180. [PMID: 39643914 PMCID: PMC11622547 DOI: 10.1186/s13058-024-01932-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment, particularly tumor-infiltrating lymphocytes (TILs), plays a critical role in disease progression and treatment response in triple-negative breast cancers (TNBCs). This study was aimed to characterize the composition of TILs and investigate their clinicopathological and prognostic significance with a special focus on the spatial distribution of TILs in TNBCs. METHODS We analyzed TNBC samples through PanCancer Immune Profiling using NanoString nCounter assays to identify immune-related genes that are expressed differentially in relation to TIL levels and evaluated protein expression of selected markers through immunohistochemical staining on tissue microarrays. For a comprehensive assessment of the expression of cytotoxic T lymphocyte (CTL) and natural killer (NK) cell markers, a CTL-NK score was devised based on CD8+, CD56+, CD57+, GNLY+, and GZMB+ TIL levels. RESULTS Gene expression analysis revealed significant upregulation of CTL and NK cell-associated genes including GNLY, KLRC2, and GZMB in TIL-high TNBCs. Immunohistochemical validation confirmed that TNBCs with higher TILs had a greater amount of CD56+, CD57+, GNLY+, and GZMB+ TILs not only in absolute number but also in proportion relative to CD4+ or CD8+ TILs. High TIL and its subset (CD4+, CD8+, CD56+, CD57+, GNLY+, and GZMB+ TIL) infiltration correlated with favorable clinicopathological features of tumor. In survival analysis, high CTL-NK score was found to be an independent prognostic factor for better disease-free survival (DFS) of the patients. Furthermore, uniformly high TIL infiltration was linked to better DFS, whereas cases with heterogeneous TIL infiltration showed no difference in survival compared to those with uniformly low TIL infiltration. CONCLUSION Our study showed that CTL and NK cell-associated gene expression and protein levels differ significantly according to TIL levels and that CTL-NK score and distribution of TILs within tumors have a prognostic value. These findings emphasize the importance of CTLs and NK cells as well as the spatial uniformity of TIL infiltration in clinical outcome of TNBC patients, providing valuable insights for refining prognostic assessments and guiding immunotherapeutic strategies.
Collapse
Affiliation(s)
- Eunkyung Han
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Hye Yeon Choi
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Yul Ri Chung
- Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Hee-Chul Shin
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Eun-Kyu Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea.
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea.
| |
Collapse
|
88
|
Wang Y. Prognostic significance of CNNM4 in ovarian cancer: a comprehensive bioinformatics analysis. Front Oncol 2024; 14:1483425. [PMID: 39691602 PMCID: PMC11649545 DOI: 10.3389/fonc.2024.1483425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background Ovarian cancer (OV) is a common malignancy in the female reproductive system, characterized by poor prognosis and high recurrence rates. The discovery of dependable molecular markers is crucial for improving the timeliness of detection, diagnosis, and treatment, ultimately aiming to lower fatality rates. CNNM4 (cyclin and CBS domain divalent metal cation transport mediator 4), a member of the CNNM (Cyclin M) family, binds to PRL (prolactin) to regulate magnesium homeostasis and influence tumor cell proliferation. Although CNNM4 is implicated in various cancers, its role in OV remains unclear. Methods In vitro experiments assessed CNNM4 expression and its impact on the proliferation and migration of OV cells. Comparisons of TCGA and GTEx data were used to identify correlations between clinical features and outcomes. The role of CNNM4 in OV was further explored through comprehensive bioinformatics analyses. Results Elevated levels of CNNM4 expression were observed in OV cells and tissues, and were linked to a poor prognosis. CNNM4 could modulate the proliferation and migration of various OV cell lines, including IOSE-80, SKOV-3, and A2780. Through involvement in multiple signaling pathways, evidenced by GSVA and GSEA, CNNM4 was implicated in OV progression. CNNM4 positively regulated the infiltration level of Macrophages M2, T cells CD4 memory resting and NK cells resting, and had a negative regulation effect on NK cells activated and T cells gamma delta. Moreover, CNNM4 is related to drug sensitivity of OV. A prediction model based on CNNM4 expression and clinical symptoms was constructed to predict OV prognosis. Conclusion CNNM4 may affect the progression of OV and is associated with a poor prognosis. It has potential as a biomarker for predicting survival and as a target for therapeutic interventions in OV patients.
Collapse
Affiliation(s)
- Yiya Wang
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
89
|
Shi M, Dong T, Lin J, Huang L, Zhang H, Sun S. Characterizing dynamic tumor-immune interactions in lung adenocarcinoma through orthotopic allograft modeling. Eur J Immunol 2024; 54:e2451342. [PMID: 39479750 DOI: 10.1002/eji.202451342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024]
Abstract
The major clinical challenge in lung cancer immunotherapy is drug resistance. Therefore, establishing efficient orthotopic lung cancer mouse models to explore the mechanisms of drug immunotherapy resistance is highly important. In this study, we generated multiple fluorescently labeled lung adenocarcinoma cell lines from a genetically engineered KPZ mice model. Orthotopic transplantation of the primary 1F3 cell line induced a strong immune response, causing many small tumors to disappear, but some tumors evaded the immune attack and eventually formed large tumors. Tumor microenvironment analysis demonstrated that M2 macrophages play key roles in the immune response. Further mechanistic studies revealed that the chemokine CCL7 promoted the infiltration of M2 macrophages to facilitate immune escape, thereby promoting tumor growth in the orthotopic mouse model. Moreover, CCL7 levels were elevated in human lung cancer biopsies and positively correlated with M2 macrophage infiltration, and high CCL7 levels predicted advanced pathological stage and poor survival in lung cancer patients. Overall, we established a visualized and orthotopic mouse model with fluorescently labeled cells to better dissect the tumor microenvironment of lung cancer and define the critical role of CCL7 in promoting M2 macrophage polarization and tumorigenesis, providing new preclinical tools and potential targets for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Mingjun Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianqi Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huixia Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
90
|
Rajkhowa S, Jha S. The role of NLRP3 and NLRP12 inflammasomes in glioblastoma. Genes Immun 2024; 25:541-551. [PMID: 39604503 DOI: 10.1038/s41435-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is the deadliest malignant brain tumor, with a survival of less than 14 months after diagnosis. The highly invasive nature of GBM makes total surgical resection challenging, leading to tumor recurrence and declined survival. The heterocellular composition of the GBM reprograms its microenvironment, favoring tumor growth, proliferation, and migration. The innate immune cells in the GBM tumor microenvironment, including microglia, astrocytes, and macrophages, express pattern recognition receptors such as NLRs (Nucleotide-binding domain and leucine-rich repeat-containing) that sense pathogen- and damage-associated molecular patterns initiating inflammation. Upon activation, NLRP3 promotes inflammation by NLRP3 inflammasome formation. Auto-proteolytic cleavage and activation of Caspase-1 within the inflammasome leads to caspase-1-mediated cleavage, activation, and conversion of pro-IL-1ß and pro-IL-18 to IL-1ß and IL-18, leading to pyroptosis. In contrast, NLRP12 downregulates inflammatory responses in microglia and macrophages by regulating the NF-κB pathway. NLRP3 and NLRP12 have been implicated in the disease pathophysiology of several cancers with cell-context-dependent, pro- or anti-tumorigenic roles. In this review, we discuss the current literature on the mechanistic roles of NLRP3 and NLRP12 in GBM and the gaps in the scientific literature in the context of GBM pathophysiology with potential for targeted therapeutics.
Collapse
Affiliation(s)
- Sushmita Rajkhowa
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
91
|
He X, Zhong L, Wang N, Zhao B, Wang Y, Wu X, Zheng C, Ruan Y, Hou J, Luo Y, Yin Y, He Y, Xiang AP, Wang J. Gastric Cancer Actively Remodels Mechanical Microenvironment to Promote Chemotherapy Resistance via MSCs-Mediated Mitochondrial Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404994. [PMID: 39392399 DOI: 10.1002/advs.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Chemotherapy resistance is the main reason of treatment failure in gastric cancer (GC). However, the mechanism of oxaliplatin (OXA) resistance remains unclear. Here, we demonstrate that extracellular mechanical signaling plays crucial roles in OXA resistance within GC. We selected OXA-resistant GC patients and analyzed tumor tissues by single-cell sequencing, and found that the mitochondrial content of GC cells increased in a biosynthesis-independent manner. Moreover, we found that the increased mitochondria of GC cells were mainly derived from mesenchymal stromal cells (MSCs), which could repair the mitochondrial function and reduce the levels of mitophagy in GC cells, thus leading to OXA resistance. Furthermore, we investigated the underlying mechanism and found that mitochondrial transfer was mediated by mechanical signals of the extracellular matrix (ECM). After OXA administration, GC cells actively secreted ECM in the tumor microenvironment (TEM), increasing matrix stiffness of the tumor tissues, which promoted mitochondria to transfer from MSCs to GC cells via microvesicles (MVs). Meanwhile, inhibiting the mechanical-related RhoA/ROCK1 pathway could alleviate OXA resistance in GC cells. In summary, these results indicate that matrix stiffness could be used as an indicator to identify chemotherapy resistance, and targeting mechanical-related pathway could effectively alleviate OXA resistance and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Xin He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Zhong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Nan Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yannan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinxiang Wu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changyu Zheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yueheng Ruan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuehan Yin
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
92
|
Domenici G, Lopes NF, Trindade G, Ramella Gal I, Miret Minard J, Rebelo SP, Freitas C, Duarte N, Brito C. Assessing Novel Antibody-Based Therapies in Reconstructive 3D Cell Models of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2400431. [PMID: 39601467 DOI: 10.1002/adbi.202400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Targeted, combinatorial, and immunomodulatory therapies, such as antibody-drug conjugates (ADCs) and immunomodulatory antibodies (Abs), are powerful weapons against tumor cells and immune cells within the tumor microenvironment (TME). Therefore, the evaluation of such therapies should be conducted in pre-clinical models able to recapitulate the complex cellular and molecular crosstalk of the TME. To build-in critical hallmarks of the TME, a breast cancer heterotypic 3D cell model (3D-3) is devised using a microencapsulation strategy with an inert biomaterial (alginate) and agitation-based cultures. Both stromal and immune components are added to multicellular tumor spheroids, therefore fostering cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) immunomodulatory interactions. The potential of the methodology to assess Ab-based therapies is then addressed by employing a series of anti-HER2-based ADCs. ADCs induced tumor-cell specific cytotoxicity toward HER2+ breast cancer spheroids while sparing HER2-negative CAFs. In addition, an immunomodulatory blocking Ab against colony-stimulating factor 1 receptor (CSF1R) decreases the expression of immunosuppressive and anti-inflammatory markers in TAMs, like what is previously observed upon in vivo α-CSF1R administration. Collectively, the human TME-based 3D-3 cell model is a suitable tool to evaluate the anti-tumor and immunomodulatory potential of novel antibody-based therapies directed against TME targets, such as cancer cells and macrophages.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Nuno F Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Gonçalo Trindade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Isabella Ramella Gal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Joan Miret Minard
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193, Spain
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
| | - Catarina Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Nádia Duarte
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
93
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
94
|
Corica DA, Bell SD, Miller PJ, Kasperbauer DT, Lawler NJ, Wakefield MR, Fang Y. Into the Future: Fighting Melanoma with Immunity. Cancers (Basel) 2024; 16:4002. [PMID: 39682188 DOI: 10.3390/cancers16234002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Immunotherapy offers a novel and promising option in the treatment of late-stage melanoma. By utilizing the immune system to assist in tumor destruction, patients have additional options after tumor progression. Immune checkpoint inhibitors reduce the ability for tumors to evade the immune system by inhibiting key surface proteins used to inactivate T-cells. Without these surface proteins, T-cells can induce cytotoxic responses against tumors. Tumor infiltrating lymphocyte therapy is a form of adoptive cell therapy that takes advantage of a small subset of T-cells that recognize and infiltrate tumors. Isolation and rapid expansion of these colonies assist the immune system in mounting a charged response that can induce remission. Tumor vaccines deliver a high dose of unique antigens expressed by tumor cells to the entire body. The introduction of large quantities of tumor antigens upregulates antigen presenting cells and leads to effective activation of the immune system against tumors. Cytokine therapy introduces high amounts of chemical messengers that are endogenous to the immune system and support T-cell expansion. While other methods of immunotherapy exist, immune checkpoint inhibitors, tumor infiltrating lymphocytes, tumor vaccines, and cytokine therapy are commonly used to treat melanoma. Like many other cancer treatments, immunotherapy is not without adverse effects, as toxicities represent a major obstacle. However, immunotherapy has been efficacious in the treatment of melanoma.
Collapse
Affiliation(s)
- Derek A Corica
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Peyton J Miller
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Daniel T Kasperbauer
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Nicholas J Lawler
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
95
|
Lu Q, Liu Z, Wang X. Inferring tumor purity using multi-omics data based on a uniform machine learning framework MoTP. Brief Bioinform 2024; 26:bbaf056. [PMID: 39950745 PMCID: PMC11826339 DOI: 10.1093/bib/bbaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Existing algorithms for assessing tumor purity are limited to a single omics data, such as gene expression, somatic copy number variations, somatic mutations, and DNA methylation. Here we proposed the machine learning Multi-omics Tumor Purity prediction (MoTP) algorithm to estimate tumor purity based on multiple types of omics data. MoTP utilizes the Bayesian Regularized Neural Networks as the prediction algorithm, and Consensus Tumor Purity Estimates as labels. We trained MoTP using multi-omics data (mRNA, microRNA, long non-coding RNA, and DNA methylation) across 21 TCGA solid cancer types. By testing MoTP in TCGA validation sets, TCGA test sets, and eight datasets outside the TCGA cancer cohorts, we showed that although MoTP could achieve excellent performance in predicting tumor purity based on a single omics data type, the integration of multiple single omics data-based predictions can enhance the prediction performance. Moreover, we demonstrated the robustness of MoTP by testing it in datasets with Gaussian noise and feature missing. Benchmark analysis showed that MoTP outperformed most established tumor purity prediction algorithms, and that it required less running time and computational resource to fulfill the predictive task. Thus, MoTP would be an attractive option for computational tumor purity inference.
Collapse
Affiliation(s)
- Qiqi Lu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
96
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
97
|
Sader D, Zlotver I, Moya S, Calabrese GC, Sosnik A. Doubly self-assembled dermatan sulfate/chitosan nanoparticles for targeted siRNA delivery in cancer therapy. J Colloid Interface Sci 2024; 680:763-775. [PMID: 39580927 DOI: 10.1016/j.jcis.2024.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy. In addition, these colloidal systems exhibit a strongly negative zeta-potential that confers them excellent physical stability for at least four months owing to electrostatic repulsion and evidences the exposure of the polyanionic dermatan sulfate on the surface. The key role of dermatan sulfate in the active targeting and intracellular delivery of the cargo in the murine breast cancer cell line 4T1, a model of TNBC, is confirmed by confocal laser scanning microscopy and imaging flow cytometry. Finally, the silencing efficiency is demonstrated in 4T1 cell viability, migration, proliferation and spheroid formation assays in vitro. Overall results highlight the promise of this simple, reproducible and scalable method for the nanoencapsulation of siRNA and other therapeutic nucleic acids.
Collapse
Affiliation(s)
- Dareen Sader
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Graciela C Calabrese
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) and Instituto de Química Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel.
| |
Collapse
|
98
|
Chida K, Wu R, Roy AM, Ishikawa T, Hakamada K, Takabe K. DEPTH2 score was associated with cell proliferation and immune cell infiltrations but not with systemic treatment response in breast cancer. RESEARCH SQUARE 2024:rs.3.rs-5260856. [PMID: 39606492 PMCID: PMC11601872 DOI: 10.21203/rs.3.rs-5260856/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Intratumoral genomic heterogeneity (ITGH), the existence of genotypic and phenotypic variation within an individual tumor, is known to be a key mechanism in treatment resistance. Deviating gene Expression Profiling Tumor Heterogeneity 2 (DEPTH2) algorithm was developed to estimate ITGH using solely RNA expression data unlike the others that require both DNA- and RNA-expression data. Total of 6,500 breast cancer patients from multiple independent cohorts were analyzed using DEPTH2. High DEPTH2 score patients were associated with worse overall survival consistently across all subtypes in METABRIC, but not in TCGA and SCAN-B cohort. Higher DEPTH2 score was linked to increased cell proliferation, as evidenced by elevated Nottingham histological grades and Ki67 gene expression, as well as enrichment of the cell proliferation-related gene sets, and immune cell infiltrations. DEPTH2 score was significantly higher in triple negative breast cancer among the subtypes but did not reflect with lymph node and distal metastasis. DEPTH2 scores decreased in two but showed no change in another two cohorts after neoadjuvant chemotherapy (NAC). DEPTH2 score was not associated with pathologic complete response after NAC in any subtypes across 3 cohorts. DEPTH2 score may not capture the entire biological aspects of ITGH in breast cancer patients.
Collapse
|
99
|
Miki K, Yagi M, Hatae R, Otsuji R, Miyazaki T, Goto K, Setoyama D, Fujioka Y, Sangatsuda Y, Kuga D, Higa N, Takajo T, Hajime Y, Akahane T, Tanimoto A, Hanaya R, Kunisaki Y, Uchiumi T, Yoshimoto K. Glutaminolysis is associated with mitochondrial pathway activation and can be therapeutically targeted in glioblastoma. Cancer Metab 2024; 12:35. [PMID: 39563470 DOI: 10.1186/s40170-024-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Glioblastoma is an aggressive cancer that originates from abnormal cell growth in the brain and requires metabolic reprogramming to support tumor growth. Metabolic reprogramming involves the upregulation of various metabolic pathways. Although the activation of specific metabolic pathways in glioblastoma cell lines has been documented, the comprehensive profile of metabolic reprogramming and the role of each pathway in glioblastoma tissues in patients remain elusive. METHODS We analyzed 38 glioblastoma tissues. As a test set, we examined 20 tissues from Kyushu University Hospital, focusing on proteins related to several metabolic pathways, including glycolysis, the one-carbon cycle, glutaminolysis, and the mitochondrial tricarboxylic acid cycle. Subsequently, we analyzed an additional 18 glioblastoma tissues from Kagoshima University Hospital as a validation set. We also validated our findings using six cell lines, including U87, LN229, U373, T98G, and two patient-derived cells. RESULTS The levels of mitochondria-related proteins (COX1, COX2, and DRP1) were correlated with each other and with glutaminolysis-related proteins (GLDH and GLS1). Conversely, their expression was inversely correlated with that of glycolytic proteins. Notably, inhibiting the glutaminolysis pathway in cell lines with high GLDH and GLS1 expression proved effective in suppressing tumor growth. CONCLUSIONS Our findings confirm that glioblastoma tissues can be categorized into glycolytic-dominant and mitochondrial-dominant types, as previously reported. The mitochondrial-dominant type is also glutaminolysis-dominant. Therefore, inhibiting the glutaminolysis pathway may be an effective treatment for mitochondrial-dominant glioblastoma.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro Miyazaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Katsuhiro Goto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yonezawa Hajime
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
100
|
Feng J, Bin JL, Liao XW, Wu Y, Tang Y, Lu PZ, Zhu GZ, Cui QR, Dan YY, Yang GH, Li LX, Deng JH, Peng T, Hooi SC, Zhou J, Lu GD. The prognostic role of ACSL4 in postoperative adjuvant TACE-treated HCC: implications for therapeutic response and mechanistic insights. J Exp Clin Cancer Res 2024; 43:306. [PMID: 39563427 PMCID: PMC11575417 DOI: 10.1186/s13046-024-03222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE) treatment and its underlying mechanisms remain elusive. This study investigates the role of enzymes involved in fatty acid activation, specifically Acyl-CoA synthetase long chain 4 (ACSL4), in HCC patients treated with postoperative adjuvant TACE (PA-TACE) and in nutrient-deprived HCC cells. METHODS We examined the expression of ACSL4 and its family members in HCC clinical samples and cell lines. The clinical significance of ACSL4, particularly regarding the prognosis of patients treated with PA-TACE, was assessed using two independent HCC cohorts. We further explored the role of ACSL4 in glucose starvation-induced cell death in HCC cells and xenograft mouse models. RESULTS Among the family members, ACSL4 is the most up-regulated enzyme, associated with poor survival in HCC patients, particularly in post-recurrent TACE-treated patients in a Singapore cohort. ACSL4 is essential for HCC cell survival in response to glucose starvation, rather than to hypoxia or to the combination of hypoxia with doxorubicin or cisplatin. ACSL4-mediated arachidonic acid (AA) metabolism supports mitochondrial β-oxidation and energy production. CCAAT/enhancer binding protein α (CEBPA) transcriptionally regulates ACSL4 by binding 3 motifs (-623 to -613, -1197 to -1187 and -1745 to -1735) of ACSL4 upstream promoter region, enhancing its pro-survival effects. Furthermore, canagliflozin (Cana), a clinical-approved drug for type 2 diabetes, mimics glucose starvation and inhibits the growth of ACSL4-low xenograft tumors. Moreover, high ACSL4 or CEBPA expressions correlate with increased recurrence susceptibility after PA-TACE in the China-Guangxi HCC cohort. CONCLUSIONS The CEBPA-ACSL4 pathway is critical in protecting HCC cells from glucose starvation-induced cell death, suggesting that ACSL4 and CEBPA could serve as valuable prognostic indicators and potential therapeutic targets in the context of PA-TACE treatment for HCC.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Basic Research On Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pei-Zhi Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qian-Ru Cui
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Xin Li
- Department of Hepato-Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Huan Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, Guangxi, 530021, China.
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore, 117593, Singapore.
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, Guangxi, 530021, China.
| |
Collapse
|