51
|
De Meester G, Pafilis P, Vasilakis G, Van Damme R. Exploration and spatial cognition show long-term repeatability but no heritability in the Aegean wall lizard. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
52
|
The role of natural history in animal cognition. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Hooper R, Brett B, Thornton A. Problems with using comparative analyses of avian brain size to test hypotheses of cognitive evolution. PLoS One 2022; 17:e0270771. [PMID: 35867640 PMCID: PMC9307164 DOI: 10.1371/journal.pone.0270771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
There are multiple hypotheses for the evolution of cognition. The most prominent hypotheses are the Social Intelligence Hypothesis (SIH) and the Ecological Intelligence Hypothesis (EIH), which are often pitted against one another. These hypotheses tend to be tested using broad-scale comparative studies of brain size, where brain size is used as a proxy of cognitive ability, and various social and/or ecological variables are included as predictors. Here, we test how robust conclusions drawn from such analyses may be. First, we investigate variation in brain and body size measurements across >1000 bird species. We demonstrate that there is substantial variation in brain and body size estimates across datasets, indicating that conclusions drawn from comparative brain size models are likely to differ depending on the source of the data. Following this, we subset our data to the Corvides infraorder and interrogate how modelling decisions impact results. We show that model results change substantially depending on variable inclusion, source and classification. Indeed, we could have drawn multiple contradictory conclusions about the principal drivers of brain size evolution. These results reflect concerns from a growing number of researchers that conclusions drawn from comparative brain size studies may not be robust. We suggest that to interrogate hypotheses of cognitive evolution, a fruitful way forward is to focus on testing cognitive performance within and between closely related taxa, with an emphasis on understanding the relationship between informational uncertainty and cognitive evolution.
Collapse
Affiliation(s)
- Rebecca Hooper
- University of Exeter, Centre for Ecology and Conservation, College of Life and Environmental Sciences, Penryn Campus, Cornwall, United Kingdom
- University of Exeter, Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Streatham Campus, Exeter, United Kingdom
- * E-mail: (RH); (AT)
| | - Becky Brett
- University of Exeter, Centre for Ecology and Conservation, College of Life and Environmental Sciences, Penryn Campus, Cornwall, United Kingdom
| | - Alex Thornton
- University of Exeter, Centre for Ecology and Conservation, College of Life and Environmental Sciences, Penryn Campus, Cornwall, United Kingdom
- * E-mail: (RH); (AT)
| |
Collapse
|
54
|
Triki Z, Granell-Ruiz M, Fong S, Amcoff M, Kolm N. Brain morphology correlates of learning and cognitive flexibility in a fish species ( Poecilia reticulata). Proc Biol Sci 2022; 289:20220844. [PMID: 35858069 PMCID: PMC9277233 DOI: 10.1098/rspb.2022.0844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Determining how variation in brain morphology affects cognitive abilities is important to understand inter-individual variation in cognition and, ultimately, cognitive evolution. Yet, despite many decades of research in this area, there is surprisingly little experimental data available from assays that quantify cognitive abilities and brain morphology in the same individuals. Here, we tested female guppies (Poecilia reticulata) in two tasks, colour discrimination and reversal learning, to evaluate their learning abilities and cognitive flexibility. We then estimated the size of five brain regions (telencephalon, optic tectum, hypothalamus, cerebellum and dorsal medulla), in addition to relative brain size. We found that optic tectum relative size, in relation to the rest of the brain, correlated positively with discrimination learning performance, while relative telencephalon size correlated positively with reversal learning performance. The other brain measures were not associated with performance in either task. By evaluating how fast learning occurs and how fast an animal adjusts its learning rules to changing conditions, we find support for that different brain regions have distinct functional correlations at the individual level. Importantly, telencephalon size emerges as an important neural correlate of higher executive functions such as cognitive flexibility. This is rare evidence supporting the theory that more neural tissue in key brain regions confers cognitive benefits.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Maria Granell-Ruiz
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| |
Collapse
|
55
|
Demartsev V, Gersick AS, Jensen FH, Thomas M, Roch MA, Strandburg‐Peshkin A. Signalling in groups: New tools for the integration of animal communication and collective movement. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Vlad Demartsev
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Andrew S. Gersick
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
| | | | - Mara Thomas
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Marie A. Roch
- Department of Computer Science San Diego State University San Diego CA USA
| | - Ariana Strandburg‐Peshkin
- Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| |
Collapse
|
56
|
|
57
|
Cognitive ecology in the wild — advances and challenges in avian cognition research. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
58
|
Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Connelly F, Hall ML, Johnsson RD, Elliot-Kerr S, Dow BR, Lesku JA, Mulder RA. Urban noise does not affect cognitive performance in wild Australian magpies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Blackburn G, Broom E, Ashton BJ, Thornton A, Ridley AR. Heat stress inhibits cognitive performance in wild Western Australian magpies, Cracticus tibicen dorsalis. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
61
|
Reyes-Contreras M, Taborsky B. Stress axis programming generates long-term effects on cognitive abilities in a cooperative breeder. Proc Biol Sci 2022; 289:20220117. [PMID: 35582802 PMCID: PMC9114936 DOI: 10.1098/rspb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to flexibly adjust behaviour to social and non-social challenges is important for successfully navigating variable environments. Social competence, i.e. adaptive behavioural flexibility in the social domain, allows individuals to optimize their expression of social behaviour. Behavioural flexibility outside the social domain aids in coping with ecological challenges. However, it is unknown if social and non-social behavioural flexibility share common underlying cognitive mechanisms. Support for such shared mechanism would be provided if the same neural mechanisms in the brain affected social and non-social behavioural flexibility similarly. We used individuals of the cooperatively breeding fish Neolamprologus pulcher that had undergone early-life programming of the hypothalamic-pituitary-interrenal axis by exposure to (i) cortisol, (ii) the glucocorticoid receptor antagonist mifepristone, or (iii) control treatments, and where effects of stress-axis programming on social flexibility occurred. One year after the treatments, adults learned a colour discrimination task and subsequently, a reversal-learning task testing for behavioural flexibility. Early-life mifepristone treatment marginally enhanced learning performance, whereas cortisol treatment significantly reduced behavioural flexibility. Thus, early-life cortisol treatment reduced both social and non-social behavioural flexibility, suggesting a shared cognitive basis of behavioural flexibility. Further our findings imply that early-life stress programming affects the ability of organisms to flexibly cope with environmental stressors.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| |
Collapse
|
62
|
Ashton BJ, Thornton A, Cauchoix M, Ridley AR. Long-term repeatability of cognitive performance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220069. [PMID: 35620015 PMCID: PMC9128854 DOI: 10.1098/rsos.220069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Measures of cognitive performance, derived from psychometric tasks, have yielded important insights into the factors governing cognitive variation. However, concerns remain over the robustness of these measures, which may be susceptible to non-cognitive factors such as motivation and persistence. Efforts to quantify short-term repeatability of cognitive performance have gone some way to address this, but crucially the long-term repeatability of cognitive performance has been largely overlooked. Quantifying the long-term repeatability of cognitive performance provides the opportunity to determine the stability of cognitive phenotypes and the potential for selection to act on them. To this end, we quantified long-term repeatability of cognitive performance in wild Australian magpies over a three-year period. Cognitive performance was repeatable in two out of four cognitive tasks-associative learning and reversal-learning performance was repeatable, but spatial memory and inhibitory control performance, although trending toward significance, was not. Measures of general cognitive performance, obtained from principal components analyses carried out on each cognitive test battery, were highly repeatable. Together, these findings provide evidence that at least some cognitive phenotypes are stable, which in turn has important implications for our understanding of cognitive evolution.
Collapse
Affiliation(s)
- Benjamin J. Ashton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK
| | - Maxime Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRS (UMR5321), Moulis, France
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
63
|
Johnsson RD, Connelly F, Gaviraghi Mussoi J, Vyssotski AL, Cain KE, Roth TC, Lesku JA. Sleep loss impairs cognitive performance and alters song output in Australian magpies. Sci Rep 2022; 12:6645. [PMID: 35459249 PMCID: PMC9033856 DOI: 10.1038/s41598-022-10162-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Sleep maintains optimal brain functioning to facilitate behavioural flexibility while awake. Owing to a historical bias towards research on mammals, we know comparatively little about the role of sleep in facilitating the cognitive abilities of birds. We investigated how sleep deprivation over the full-night (12 h) or half-night (6 h) affects cognitive performance in adult Australian magpies (Cracticus tibicen), relative to that after a night of undisturbed sleep. Each condition was preceded and followed by a baseline and recovery night of sleep, respectively. Prior to each treatment, birds were trained on an associative learning task; on the day after experimental treatment (recovery day), birds were tested on a reversal learning task. To glean whether sleep loss affected song output, we also conducted impromptu song recordings for three days. Ultimately, sleep-deprived magpies were slower to attempt the reversal learning task, less likely to perform and complete the task, and those that did the test performed worse than better-rested birds. We also found that sleep-deprived magpies sang longer yet fewer songs, shifted crepuscular singing to mid-day, and during the post-recovery day, song frequency bandwidth narrowed. These results collectively indicate that sleep loss impairs motivation and cognitive performance, and alters song output, in a social adult songbird.
Collapse
Affiliation(s)
- Robin D Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia.
| | - Farley Connelly
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia.,School of BioSciences, The University of Melbourne, Melbourne, Australia
| | | | | | - Kristal E Cain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Timothy C Roth
- Department of Psychology, Franklin and Marshall College, Lancaster, USA
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia.
| |
Collapse
|
64
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
65
|
Executive Functions in Birds. BIRDS 2022. [DOI: 10.3390/birds3020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Executive functions comprise of top-down cognitive processes that exert control over information processing, from acquiring information to issuing a behavioral response. These cognitive processes of inhibition, working memory, and cognitive flexibility underpin complex cognitive skills, such as episodic memory and planning, which have been repeatedly investigated in several bird species in recent decades. Until recently, avian executive functions were studied in relatively few bird species but have gained traction in comparative cognitive research following MacLean and colleagues’ large-scale study from 2014. Therefore, in this review paper, the relevant previous findings are collected and organized to facilitate further investigations of these core cognitive processes in birds. This review can assist in integrating findings from avian and mammalian cognitive research and further the current understanding of executive functions’ significance and evolution.
Collapse
|
66
|
Johnson-Ulrich L, Johnson-Ulrich Z, Holekamp KE. Natural conditions and adaptive functions of problem-solving in the Carnivora. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
67
|
Affiliation(s)
- Mélisande Aellen
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| | - Judith M. Burkart
- Anthropological Institute and Museum University of Zürich Zürich Switzerland
| | - Redouan Bshary
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
68
|
Pigeon leadership hierarchies are not dependent on environmental contexts or individual phenotypes. Behav Processes 2022; 198:104629. [DOI: 10.1016/j.beproc.2022.104629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
|
69
|
Davidson GL, Reichert MS, Coomes JR, Kulahci IG, de la Hera I, Quinn JL. Inhibitory control performance is repeatable over time and across contexts in a wild bird population. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Tibbetts EA, Pardo-Sanchez J, Weise C. The establishment and maintenance of dominance hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200450. [PMID: 35000449 PMCID: PMC8743888 DOI: 10.1098/rstb.2020.0450] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/17/2021] [Indexed: 12/19/2022] Open
Abstract
Animal groups are often organized hierarchically, with dominant individuals gaining priority access to resources and reproduction over subordinate individuals. Initial dominance hierarchy formation may be influenced by multiple interacting factors, including an animal's individual attributes, conventions and self-organizing social dynamics. After establishment, hierarchies are typically maintained over the long-term because individuals save time, energy and reduce the risk of injury by recognizing and abiding by established dominance relationships. A separate set of behaviours are used to maintain dominance relationships within groups, including behaviours that stabilize ranks (punishment, threats, behavioural asymmetry), as well as signals that provide information about dominance rank (individual identity signals, signals of dominance). In this review, we describe the behaviours used to establish and maintain dominance hierarchies across different taxa and types of societies. We also review opportunities for future research including: testing how self-organizing behavioural dynamics interact with other factors to mediate dominance hierarchy formation, measuring the long-term stability of social hierarchies and the factors that disrupt hierarchy stability, incorporating phenotypic plasticity into our understanding of the behavioural dynamics of hierarchies and considering how cognition coevolves with the behaviours used to establish and maintain hierarchies. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
| | | | - Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
71
|
Loyant L, Waller BM, Micheletta J, Joly M. Validation of a battery of inhibitory control tasks reveals a multifaceted structure in non-human primates. PeerJ 2022; 10:e12863. [PMID: 35186469 PMCID: PMC8840138 DOI: 10.7717/peerj.12863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
Inhibitory control, the ability to override an inappropriate prepotent response, is crucial in many aspects of everyday life. However, the various paradigms designed to measure inhibitory control often suffer from a lack of systematic validation and have yielded mixed results. Thus the nature of this ability remains unclear, is it a general construct or a family of distinct sub-components? Therefore, the aim of this study was first to demonstrate the content validity and the temporal repeatability of a battery of inhibitory control tasks. Then we wanted to assess the contextual consistency of performances between these tasks to better understand the structure of inhibitory control. We tested 21 rhesus macaques (Macaca mulatta, 12 males, nine females) in a battery of touchscreen tasks assessing three main components of inhibitory control: inhibition of a distraction (using a Distraction task), inhibition of an impulsive action (using a Go/No-go task) and inhibition of a cognitive set (using a Reversal learning task). All tasks were reliable and effective at measuring the inhibition of a prepotent response. However, while there was consistency of performance between the inhibition of a distraction and the inhibition of an action, representing a response-driven basic form of inhibition, this was not found for the inhibition of a cognitive set. We argue that the inhibition of a cognitive set is a more cognitively demanding form of inhibition. This study gives a new insight in the multifaceted structure of inhibitory control and highlights the importance of a systematic validation of cognitive tasks in animal cognition.
Collapse
Affiliation(s)
- Louise Loyant
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, Portsmouth, Hampshire, United Kingdom
| | - Bridget M. Waller
- Department of Psychology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jérôme Micheletta
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, Portsmouth, Hampshire, United Kingdom
| | - Marine Joly
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, Portsmouth, Hampshire, United Kingdom
| |
Collapse
|
72
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
73
|
Spatial working memory is disparately interrelated with social status through different developmental stages in rats. Behav Brain Res 2022; 416:113547. [PMID: 34437940 DOI: 10.1016/j.bbr.2021.113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 02/02/2023]
Abstract
Social life necessitates cognitive competence to meet the dynamic demands of social development. The formation of dominance hierarchy is a general phenomenon in social groups. As an essential element of executive and cognitive function, working memory could influence and be influenced by social status in a dominance hierarchy. However, the direction and degree of the association between them through different developmental stages remain unclear. To address this issue and clarify the "cause or consequence" problem, we investigated the spatial working memory performance in a Y-maze and Morris water maze in home-caged sibling Wistar rats (N = 26 cages, three rats/cage) through three stages of their life: before (week 7), during (week 10), and after (week 20) assumed timings of the social dominance hierarchy formation (SDHF). We used the social dominance tube test during the assumed time of hierarchy formation (weeks 9-11) to measure the relative dominance status in each cage. Here, we found that higher working memory index before SDHF could be predictive of later acquisition of higher social status. Working memory performance declined for all animals during SDHF, in which agonistic conflicts are increased. However, living within an established hierarchical social network for several weeks deteriorated the working memory performance of dominant and middle-ranked animals, while the performance of subordinates improved and got significantly better than higher-ranked animals. In conclusion, while working memory and social status were correlated positively before dominance hierarchy formation, there was a trade-off between them after the formation of it. In contrast to the common view, these results highlight the adverse effect of higher social status on cognitive behavior.
Collapse
|
74
|
Lucon-Xiccato T, Montalbano G, Reddon AR, Bertolucci C. Social environment affects inhibitory control via developmental plasticity in a fish. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
75
|
OUP accepted manuscript. Behav Ecol 2022. [DOI: 10.1093/beheco/arac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
76
|
Cognition and reproductive success in cowbirds. Learn Behav 2021; 50:178-188. [PMID: 34918202 PMCID: PMC8979880 DOI: 10.3758/s13420-021-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Understanding the relationships between cognitive abilities and fitness is integral to an evolutionary study of brain and behavior. However, these relationships are often difficult to measure and detect. Here we draw upon an opportunistic sample of brown-headed cowbird (Molothrus ater) subjects that had two separate research experiences: First, they engaged in a large series of cognitive tests in David Sherry’s Lab in the Advanced Facility for Avian Research (AFAR) at Western University, then subsequently moved to the Field Avian Research Megalab (FARM) at Wilfrid Laurier University where they lived in large breeding flocks in aviaries with other wild-caught cowbirds. Thus, we had extensive measures of cognitive abilities, breeding behavior, and reproductive success for these birds. We report here, for the fist time, the surprisingly strong connections we found among these different measures. Female cowbirds’ spatial cognitive abilities correlated positively with how intensely they were courted by males, and with their overall egg production. Males’ spatial cognition correlated positively with their ability to engage in singing contests (“countersinging”) with other males. In addition, a separate non-spatial cognitive ability correlated positively with the attractiveness of the songs they sung. In sum, these results suggest the cognitive skills assessed in the lab were strongly connected to breeding behavior and reproductive success. Moreover, since certain cognitive abilities related to different aspects of breeding success, it suggests that cognitive modules may have specialized adaptive value, but also that these specialized skills may interact and influence fitness in surprising ways.
Collapse
|
77
|
Triki Z, Fong S, Amcoff M, Kolm N. Artificial mosaic brain evolution of relative telencephalon size improves inhibitory control abilities in the guppy (Poecilia reticulata). Evolution 2021; 76:128-138. [PMID: 34806770 DOI: 10.1111/evo.14405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Mosaic brain evolution, the change in the size of separate brain regions in response to selection on cognitive performance, is an important idea in the field of cognitive evolution. However, untill now, most of the data on how separate brain regions respond to selection and their cognitive consequences stem from comparative studies. To experimentally investigate the influence of mosaic brain evolution on cognitive ability, we used male guppies artificially selected for large and small telencephalons relative to the rest of the brain. Here, we tested an important aspect of executive cognitive ability using a detour task. We found that males with larger telencephalons outperformed males with smaller telencephalons. Fish with larger telencephalons showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier (i.e., through correct detouring) during the test phase. Together, our findings provide the first experimental evidence showing that evolutionary enlargement of relative telencephalon size confers cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
78
|
Loyant L, Waller BM, Micheletta J, Joly M. Heterogeneity of performances in several inhibitory control tasks: male rhesus macaques are more easily distracted than females. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211564. [PMID: 34849250 PMCID: PMC8611350 DOI: 10.1098/rsos.211564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Inhibitory control, the ability to override a dominant response, is crucial in many aspects of everyday life. In animal studies, striking individual variations are often largely ignored and their causes rarely considered. Hence, our aims were to systematically investigate individual variability in inhibitory control, to replicate the most common causes of individual variation (age, sex and rank) and to determine if these factors had a consistent effect on three main components of inhibitory control (inhibition of a distraction, inhibition of an action, inhibition of a cognitive set). We tested 21 rhesus macaques (Macaca mulatta) in a battery of validated touchscreen tasks. We first found individual variations in all inhibitory control performances. We then demonstrated that males had poorer performances to inhibit a distraction and that middle-aged individuals exhibited poorer performance in the inhibition of a cognitive set. Hence, the factors of age and sex were not consistently associated with the main components of inhibitory control, suggesting a multi-faceted structure. The rank of the subjects did not influence any inhibitory control performances. This study adopts a novel approach for animal behaviour studies and gives new insight into the individual variability of inhibitory control which is crucial to understand its evolutionary underpinnings.
Collapse
Affiliation(s)
- Louise Loyant
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| | - Bridget M. Waller
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| | - Jérôme Micheletta
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| | - Marine Joly
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| |
Collapse
|
79
|
Dutour M, Walsh SL, Speechley EM, Ridley AR. Female Western Australian magpies discriminate between familiar and unfamiliar human voices. Ethology 2021. [DOI: 10.1111/eth.13218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mylène Dutour
- School of Biological Sciences University of Western Australia Crawley WA Australia
| | - Sarah L. Walsh
- School of Biological Sciences University of Western Australia Crawley WA Australia
| | | | - Amanda R. Ridley
- School of Biological Sciences University of Western Australia Crawley WA Australia
| |
Collapse
|
80
|
Wascher CAF, Allen K, Szipl G. Learning and motor inhibitory control in crows and domestic chickens. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210504. [PMID: 34703616 PMCID: PMC8527213 DOI: 10.1098/rsos.210504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Cognitive abilities allow animals to navigate through complex, fluctuating environments. In the present study, we tested the performance of a captive group of eight crows, Corvus corone and 10 domestic chickens, Gallus gallus domesticus, in the cylinder task, as a test of motor inhibitory control and reversal learning as a measure of learning ability and behavioural flexibility. Four crows and nine chickens completed the cylinder task, eight crows and six chickens completed the reversal learning experiment. Crows performed better in the cylinder task compared with chickens. In the reversal learning experiment, species did not significantly differ in the number of trials until the learning criterion was reached. The performance in the reversal learning experiment did not correlate with performance in the cylinder task in chickens. Our results suggest crows to possess better motor inhibitory control compared with chickens. By contrast, learning performance in a reversal learning task did not differ between the species, indicating similar levels of behavioural flexibility. Interestingly, we describe notable individual differences in performance. We stress the importance not only to compare cognitive performance between species but also between individuals of the same species when investigating the evolution of cognitive skills.
Collapse
Affiliation(s)
- Claudia A. F. Wascher
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Chelmsford, UK
| | - Katie Allen
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Chelmsford, UK
| | - Georgine Szipl
- Konrad Lorenz Forschungsstelle, Core facility, University of Vienna, Gruenau, Austria
| |
Collapse
|
81
|
Fischer S, Balshine S, Hadolt MC, Schaedelin FC. Siblings matter: Family heterogeneity improves associative learning later in life. Ethology 2021. [DOI: 10.1111/eth.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour McMaster University Hamilton ON Canada
| | - Michaela C. Hadolt
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| | - Franziska C. Schaedelin
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
82
|
Álvarez-Quintero N, Velando A, Kim SY. Smart mating: the cognitive ability of females influences their preference for male cognitive ability. Behav Ecol 2021; 32:803-813. [PMID: 34690544 PMCID: PMC8528552 DOI: 10.1093/beheco/arab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cognitive abilities may be crucial for individuals to respond appropriately to their social and natural environment, thereby increasing fitness. However, the role of cognitive traits in sexual selection has received relatively little attention. Here, we studied 1) whether male secondary sexual traits (colour, courtship, and nest) reflect their cognitive ability, 2) whether females choose mates based on males' and their own cognitive abilities, and 3) how the interplay between secondary sexual traits and cognitive ability determines male attractiveness in the three-spined stickleback (Gasterosteus aculetaus). For this, we first evaluated the cognitive ability of sexually mature males and females in a detour-reaching task. Then, female preference was repeatedly assessed in a dichotomous-choice test, where the female was exposed to two males with contrasting performances (relatively good and bad) in the detour-reaching task. Female preference for better performing males was affected by the female's own cognitive ability. Females with relatively medium-low cognitive ability preferred males with high ability, whereas females with high ability showed no preference. We also found that males with higher cognitive abilities built more elaborated nests, but showed weaker red nuptial colouration. To our knowledge, this is among the first results that illustrate how cognitive traits of both sexes influence female mate preference, which has implications for the strength and direction of sexual selection.
Collapse
Affiliation(s)
- Náyade Álvarez-Quintero
- Centro de Investigación Mariña, Universidade de Vigo, Grupo Ecoloxía Animal, Torre CACTI, Campus de Vigo, 36310 Vigo, Spain
| | - Alberto Velando
- Centro de Investigación Mariña, Universidade de Vigo, Grupo Ecoloxía Animal, Torre CACTI, Campus de Vigo, 36310 Vigo, Spain
| | - Sin-Yeon Kim
- Centro de Investigación Mariña, Universidade de Vigo, Grupo Ecoloxía Animal, Torre CACTI, Campus de Vigo, 36310 Vigo, Spain
| |
Collapse
|
83
|
Task-dependent reversal learning dynamics challenge the reversal paradigm of measuring cognitive flexibility. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
84
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
85
|
Knoll F, Lautenschlager S, Kawabe S, Martínez G, Espílez E, Mampel L, Alcalá L. Palaeoneurology of the early cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs. J Comp Neurol 2021; 529:3922-3945. [PMID: 34333763 DOI: 10.1002/cne.25224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022]
Abstract
Proa valdearinnoensis is a relatively large-headed and stocky iguanodontian dinosaur from the latest Early Cretaceous of Spain. Its braincase is known from three specimens. Similar to that of other dinosaurs, it shows a mosaic ossification pattern in which most of the bones seem to have fused together indistinguishably while a few (frontoparietal, basioccipital) might have remained loosely attached. The endocasts of the three specimens are described based on CT data and digital reconstructions. They show unmistakable morphological similarities with the endocast of closely related taxa, such as Sirindhorna khoratensis (which is close in age but from Thailand). This supports a high conservatism of the endocranial cavity. The issue of volumetric correspondence between endocranial cavity and brain in dinosaurs is analyzed. Although a brain-to-endocranial cavity (BEC) index of 0.50 has been traditionally used, we employ instead 0.73. This is indeed the mid-value between the situation in adults of Alligator mississippiensis and Gallus gallus, which are members of the extant bracketing taxa of dinosaurs (Crocodilia and Aves). We thence gauge the level of encephalization of P. valdearinnoensis through the calculation of the encephalization quotient (EQ), which remains valuable as a metric for assessing the degree of cognitive function in extinct taxa, especially those with fully ossified braincases like dinosaurs and other archosaurs. The EQ obtained for P. valdearinnoensis (3.611) suggests that this species was significantly more encephalized than most if not all extant nonavian, nonmammalian amniotes. Our work adds to the growing body of data concerning theoretical cognitive capabilities in dinosaurs and supports the idea that an increasing encephalization was fostered not only in theropods but also in parallel in the shorter-lived lineage of ornithopods. P. valdearinnoensis was ill-equipped to respond to theropod dinosaurs and possibly lived in groups as a strategy to mitigate the risk of being predated upon. We hypothesize that group-living and protracted caring of juveniles in this and possibly many other iguanodontian ornithopods favored a degree of encephalization that was outstanding by reptile standards.
Collapse
Affiliation(s)
- Fabien Knoll
- Fundación ARAID, Zaragoza, Spain.,Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain.,Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Soichiro Kawabe
- Institute of Dinosaur Research, Fukui Prefectural University, Fukui, Japan.,Fukui Prefectural Dinosaur Museum, Fukui, Japan
| | - Gloria Martínez
- Servicio de Radiodiagnóstico, Hospital General Obispo Polanco, Teruel, Spain
| | - Eduardo Espílez
- Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain
| | - Luis Mampel
- Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain
| | - Luis Alcalá
- Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain
| |
Collapse
|
86
|
Ryding S, Garnham LC, Abbey-Lee RN, Petkova I, Kreshchenko A, Løvlie H. Impulsivity is affected by cognitive enrichment and links to brain gene expression in red junglefowl chicks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Culbert BM, Tsui N, Balshine S. Learning performance is associated with social preferences in a group-living fish. Behav Processes 2021; 191:104464. [PMID: 34329728 DOI: 10.1016/j.beproc.2021.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/13/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Many animals live in groups yet grouping tendencies and preferences for groups of different sizes vary considerably between individuals. This variation reflects, at least in part, differences in how individuals evaluate and perceive their physical surroundings and their social environment. While such differences are likely related to individual variation in cognition, there have been few studies that have directly investigated how cognitive abilities are linked to individual grouping decisions. Therefore, in this study we assessed whether performance on a foraging-based reversal learning task is related to grouping preferences (a group of three fish versus a single fish) in a group-living cichlid fish, Neolamprologus pulcher. While most fish preferred to associate with the group over a single fish, individuals that completed the reversal learning task the quickest were the least interested in the group under elevated predation risk. In addition, fish that quickly completed the reversal learning task also adjusted their grouping preferences the most when predation risk increased. This result suggests that the observed relationship between learning performance and grouping decisions may be linked to individual differences in behavioural flexibility. Overall, our results offer valuable insight into the potential factors that underlie inter-individual variation in grouping decisions.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Nicholas Tsui
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
88
|
Abstract
Abstract
The causes and consequences of interspecific variation in sex-specific contributions to animal parental care are relatively well understood during pregnancy or incubation and during offspring provisioning, but comparative patterns of sex-biased investment during nest-, den-, or other shelter-building have been almost completely overlooked. This is surprising because birthing shelters’ protective properties have important fitness consequences for both parents and offspring. Here, we address this gap in our knowledge by testing predictions concerning sex-specific contributions to avian nest building in more than 500 species of Western Palearctic birds in relation to the time available to breed and sex-specific reproductive effort, while also examining correlates with nesting site and nest structure. Using multivariate phylogenetic comparative and path analysis approaches, we found that, opposite to what had been predicted, species in which females build nests alone have shorter breeding seasons and breed at higher latitudes. In addition, species in which females lay larger clutch sizes and incubate eggs alone are more likely to have nests built by females alone, again countering predictions that reproductive contributions are not traded-off between the sexes. Finally, however, sex-specific nest building contributions were predictably related to nest site and structure, as species in which females built nests alone were more likely to have open cup nests relative to enclosed, domed nests of species in which both parents build. Our study provides important new insights, and generates several new questions for experimental research into the adaptive dynamics of sex-specific contributions prior or at the onset of parental care.
Collapse
Affiliation(s)
- Mark C Mainwaring
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MTUSA
| | - Jenő Nagy
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
89
|
van Schaik CP, Triki Z, Bshary R, Heldstab SA. A Farewell to the Encephalization Quotient: A New Brain Size Measure for Comparative Primate Cognition. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:1-12. [PMID: 34247154 DOI: 10.1159/000517013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.
Collapse
Affiliation(s)
- Carel P van Schaik
- Department of Anthropology and Anthropological Museum, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
| | - Zegni Triki
- Behavioral Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland, .,Institute of Zoology, Stockholm University, Stockholm, Sweden,
| | - Redouan Bshary
- Behavioral Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sandra A Heldstab
- Department of Anthropology and Anthropological Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
90
|
Mason D, Zajitschek S, Anwer H, O'Dea RE, Hesselson D, Nakagawa S. Low repeatability of aversive learning in zebrafish (Danio rerio). J Exp Biol 2021; 224:269009. [PMID: 34087936 DOI: 10.1242/jeb.240846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/07/2023]
Abstract
Aversive learning - avoiding certain situations based on negative experiences - can profoundly increase fitness in animal species, yet no studies have systematically quantified its repeatability. Therefore, we assessed the repeatability of aversive learning by conditioning approximately 100 zebrafish (Danio rerio) to avoid a colour cue associated with a mild electric shock. Across eight different colour conditions, zebrafish did not show consistent individual differences in aversive learning (R=0.04). Within conditions, when zebrafish were conditioned to the same colour, blue conditioning was more repeatable than green conditioning (R=0.15 and R=0.02). Overall, aversive learning responses of zebrafish were weak and variable. We speculate that the effect of aversive learning might have been too weak to quantify consistent individual differences, or directional selection might have eroded additive genetic variance. We also discuss how confounded repeatability assays and publication bias could have inflated estimates of repeatability in the literature.
Collapse
Affiliation(s)
- Dominic Mason
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences , University of New South Wales, Sydney, NSW 2052, Australia
| | - Susanne Zajitschek
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences , University of New South Wales, Sydney, NSW 2052, Australia.,School of Biological and Environmental Sciences , Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Hamza Anwer
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences , University of New South Wales, Sydney, NSW 2052, Australia
| | - Rose E O'Dea
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences , University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences , University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
91
|
Medina-García A, Wright TF. An integrative measure of cognitive performance, but not individual task performance, is linked to male reproductive output in budgerigars. Sci Rep 2021; 11:11775. [PMID: 34083674 PMCID: PMC8175410 DOI: 10.1038/s41598-021-91213-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
Cognitive abilities such as learning and memory are key for survival and reproduction. Individuals with high cognitive abilities may be more successful at attracting mates and producing offspring. However, empirical tests of and evidence supporting this hypothesis remain scarce. We measured cognitive performance of male budgerigars in four tasks: problem solving, detour reaching, seed discrimination, and spatial memory. We then tested female choice for male cognition at three stages of the mating choice process: social pairing, extra-pair mating, and continued reproductive investment with a social mate. We also measured female reproductive output. We used an integrative measure of male cognitive performance that encapsulates performance across all tasks, the 'composite cognitive score' by summing performance on the four tasks. In the first stage, females did not choose their social mates based on any of the measures of male cognitive performance. In the second stage, however, males with higher composite cognitive scores sired and raised more offspring. In the third stage, females increased their reproductive investment after the first breeding attempt when paired with males with higher detour-reaching scores. These results suggest that female reproductive decisions may shape overall male cognitive performance.
Collapse
Affiliation(s)
- Angela Medina-García
- grid.266190.a0000000096214564Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, 334 UCB, 1900 Pleasant Street, Boulder, CO 80309 USA ,grid.24805.3b0000 0001 0687 2182Department of Biology, New Mexico State University, MSC 3AF, 1200 Horseshoe Drive, Las Cruces, NM 88003 USA
| | - Timothy F. Wright
- grid.24805.3b0000 0001 0687 2182Department of Biology, New Mexico State University, MSC 3AF, 1200 Horseshoe Drive, Las Cruces, NM 88003 USA
| |
Collapse
|
92
|
Abstract
Explaining how animals respond to an increasingly urbanised world is a major challenge for evolutionary biologists. Urban environments often present animals with novel problems that differ from those encountered in their evolutionary past. To navigate these rapidly changing habitats successfully, animals may need to adjust their behaviour flexibly over relatively short timescales. These behavioural changes, in turn, may be facilitated by an ability to acquire, store and process information from the environment. The question of how cognitive abilities allow animals to avoid threats and exploit resources (or constrain their ability to do so) is attracting increasing research interest, with a growing number of studies investigating cognitive and behavioural differences between urban-dwelling animals and their non-urban counterparts. In this review we consider why such differences might arise, focusing on the informational challenges faced by animals living in urban environments, and how different cognitive abilities can assist in overcoming these challenges. We focus largely on birds, as avian taxa have been the subject of most research to date, but discuss work in other species where relevant. We also address the potential consequences of cognitive variation at the individual and species level. For instance, do urban environments select for, or influence the development of, particular cognitive abilities? Are individuals or species with particular cognitive phenotypes more likely to become established in urban habitats? How do other factors, such as social behaviour and individual personality, interact with cognition to influence behaviour in urban environments? The aim of this review is to synthesise current knowledge and identify key avenues for future research, in order to improve our understanding of the ecological and evolutionary consequences of urbanisation.
Collapse
Affiliation(s)
- Victoria E Lee
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| |
Collapse
|
93
|
Osbrink A, Meatte MA, Tran A, Herranen KK, Meek L, Murakami-Smith M, Ito J, Bhadra S, Nunnenkamp C, Templeton CN. Traffic noise inhibits cognitive performance in a songbird. Proc Biol Sci 2021; 288:20202851. [PMID: 33529564 DOI: 10.1098/rspb.2020.2851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Noise pollution is commonly associated with human environments and mounting evidence indicates that noise has a variety of negative effects on wildlife. Noise has also been linked to cognitive impairment in humans and because many animals use cognitively intensive processes to overcome environmental challenges, noise pollution has the potential to interfere with cognitive function in animals living in urban areas or near roads. We experimentally examined how road traffic noise impacts avian cognitive performance by testing adult zebra finches (Taeniopygia guttata) on a battery of foraging tasks in the presence or absence of traffic noise playback. Here, we show that traffic noise reduces cognitive performance, including inhibitory control, motor learning, spatial memory and social learning, but not associative colour learning. This study demonstrates a novel mechanism through which anthropogenic noise can impact animals, namely through cognitive interference, and suggests that noise pollution may have previously unconsidered consequences for animals.
Collapse
Affiliation(s)
- Alison Osbrink
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Megan A Meatte
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Alan Tran
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Katri K Herranen
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Lilliann Meek
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - May Murakami-Smith
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Jacelyn Ito
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Some Bhadra
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | - Carrie Nunnenkamp
- Department of Biology, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA
| | | |
Collapse
|
94
|
Martina C, Cowlishaw G, Carter AJ. Individual differences in task participation in wild chacma baboons. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
95
|
Long-term effects of prenatal sound experience on songbird behavior and their relation to song learning. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02939-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
96
|
Meguerditchian A, Marie D, Margiotoudi K, Roth M, Nazarian B, Anton JL, Claidière N. Baboons (Papio anubis) living in larger social groups have bigger brains. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
97
|
Macario A, Darden SK, Verbruggen F, Croft DP. Intraspecific variation in inhibitory motor control in guppies, Poecilia reticulata. JOURNAL OF FISH BIOLOGY 2021; 98:317-328. [PMID: 33128393 DOI: 10.1111/jfb.14608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Inhibitory control (IC) is the ability to overcome impulsive or prepotent but ineffective responses in favour of more appropriate behaviours. The ability to inhibit internal predispositions or external temptations is vital in coping with a complex and variable world. Traditionally viewed as cognitively demanding and a main component of executive functioning and self-control, IC was historically examined in only a few species of birds and mammals but recently a number of studies has shown that a much wider range of taxa rely on IC. Furthermore, there is growing evidence that inhibitory abilities may vary within species at the population and individual levels owing to genetic and environmental factors. Here we use a detour-reaching task, a standard paradigm to measure motor inhibition in nonhuman animals, to quantify patterns of interindividual variation in IC in wild-descendant female guppies, Poecilia reticulata. We found that female guppies displayed inhibitory performances that were, on average, half as successful as the performances reported previously for other strains of guppies tested in similar experimental conditions. Moreover, we showed consistent individual variation in the ability to inhibit inappropriate behaviours. Our results contribute to the understanding of the evolution of fish cognition and suggest that IC may show considerable variation among populations within a species. Such variation in IC abilities might contribute to individual differences in other cognitive functions such as spatial learning, quantity discrimination or reversal learning.
Collapse
Affiliation(s)
- Alessandro Macario
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Safi K Darden
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Frederick Verbruggen
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Darren P Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
98
|
Schnell AK, Clayton NS. Cephalopods: Ambassadors for rethinking cognition. Biochem Biophys Res Commun 2021; 564:27-36. [PMID: 33390247 DOI: 10.1016/j.bbrc.2020.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022]
Abstract
Traditional approaches in comparative cognition have a long history of focusing on a narrow range of vertebrate species. However, in recent years the range of model species has expanded. Despite this development, invertebrate taxa are still largely neglected in comparative cognition, which limits our ability to locate the origins of cognitive traits. The time has come to rethink cognition and develop a more comprehensive understanding of cognitive evolution by expanding comparative analyses to include a diverse range of invertebrate taxa. In this review, we contend that cephalopods are suitable ambassadors for rethinking cognition. Cephalopods have large complex brains, exhibit sophisticated behavioral traits, and increasing evidence suggests that they possess complex cognitive abilities once thought to be unique to large-brained vertebrates. Comparing cephalopods with vertebrates, whose cognition has evolved independently, provides prominent opportunities to circumvent current limitations in comparative cognition that have arisen from traditional vertebrate comparisons. Increased efforts in investigating the cognitive abilities of cephalopods have also led to important welfare-related improvements. These large-brained molluscs are paving the way for a more inclusive approach to investigating cognitive evolution that we hope will extend to other invertebrate taxa.
Collapse
|
99
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
100
|
Grunst AS, Grunst ML, Pinxten R, Eens M. Sources of individual variation in problem-solving performance in urban great tits (Parus major): Exploring effects of metal pollution, urban disturbance and personality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141436. [PMID: 32841856 DOI: 10.1016/j.scitotenv.2020.141436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Despite growing research effort, we have a limited understanding of how urban disturbance factors affect cognitive traits, such as innovative problem-solving. We performed an initial assessment of how metal pollution and urbanization levels on territories are related to problem-solving performance in urban great tits (Parus major), by presenting an obstacle removal test at nest boxes in three urban nest box populations that are exposed to different levels of metal pollution. We predicted that problem-solving capacity might be reduced within the most polluted population due to pollution-related neurological impairments. On the other hand, we predicted that problem-solving might positively correlate with urban disturbance levels on territories, because some past research suggests that problem-solving promotes persistence in urbanized habitats. We also assessed relationships between exploratory personality type, behavioral patterns during tests, and problem-solving performance, and examined the repeatability and fitness correlates of problem-solving. We found no evidence that behavioral patterns or problem-solving performance were related to metal exposure or exploratory personality, or that problem-solving promotes reproductive success. However, birds on territories exposed to more urban disturbance, as quantified by proximity to paths and roads, were more likely to problem-solve. Moreover, an aggressive problem-solving approach negatively predicted problem-solving success, and behavioral patterns during tests and problem-solving success were repeatable. Thus, rather than indicating negative effects of pollution or urban disturbance on problem-solving performance, our study provides preliminary support for the hypothesis that urbanization favors innovative problem-solving, and suggests that problem-solving could be associated with a personality dimension independent of exploratory personality.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium; Faculty of Social Sciences, Didactica Research Group, University of Antwerp, 2000 Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|