51
|
Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol 2021; 24:357-369. [PMID: 34811865 DOI: 10.1111/1462-2920.15843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jeth G V Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
52
|
Genome analysis suggests the bacterial family Acetobacteraceae is a source of undiscovered specialized metabolites. Antonie van Leeuwenhoek 2021; 115:41-58. [PMID: 34761294 PMCID: PMC8776678 DOI: 10.1007/s10482-021-01676-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Acetobacteraceae is an economically important family of bacteria that is used for industrial fermentation in the food/feed sector and for the preparation of sorbose and bacterial cellulose. It comprises two major groups: acetous species (acetic acid bacteria) associated with flowers, fruits and insects, and acidophilic species, a phylogenetically basal and physiologically heterogeneous group inhabiting acid or hot springs, sludge, sewage and freshwater environments. Despite the biotechnological importance of the family Acetobacteraceae, the literature does not provide any information about its ability to produce specialized metabolites. We therefore constructed a phylogenomic tree based on concatenated protein sequences from 141 type strains of the family and predicted the presence of small-molecule biosynthetic gene clusters (BGCs) using the antiSMASH tool. This dual approach allowed us to associate certain biosynthetic pathways with particular taxonomic groups. We found that acidophilic and acetous species contain on average ~ 6.3 and ~ 3.4 BGCs per genome, respectively. All the Acetobacteraceae strains encoded proteins involved in hopanoid biosynthesis, with many also featuring genes encoding type-1 and type-3 polyketide and non-ribosomal peptide synthases, and enzymes for aryl polyene, lactone and ribosomal peptide biosynthesis. Our in silico analysis indicated that the family Acetobacteraceae is a potential source of many undiscovered bacterial metabolites and deserves more detailed experimental exploration.
Collapse
|
53
|
Liang Q, Liu C, Xu R, Song M, Zhou Z, Li H, Dai W, Yang M, Yu Y, Chen H. fIDBAC: A Platform for Fast Bacterial Genome Identification and Typing. Front Microbiol 2021; 12:723577. [PMID: 34733246 PMCID: PMC8558511 DOI: 10.3389/fmicb.2021.723577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
To study the contamination of microorganisms in the food industry, pharmaceutical industry, clinical diagnosis, or bacterial taxonomy, accurate identification of species is a key starting point of further investigation. The conventional method of identification by the 16S rDNA gene or other marker gene comparison is not accurate, because it uses a tiny part of the genomic information. The average nucleotide identity calculated between two whole bacterial genomes was proven to be consistent with DNA-DNA hybridization and adopted as the gold standard of bacterial species delineation. Furthermore, there are more bacterial genomes available in public databases recently. All of those contribute to a genome era of bacterial species identification. However, wrongly labeled and low-quality bacterial genome assemblies, especially from type strains, greatly affect accurate identification. In this study, we employed a multi-step strategy to create a type-strain genome database, by removing the wrongly labeled and low-quality genome assemblies. Based on the curated database, a fast bacterial genome identification platform (fIDBAC) was developed (http://fbac.dmicrobe.cn/). The fIDBAC is aimed to provide a single, coherent, and automated workflow for species identification, strain typing, and downstream analysis, such as CDS prediction, drug resistance genes, virulence gene annotation, and phylogenetic analysis.
Collapse
Affiliation(s)
- Qian Liang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Chengzhi Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Rong Xu
- Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Minghui Song
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- China National Accreditation Service for Conformity Assessment, Beijing, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Meicheng Yang
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China.,Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
54
|
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis. mBio 2021; 12:e0173121. [PMID: 34488446 PMCID: PMC8546547 DOI: 10.1128/mbio.01731-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Collapse
Affiliation(s)
- Marketa Koberska
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ludmila Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Lenart
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
55
|
Bueno de Mesquita CP, Zhou J, Theroux SM, Tringe SG. Methanogenesis and Salt Tolerance Genes of a Novel Halophilic Methanosarcinaceae Metagenome-Assembled Genome from a Former Solar Saltern. Genes (Basel) 2021; 12:genes12101609. [PMID: 34681003 PMCID: PMC8535929 DOI: 10.3390/genes12101609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Anaerobic archaeal methanogens are key players in the global carbon cycle due to their role in the final stages of organic matter decomposition in anaerobic environments such as wetland sediments. Here we present the first draft metagenome-assembled genome (MAG) sequence of an unclassified Methanosarcinaceae methanogen phylogenetically placed adjacent to the Methanolobus and Methanomethylovorans genera that appears to be a distinct genus and species. The genome is derived from sediments of a hypersaline (97–148 ppt chloride) unrestored industrial saltern that has been observed to be a significant methane source. The source sediment is more saline than previous sources of Methanolobus and Methanomethylovorans. We propose a new genus name, Methanosalis, to house this genome, which we designate with the strain name SBSPR1A. The MAG was binned with CONCOCT and then improved via scaffold extension and reassembly. The genome contains pathways for methylotrophic methanogenesis from trimethylamine and dimethylamine, as well as genes for the synthesis and transport of compatible solutes. Some genes involved in acetoclastic and hydrogenotrophic methanogenesis are present, but those pathways appear incomplete in the genome. The MAG was more abundant in two former industrial salterns than in a nearby reference wetland and a restored wetland, both of which have much lower salinity levels, as well as significantly lower methane emissions than the salterns.
Collapse
Affiliation(s)
- Clifton P. Bueno de Mesquita
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Jinglie Zhou
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Susanna M. Theroux
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA;
| | - Susannah G. Tringe
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
56
|
Arikawa K, Ide K, Kogawa M, Saeki T, Yoda T, Endoh T, Matsuhashi A, Takeyama H, Hosokawa M. Recovery of strain-resolved genomes from human microbiome through an integration framework of single-cell genomics and metagenomics. MICROBIOME 2021; 9:202. [PMID: 34641955 PMCID: PMC8507239 DOI: 10.1186/s40168-021-01152-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/31/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Obtaining high-quality (HQ) reference genomes from microbial communities is crucial for understanding the phylogeny and function of uncultured microbes in complex microbial ecosystems. Despite improvements in bioinformatic approaches to generate curated metagenome-assembled genomes (MAGs), existing metagenome binners obtain population consensus genomes but they are nowhere comparable to genomes sequenced from isolates in terms of strain level resolution. Here, we present a framework for the integration of single-cell genomics and metagenomics, referred to as single-cell (sc) metagenomics, to reconstruct strain-resolved genomes from microbial communities at once. RESULTS Our sc-metagenomics integration framework, termed SMAGLinker, uses single-cell amplified genomes (SAGs) generated using microfluidic technology as binning guides and integrates them with metagenome-assembled genomes (MAGs) to recover improved draft genomes. We compared sc-metagenomics with the metagenomics-alone approach using conventional metagenome binners. The sc-metagenomics approach showed precise contig binning and higher recovery rates (>97%) of rRNA and plasmids than conventional metagenomics in genome reconstruction from the cell mock community. In human microbiota samples, sc-metagenomics recovered the largest number of genomes with a total of 103 gut microbial genomes (21 HQ, with 65 showing >90% completeness) and 45 skin microbial genomes (10 HQ, with 40 showing >90% completeness), respectively. Conventional metagenomics recovered one Staphylococcus hominis genome, whereas sc-metagenomics recovered two S. hominis genomes from identical skin microbiota sample. Single-cell sequencing revealed that these S. hominis genomes were derived from two distinct strains harboring specifically different plasmids. We found that all conventional S. hominis MAGs had a substantial lack or excess of genome sequences and contamination from other Staphylococcus species (S. epidermidis). CONCLUSIONS SMAGLinker enabled us to obtain strain-resolved genomes in the mock community and human microbiota samples by assigning metagenomic sequences correctly and covering both highly conserved genes such as rRNA genes and unique extrachromosomal elements, including plasmids. SMAGLinker will provide HQ genomes that are difficult to obtain using metagenomics alone and will facilitate the understanding of microbial ecosystems by elucidating detailed metabolic pathways and horizontal gene transfer networks. SMAGLinker is available at https://github.com/kojiari/smaglinker . Video abstract.
Collapse
Affiliation(s)
- Koji Arikawa
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Tatsuya Saeki
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Takuya Yoda
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Taruho Endoh
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Ayumi Matsuhashi
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahito Hosokawa
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| |
Collapse
|
57
|
Chen S, Rudra B, Gupta RS. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst Appl Microbiol 2021; 44:126251. [PMID: 34600238 DOI: 10.1016/j.syapm.2021.126251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The order Neisseriales contains 37 genera harboring 122 species with validly published names, which are placed into two families, Neisseriaceae and Chromobacteriaceae. Genome sequences are now available for 35 of the 37 Neisseriales genera for reliably determining their evolutionary relationships and taxonomy. We report here comprehensive phylogenomic and comparative analyses on protein sequences from 110 Neisseriales genomes plus 3 Chitinimonas genomes using multiple approaches. In a phylogenomic tree based on 596 core proteins, Neisseriales species formed 5 strongly supported clades. In addition to the clades for Neisseriaceae and Chromobacteriaceae families, three novel species clades designated as the "Chitinibacteraceae", "Aquaspirillaceae", and "Leeiaceae" were observed. The genus Chitinimonas grouped reliably with members of the "Chitinibacteraceae" clade. The major clades within the order Neisseriales can also be distinguished based on average amino acid identity analysis. In parallel, our comparative genomic studies have identified 30 conserved signature indels (CSIs) that are specific for members of the order Neisseriales or its five main clades. One of these CSIs is uniquely shared by all Neisseriales, whereas 8, 4, 9, 3 and 5 CSIs are distinctive characteristics of the Neisseriaceae, Chromobacteriaceae, "Chitinibacteraceae", "Aquaspirillaceae" and "Leeiaceae" clades, respectively. Based on the strong phylogenetic and molecular evidence presented here, we are proposing that the three newly identified clades should be recognized as novel families (Chitinibacteraceae fam. nov., Aquaspirillaceae fam. nov. and Leeiaceae fam. nov.) within the order Neisseriales. In addition, we are also emending descriptions of the families Neisseriaceae and Chromobacteriaceae regarding their constituent genera and other distinguishing characteristics.
Collapse
Affiliation(s)
- Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
58
|
Rozanov AS, Korzhuk AV, Shekhovtsov SV, Vasiliev GV, Peltek SE. Microorganisms of Two Thermal Pools on Kunashir Island, Russia. BIOLOGY 2021; 10:924. [PMID: 34571800 PMCID: PMC8468003 DOI: 10.3390/biology10090924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
The Kuril Archipelago is a part of the Circum-Pacific Belt (Ring of Fire). These islands have numerous thermal springs. There are very few studies on these microbial communities, and none of them have been conducted by modern molecular biological methods. Here we performed the first metagenomic study on two thermophilic microbial communities of Kunashir Island. Faust Lake is hot (48 °C) and highly acidic (pH 2.0). We constructed 28 metagenome-assembled genomes as well as 17 16S ribosomal RNA sequences. We found that bottom sediments of Faust Lake are dominated by a single species of red algae belonging to the Cyanidiaceae family. Archaeans in Faust Lake are more diverse than bacteria but less abundant. The Tretyakovsky Thermal Spring is also hot (52 °C) but only weakly acidic (pH 6.0). It has much higher microbial diversity (233 metagenome-assembled genomes; 93 16S ribosomal RNAs) and is dominated by bacteria, with only several archaeans and one fungus. Despite their geographic proximity, these two thermal springs were found to not share any species. A comparison of these two lakes with other thermal springs of the Circum-Pacific Belt revealed that only a few members of the communities are shared among different locations.
Collapse
Affiliation(s)
- Aleksei S. Rozanov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| | - Anton V. Korzhuk
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergei V. Shekhovtsov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| | - Gennady V. Vasiliev
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| | - Sergei E. Peltek
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| |
Collapse
|
59
|
Kayani MUR, Huang W, Feng R, Chen L. Genome-resolved metagenomics using environmental and clinical samples. Brief Bioinform 2021; 22:bbab030. [PMID: 33758906 PMCID: PMC8425419 DOI: 10.1093/bib/bbab030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/29/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high-throughput sequencing technologies and computational methods have added a new dimension to metagenomic data analysis i.e. genome-resolved metagenomics. In general terms, it refers to the recovery of draft or high-quality microbial genomes and their taxonomic classification and functional annotation. In recent years, several studies have utilized the genome-resolved metagenome analysis approach and identified previously unknown microbial species from human and environmental metagenomes. In this review, we describe genome-resolved metagenome analysis as a series of four necessary steps: (i) preprocessing of the sequencing reads, (ii) de novo metagenome assembly, (iii) genome binning and (iv) taxonomic and functional analysis of the recovered genomes. For each of these four steps, we discuss the most commonly used tools and the currently available pipelines to guide the scientific community in the recovery and subsequent analyses of genomes from any metagenome sample. Furthermore, we also discuss the tools required for validation of assembly quality as well as for improving quality of the recovered genomes. We also highlight the currently available pipelines that can be used to automate the whole analysis without having advanced bioinformatics knowledge. Finally, we will highlight the most widely adapted and actively maintained tools and pipelines that can be helpful to the scientific community in decision making before they commence the analysis.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200,000, China
| | - Ru Feng
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Lei Chen
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| |
Collapse
|
60
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
61
|
Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria. Nat Commun 2021; 12:4347. [PMID: 34301933 PMCID: PMC8302735 DOI: 10.1038/s41467-021-24645-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Heterologous expression of biosynthetic gene clusters (BGCs) avails yield improvements and mining of natural products, but it is limited by lacking of more efficient Gram-negative chassis. The proteobacterium Schlegelella brevitalea DSM 7029 exhibits potential for heterologous BGC expression, but its cells undergo early autolysis, hindering further applications. Herein, we rationally construct DC and DT series genome-reduced S. brevitalea mutants by sequential deletions of endogenous BGCs and the nonessential genomic regions, respectively. The DC5 to DC7 mutants affect growth, while the DT series mutants show improved growth characteristics with alleviated cell autolysis. The yield improvements of six proteobacterial natural products and successful identification of chitinimides from Chitinimonas koreensis via heterologous expression in DT mutants demonstrate their superiority to wild-type DSM 7029 and two commonly used Gram-negative chassis Escherichia coli and Pseudomonas putida. Our study expands the panel of Gram-negative chassis and facilitates the discovery of natural products by heterologous expression.
Collapse
|
62
|
Li Y, Jin Y, Zhang J, Pan H, Wu L, Liu D, Liu J, Hu J, Shen J. Recovery of human gut microbiota genomes with third-generation sequencing. Cell Death Dis 2021; 12:569. [PMID: 34078878 PMCID: PMC8172872 DOI: 10.1038/s41419-021-03829-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Human gut microbiota modulates normal physiological functions, such as maintenance of barrier homeostasis and modulation of metabolism, as well as various chronic diseases including type 2 diabetes and gastrointestinal cancer. Despite decades of research, the composition of the gut microbiota remains poorly understood. Here, we established an effective extraction method to obtain high quality gut microbiota genomes, and analyzed them with third-generation sequencing technology. We acquired a large quantity of data from each sample and assembled large numbers of reliable contigs. With this approach, we constructed tens of completed bacterial genomes in which there were several new bacteria species. We also identified a new conditional pathogen, Enterococcus tongjius, which is a member of Enterococci. This work provided a novel and reliable approach to recover gut microbiota genomes, facilitating the discovery of new bacteria species and furthering our understanding of the microbiome that underlies human health and diseases.
Collapse
Affiliation(s)
- Yanfei Li
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China.,School of Basic Medical Sciences and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | | | - Haoying Pan
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | - Lan Wu
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China.,School of Basic Medical Sciences and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China
| | - Dingsheng Liu
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | - Jinlong Liu
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | - Jing Hu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| | - Junwei Shen
- Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
63
|
Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E, Knittel K, Amann R, Rossello-Mora R. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218. [PMID: 34111737 DOI: 10.1016/j.syapm.2021.126218] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 05/14/2021] [Indexed: 01/29/2023]
Abstract
The new release of the All-Species Living Tree Project (LTP) represents an important step forward in the reconstruction of 16S rRNA gene phylogenies, since we not only provide an updated set of type strain sequences until December 2020, but also a series of improvements that increase the quality of the database. An improved universal alignment has been introduced that is implemented in the ARB format. In addition, all low-quality sequences present in the previous releases have been substituted by new entries with higher quality, many of them as a result of whole genome sequencing. Altogether, the improvements in the dataset and 16S rRNA sequence alignment allowed us to reconstruct robust phylogenies. The trees made available through this current LTP release feature the best topologies currently achievable. The given nomenclature and taxonomic hierarchy reflect all the changes available up to December 2020. The aim is to regularly update the validly published nomenclatural classification changes and new taxa proposals. The new release can be found at the following URL: https://imedea.uib-csic.es/mmg/ltp/.
Collapse
Affiliation(s)
- Wolfgang Ludwig
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), C/Miquel Marqués 21, 07190 Esporles, Spain
| | - Ralf Westram
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany; Ribocon GmbH, Fahrenheitstraße. 1, D-28359 Bremen, Germany
| | - Juan Francisco Gago
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), C/Miquel Marqués 21, 07190 Esporles, Spain
| | - Esteban Bustos-Caparros
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), C/Miquel Marqués 21, 07190 Esporles, Spain
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), C/Miquel Marqués 21, 07190 Esporles, Spain.
| |
Collapse
|
64
|
Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, Szöllősi GJ, Williams TA. A rooted phylogeny resolves early bacterial evolution. Science 2021; 372:372/6542/eabe0511. [PMID: 33958449 DOI: 10.1126/science.abe0511] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.
Collapse
Affiliation(s)
- Gareth A Coleman
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Adrián A Davín
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Netherlands
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary.,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Netherlands.,Department of Cell- and Molecular Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary. .,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary.,Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
65
|
Zheng W, Wang X, Zhou H, Zhang Y, Li A, Bian X. Establishment of recombineering genome editing system in Paraburkholderia megapolitana empowers activation of silent biosynthetic gene clusters. Microb Biotechnol 2021; 13:397-405. [PMID: 32053291 PMCID: PMC7017819 DOI: 10.1111/1751-7915.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
The Burkholderiales are an emerging source of bioactive natural products. Their genomes contain a large number of cryptic biosynthetic gene clusters (BGCs), indicating great potential for novel structures. However, the lack of genetic tools for the most of Burkholderiales strains restricts the mining of these cryptic BGCs. We previously discovered novel phage recombinases Redαβ7029 from Burkholderiales strain DSM 7029 that could help in efficiently editing several Burkholderiales genomes and established the recombineering genome editing system in Burkholderialse species. Herein, we report the application of this phage recombinase system in another species Paraburkholderia megapolitana DSM 23488, resulting in activation of two silent non‐ribosomal peptide synthetase/polyketide synthase BGCs. A novel class of lipopeptide, haereomegapolitanin, was identified through spectroscopic characterization. Haereomegapolitanin A represents an unusual threonine‐tagged lipopeptide which is longer than the predicted NRPS assembly line. This recombineering‐mediated genome editing system shows great potential for genetic manipulation of more Burkholderiales species to activate silent BGCs for bioactive metabolites discovery.
Collapse
Affiliation(s)
- Wentao Zheng
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
66
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
67
|
Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen IM, Huntemann M, Palaniappan K, Ladau J, Mukherjee S, Reddy TBK, Nielsen T, Kirton E, Faria JP, Edirisinghe JN, Henry CS, Jungbluth SP, Chivian D, Dehal P, Wood-Charlson EM, Arkin AP, Tringe SG, Visel A, Woyke T, Mouncey NJ, Ivanova NN, Kyrpides NC, Eloe-Fadrosh EA. A genomic catalog of Earth's microbiomes. Nat Biotechnol 2021; 39:499-509. [PMID: 33169036 PMCID: PMC8041624 DOI: 10.1038/s41587-020-0718-6] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.
Collapse
Affiliation(s)
| | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | | - Dongying Wu
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | - I-Min Chen
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | | - T B K Reddy
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | | | | - Sean P Jungbluth
- DOE Joint Genome Institute, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dylan Chivian
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paramvir Dehal
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Axel Visel
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
68
|
Szuróczki S, Abbaszade G, Buni D, Bóka K, Schumann P, Neumann-Schaal M, Vajna B, Tóth E. Fertoeibacter niger gen. nov., sp. nov. a novel alkaliphilic bacterium of the family Rhodobacteraceae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33734953 DOI: 10.1099/ijsem.0.004762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23-33 °C in the presence of NaCl (1-2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae, for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Sára Szuróczki
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Gorkhmaz Abbaszade
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Dominika Buni
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Faculty of Science, Eötvös Loránd University, Budapest, Pázmány Péter stny. 1/C, H-1117, Hungary
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Balázs Vajna
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
69
|
Piro VC, Dadi TH, Seiler E, Reinert K, Renard BY. ganon: precise metagenomics classification against large and up-to-date sets of reference sequences. Bioinformatics 2021; 36:i12-i20. [PMID: 32657362 PMCID: PMC7355301 DOI: 10.1093/bioinformatics/btaa458] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION The exponential growth of assembled genome sequences greatly benefits metagenomics studies. However, currently available methods struggle to manage the increasing amount of sequences and their frequent updates. Indexing the current RefSeq can take days and hundreds of GB of memory on large servers. Few methods address these issues thus far, and even though many can theoretically handle large amounts of references, time/memory requirements are prohibitive in practice. As a result, many studies that require sequence classification use often outdated and almost never truly up-to-date indices. RESULTS Motivated by those limitations, we created ganon, a k-mer-based read classification tool that uses Interleaved Bloom Filters in conjunction with a taxonomic clustering and a k-mer counting/filtering scheme. Ganon provides an efficient method for indexing references, keeping them updated. It requires <55 min to index the complete RefSeq of bacteria, archaea, fungi and viruses. The tool can further keep these indices up-to-date in a fraction of the time necessary to create them. Ganon makes it possible to query against very large reference sets and therefore it classifies significantly more reads and identifies more species than similar methods. When classifying a high-complexity CAMI challenge dataset against complete genomes from RefSeq, ganon shows strongly increased precision with equal or better sensitivity compared with state-of-the-art tools. With the same dataset against the complete RefSeq, ganon improved the F1-score by 65% at the genus level. It supports taxonomy- and assembly-level classification, multiple indices and hierarchical classification. AVAILABILITY AND IMPLEMENTATION The software is open-source and available at: https://gitlab.com/rki_bioinformatics/ganon. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vitor C Piro
- Bioinformatics Unit (MF1), Robert Koch Institute, Berlin 13353, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil.,Data Analytics and Computational Statistics, Hasso Plattner Insititute, Digital Engineering Faculty, University of Potsdam, Potsdam 14482, Germany
| | - Temesgen H Dadi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Enrico Seiler
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Knut Reinert
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Bernhard Y Renard
- Bioinformatics Unit (MF1), Robert Koch Institute, Berlin 13353, Germany.,Data Analytics and Computational Statistics, Hasso Plattner Insititute, Digital Engineering Faculty, University of Potsdam, Potsdam 14482, Germany
| |
Collapse
|
70
|
Vickers CJ, Fraga D, Patrick WM. Quantifying the taxonomic bias in enzymology. Protein Sci 2021; 30:914-921. [PMID: 33583070 PMCID: PMC7980516 DOI: 10.1002/pro.4041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
The ongoing biotechnological revolution is rooted in our knowledge of enzymes. However, metagenomics is showing how little we know about Earth's enzyme repertoire. Deep sequencing has revolutionized our view of the tree of life. The genomes of newly‐discovered organisms are replete with novel sequences, emphasizing the trove of enzyme structures and functions waiting to be explored by biochemists. Here, we sought to draw attention to the vastness of the “enzymatic dark matter” within the tree of life by placing enzymological knowledge in the context of phylogeny. We used kinetic parameters from the BRaunschweig ENzyme DAtabase (BRENDA) as our proxy for enzymological knowledge. Mapping 12,677 BRENDA entries onto the phylogenetic tree revealed that 55% of these data were from eukaryotes, even though they are the least diverse part of the tree. At the next taxonomic level, only four of 18 archaeal phyla and 24 of 111 bacterial phyla are represented in the BRENDA dataset. One phylum, the Proteobacteria, accounts for over half of all bacterial entries. Similarly, the supergroup Amorphea, which includes animals and fungi, contains over half the data on eukaryotes. Many major taxonomic groups are notable for their complete absence from BRENDA, including the ultra‐diverse bacterial Candidate Phyla Radiation. At the species level, five mammals (including human) contribute 15% of BRENDA entries. The taxonomic bias in enzymology is strong, but in the era of gene synthesis we now have the tools to address it. Doing so promises to enrich our biochemical understanding of life and uncover powerful new biocatalysts.
Collapse
Affiliation(s)
- Chelsea J Vickers
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Dean Fraga
- Department of Biology, The College of Wooster, Wooster, Ohio, USA
| | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
71
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
72
|
Bolleman J, de Castro E, Baratin D, Gehant S, Cuche BA, Auchincloss AH, Coudert E, Hulo C, Masson P, Pedruzzi I, Rivoire C, Xenarios I, Redaschi N, Bridge A. HAMAP as SPARQL rules-A portable annotation pipeline for genomes and proteomes. Gigascience 2021; 9:5731417. [PMID: 32034905 PMCID: PMC7007698 DOI: 10.1093/gigascience/giaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/30/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Genome and proteome annotation pipelines are generally custom built and not easily reusable by other groups. This leads to duplication of effort, increased costs, and suboptimal annotation quality. One way to address these issues is to encourage the adoption of annotation standards and technological solutions that enable the sharing of biological knowledge and tools for genome and proteome annotation. Results Here we demonstrate one approach to generate portable genome and proteome annotation pipelines that users can run without recourse to custom software. This proof of concept uses our own rule-based annotation pipeline HAMAP, which provides functional annotation for protein sequences to the same depth and quality as UniProtKB/Swiss-Prot, and the World Wide Web Consortium (W3C) standards Resource Description Framework (RDF) and SPARQL (a recursive acronym for the SPARQL Protocol and RDF Query Language). We translate complex HAMAP rules into the W3C standard SPARQL 1.1 syntax, and then apply them to protein sequences in RDF format using freely available SPARQL engines. This approach supports the generation of annotation that is identical to that generated by our own in-house pipeline, using standard, off-the-shelf solutions, and is applicable to any genome or proteome annotation pipeline. Conclusions HAMAP SPARQL rules are freely available for download from the HAMAP FTP site, ftp://ftp.expasy.org/databases/hamap/sparql/, under the CC-BY-ND 4.0 license. The annotations generated by the rules are under the CC-BY 4.0 license. A tutorial and supplementary code to use HAMAP as SPARQL are available on GitHub at https://github.com/sib-swiss/HAMAP-SPARQL, and general documentation about HAMAP can be found on the HAMAP website at https://hamap.expasy.org.
Collapse
Affiliation(s)
- Jerven Bolleman
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Edouard de Castro
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Delphine Baratin
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Sebastien Gehant
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Beatrice A Cuche
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Andrea H Auchincloss
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Elisabeth Coudert
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Chantal Hulo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Patrick Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ivo Pedruzzi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Catherine Rivoire
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.,Centre Hospitalier Universitaire Vaudois/Ludwig Institute for Cancer Research, Agora Centre, CH-1005 Lausanne, Switzerland
| | - Nicole Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
73
|
Shi W, Sun Q, Fan G, Hideaki S, Moriya O, Itoh T, Zhou Y, Cai M, Kim SG, Lee JS, Sedlacek I, Arahal DR, Lucena T, Kawasaki H, Evtushenko L, Weir BS, Alexander S, Dénes D, Tanasupawat S, Eurwilaichitr L, Ingsriswang S, Gomez-Gil B, Hazbón MH, Riojas MA, Suwannachart C, Yao S, Vandamme P, Peng F, Chen Z, Liu D, Sun X, Zhang X, Zhou Y, Meng Z, Wu L, Ma J. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 2021; 49:D694-D705. [PMID: 33119759 PMCID: PMC7778895 DOI: 10.1093/nar/gkaa957] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Taxonomic and functional research of microorganisms has increasingly relied upon genome-based data and methods. As the depository of the Global Catalogue of Microorganisms (GCM) 10K prokaryotic type strain sequencing project, Global Catalogue of Type Strain (gcType) has published 1049 type strain genomes sequenced by the GCM 10K project which are preserved in global culture collections with a valid published status. Additionally, the information provided through gcType includes >12 000 publicly available type strain genome sequences from GenBank incorporated using quality control criteria and standard data annotation pipelines to form a high-quality reference database. This database integrates type strain sequences with their phenotypic information to facilitate phenotypic and genotypic analyses. Multiple formats of cross-genome searches and interactive interfaces have allowed extensive exploration of the database's resources. In this study, we describe web-based data analysis pipelines for genomic analyses and genome-based taxonomy, which could serve as a one-stop platform for the identification of prokaryotic species. The number of type strain genomes that are published will continue to increase as the GCM 10K project increases its collaboration with culture collections worldwide. Data of this project is shared with the International Nucleotide Sequence Database Collaboration. Access to gcType is free at http://gctype.wdcm.org/.
Collapse
Affiliation(s)
- Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing 100190, China
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China
| | | | - Ohkuma Moriya
- Japan Collection of Microorganisms (JCM)/ Microbe Divion, RIKEN BioResource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM)/ Microbe Divion, RIKEN BioResource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Cai
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song-Gun Kim
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ivo Sedlacek
- Czech Collection of Microorganisms, Masaryk University, Kamenice 5, building A25, 625 00 Brno, Czech Republic
| | - David R Arahal
- Colección Española de Cultivos Tipo (CECT), and Departamento de Microbiología y Ecología, University of Valencia, 46100 Burjassot (Valencia), Spain
| | - Teresa Lucena
- Colección Española de Cultivos Tipo (CECT), and Departamento de Microbiología y Ecología, University of Valencia, 46100 Burjassot (Valencia), Spain
| | - Hiroko Kawasaki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lyudmila Evtushenko
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow region 142290, Russia
| | - Bevan S Weir
- Mycology & Bacteriology Systematics, Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - Sarah Alexander
- National Collection of Type Cultures (NCTC), Public Health England (PHE), UK
| | - Dlauchy Dénes
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, H-1118, Budapest, Somlói út 14-16, Hungary
| | - Somboon Tanasupawat
- Faculty of Pharmaceutical Sciences, Chulalongkorn University (PCU), Bangkok 10330, Thailand
| | - Lily Eurwilaichitr
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing 100190, China.,Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Supawadee Ingsriswang
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing 100190, China.,Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Bruno Gomez-Gil
- CIAD, A.C., Collection of Aquatic Important Microorganisms (CAIM). AP 711 Mazatlán, Sinaloa, Mexico
| | - Manzour H Hazbón
- American Type Culture Collection(ATCC), 10801 University Boulevard, Manassas, VA 20110, USA
| | - Marco A Riojas
- American Type Culture Collection(ATCC), 10801 University Boulevard, Manassas, VA 20110, USA
| | - Chatrudee Suwannachart
- Biodiversity Research Centre, Thailand Institute of Scientific and Technological Research (TISTR), 35 M 3 Technopolis Khlong 5 Khlong Luang Pathum Thani 12120, Thailand
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), Beijing, China
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zenghui Chen
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China
| | - Dongmei Liu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China
| | - Xiuqiang Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China
| | - Xinjiao Zhang
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China
| | - Yuanchun Zhou
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Meng
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Data Center for Microorganisms, Beijing 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing 100190, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
74
|
Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, Cavassim MIA, Rashid MHO, Aserse AA, Perry BJ, Wang ET, Velázquez E, Andronov EE, Tampakaki A, Flores Félix JD, Rivas González R, Youseif SH, Lepetit M, Boivin S, Jorrin B, Kenicer GJ, Peix Á, Hynes MF, Ramírez-Bahena MH, Gulati A, Tian CF. Defining the Rhizobium leguminosarum Species Complex. Genes (Basel) 2021; 12:111. [PMID: 33477547 PMCID: PMC7831135 DOI: 10.3390/genes12010111] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.
Collapse
Affiliation(s)
| | - Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Afonin
- Laboratory for Genetics of Plant-Microbe Interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India;
| | - Marta Maluk
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Maria Izabel A. Cavassim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - M. Harun-or Rashid
- Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh;
| | - Aregu Amsalu Aserse
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad De México 11340, Mexico;
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Evgeny E. Andronov
- Department of Microbial Monitoring, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Anastasia Tampakaki
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;
| | - José David Flores Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Raúl Rivas González
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Sameh H. Youseif
- Department of Microbial Genetic Resources, National Gene Bank (NGB), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Marc Lepetit
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, 06903 Sophia Antipolis, France;
| | - Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR INRAE-IRD-CIRAD-UM2-SupAgro, Campus International de Baillarguet, TA-A82/J, CEDEX 05, 34398 Montpellier, France;
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK;
| | - Gregory J. Kenicer
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Martha Helena Ramírez-Bahena
- Departamento de Didáctica de las Matemáticas y de las Ciencias Experimentales. Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Arvind Gulati
- Microbial Prospection, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176 061, India;
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
75
|
Qi SS, Bogdanov A, Cnockaert M, Acar T, Ranty-Roby S, Coenye T, Vandamme P, König GM, Crüsemann M, Carlier A. Induction of antibiotic specialized metabolism by co-culturing in a collection of phyllosphere bacteria. Environ Microbiol 2021; 23:2132-2151. [PMID: 33393154 DOI: 10.1111/1462-2920.15382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023]
Abstract
A diverse set of bacteria live on the above-ground parts of plants, composing the phyllosphere, and play important roles for plant health. Phyllosphere microbial communities assemble in a predictable manner and diverge from communities colonizing other plant organs or the soil. However, how these communities differ functionally remains obscure. We assembled a collection of 258 bacterial isolates representative of the most abundant taxa of the phyllosphere of Arabidopsis and a shared soil inoculum. We screened the collection for the production of metabolites that inhibit the growth of Gram-positive and Gram-negative bacteria either in isolation or in co-culture. We found that isolates capable of constitutive antibiotic production in monoculture were significantly enriched in the soil fraction. In contrast, the proportion of binary cultures resulting in the production of growth inhibitory compounds differed only marginally between the phyllosphere and soil fractions. This shows that the phyllosphere may be a rich resource for potentially novel molecules with antibiotic activity, but that production or activity is dependent upon induction by external signals or cues. Finally, we describe the isolation of antimicrobial acyloin metabolites from a binary culture of Arabidopsis phyllosphere isolates, which inhibit the growth of clinically relevant Acinetobacter baumannii.
Collapse
Affiliation(s)
- Shan Shan Qi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alexander Bogdanov
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Tessa Acar
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sarah Ranty-Roby
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
76
|
Gao Y, Zhao Y, He X, Deng Z, Jiang M. Challenges of functional expression of complex polyketide biosynthetic gene clusters. Curr Opin Biotechnol 2021; 69:103-111. [PMID: 33422913 DOI: 10.1016/j.copbio.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
Abstract
Polyketide natural products are valuable sources of bioactive molecules such as nutraceuticals and pharmaceuticals. The tremendous development of the genome sequence database revealed that the majority of the biosynthetic gene clusters (BGCs) are cryptic. Activation of these cryptic BGCs and identification of the related products is essential for finding more lead compounds for pharmaceuticals. On the other hand, 99% of microbes in nature cannot be cultured in regular conditions, which greatly hinders the efforts to explore their biosynthetic potentials. Expression of polyketide BGCs in heterologous hosts with better growth, good genetic characteristics, and amenable molecular tools is a robust approach to identify new polyketides and characterize their biosynthesis. This review outlines the challenges in the heterologous production of polyketide BGCs of bacterial origins.
Collapse
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
77
|
Futo M, Opašić L, Koska S, Čorak N, Široki T, Ravikumar V, Thorsell A, Lenuzzi M, Kifer D, Domazet-Lošo M, Vlahoviček K, Mijakovic I, Domazet-Lošo T. Embryo-Like Features in Developing Bacillus subtilis Biofilms. Mol Biol Evol 2021; 38:31-47. [PMID: 32871001 PMCID: PMC7783165 DOI: 10.1093/molbev/msaa217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Correspondence between evolution and development has been discussed for more than two centuries. Recent work reveals that phylogeny-ontogeny correlations are indeed present in developmental transcriptomes of eukaryotic clades with complex multicellularity. Nevertheless, it has been largely ignored that the pervasive presence of phylogeny-ontogeny correlations is a hallmark of development in eukaryotes. This perspective opens a possibility to look for similar parallelisms in biological settings where developmental logic and multicellular complexity are more obscure. For instance, it has been increasingly recognized that multicellular behavior underlies biofilm formation in bacteria. However, it remains unclear whether bacterial biofilm growth shares some basic principles with development in complex eukaryotes. Here we show that the ontogeny of growing Bacillus subtilis biofilms recapitulates phylogeny at the expression level. Using time-resolved transcriptome and proteome profiles, we found that biofilm ontogeny correlates with the evolutionary measures, in a way that evolutionary younger and more diverged genes were increasingly expressed toward later timepoints of biofilm growth. Molecular and morphological signatures also revealed that biofilm growth is highly regulated and organized into discrete ontogenetic stages, analogous to those of eukaryotic embryos. Together, this suggests that biofilm formation in Bacillus is a bona fide developmental process comparable to organismal development in animals, plants, and fungi. Given that most cells on Earth reside in the form of biofilms and that biofilms represent the oldest known fossils, we anticipate that the widely adopted vision of the first life as a single-cell and free-living organism needs rethinking.
Collapse
Affiliation(s)
- Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Vaishnavi Ravikumar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maša Lenuzzi
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics Group, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- School of Biosciences, University of Skövde, Skövde, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
78
|
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 2021; 6:499-511. [PMID: 33526884 PMCID: PMC8007473 DOI: 10.1038/s41564-020-00861-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities. We assembled 719 high-quality metagenome-assembled genomes (MAGs) that are unique at the species level. More than 90% of these MAGs are from previously unidentified herbivore gut microorganisms. Microbial consortia dominated by anaerobic fungi outperformed bacterially dominated consortia in terms of both methane production and extent of cellulose degradation, which indicates that fungi have an important role in methane release. Metabolic pathway reconstructions from MAGs of 737 bacteria, archaea and fungi suggest that cross-domain partnerships between fungi and methanogens enabled production of acetate, formate and methane, whereas bacterially dominated consortia mainly produced short-chain fatty acids, including propionate and butyrate. Analyses of carbohydrate-active enzyme domains present in each anaerobic consortium suggest that anaerobic bacteria and fungi employ mostly complementary hydrolytic strategies. The division of labour among herbivore anaerobes to degrade plant biomass could be harnessed for industrial bioprocessing.
Collapse
Affiliation(s)
- Xuefeng Peng
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.133342.40000 0004 1936 9676Marine Science Institute, University of California, Santa Barbara, CA USA
| | - St. Elmo Wilken
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Thomas S. Lankiewicz
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Sean P. Gilmore
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Jennifer L. Brown
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - John K. Henske
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Candice L. Swift
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Asaf Salamov
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Kerrie Barry
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Igor V. Grigoriev
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael K. Theodorou
- grid.417899.a0000 0001 2167 3798Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - David L. Valentine
- grid.133342.40000 0004 1936 9676Department of Earth Science, University of California, Santa Barbara, CA USA
| | - Michelle A. O’Malley
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
79
|
Schniete JK, Selem-Mojica N, Birke AS, Cruz-Morales P, Hunter IS, Barona-Gomez F, Hoskisson PA. ActDES - a curated Actinobacterial Database for Evolutionary Studies. Microb Genom 2021; 7:mgen000498. [PMID: 33433310 PMCID: PMC8115908 DOI: 10.1099/mgen.0.000498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/06/2020] [Indexed: 12/25/2022] Open
Abstract
Actinobacteria is a large and diverse phylum of bacteria that contains medically and ecologically relevant organisms. Many members are valuable sources of bioactive natural products and chemical precursors that are exploited in the clinic and made using the enzyme pathways encoded in their complex genomes. Whilst the number of sequenced genomes has increased rapidly in the last 20 years, the large size, complexity and high G+C content of many actinobacterial genomes means that the sequences remain incomplete and consist of large numbers of contigs with poor annotation, which hinders large-scale comparative genomic and evolutionary studies. To enable greater understanding and exploitation of actinobacterial genomes, specialized genomic databases must be linked to high-quality genome sequences. Here, we provide a curated database of 612 high-quality actinobacterial genomes from 80 genera, chosen to represent a broad phylogenetic group with equivalent genome re-annotation. Utilizing this database will provide researchers with a framework for evolutionary and metabolic studies, to enable a foundation for genome and metabolic engineering, to facilitate discovery of novel bioactive therapeutics and studies on gene family evolution. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Jana K. Schniete
- Biology Department, Edge Hill University, St Helens Road, Ormskirk, Lancashire L39 4QP, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Libramiento Norte Carretera Leon Km 9.6, 36821 Irapuato, Guanajuato, México
| | - Anna S. Birke
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Libramiento Norte Carretera Leon Km 9.6, 36821 Irapuato, Guanajuato, México
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Libramiento Norte Carretera Leon Km 9.6, 36821 Irapuato, Guanajuato, México
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
80
|
Lang D, Zhang S, Ren P, Liang F, Sun Z, Meng G, Tan Y, Li X, Lai Q, Han L, Wang D, Hu F, Wang W, Liu S. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. Gigascience 2020; 9:giaa123. [PMID: 33319909 PMCID: PMC7736813 DOI: 10.1093/gigascience/giaa123] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The availability of reference genomes has revolutionized the study of biology. Multiple competing technologies have been developed to improve the quality and robustness of genome assemblies during the past decade. The 2 widely used long-read sequencing providers-Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)-have recently updated their platforms: PacBio enables high-throughput HiFi reads with base-level resolution of >99%, and ONT generated reads as long as 2 Mb. We applied the 2 up-to-date platforms to a single rice individual and then compared the 2 assemblies to investigate the advantages and limitations of each. RESULTS The results showed that ONT ultralong reads delivered higher contiguity, producing a total of 18 contigs of which 10 were assembled into a single chromosome compared to 394 contigs and 3 chromosome-level contigs for the PacBio assembly. The ONT ultralong reads also prevented assembly errors caused by long repetitive regions, for which we observed a total of 44 genes of false redundancies and 10 genes of false losses in the PacBio assembly, leading to over- or underestimation of the gene families in those long repetitive regions. We also noted that the PacBio HiFi reads generated assemblies with considerably fewer errors at the level of single nucleotides and small insertions and deletions than those of the ONT assembly, which generated an average 1.06 errors per kb and finally engendered 1,475 incorrect gene annotations via altered or truncated protein predictions. CONCLUSIONS It shows that both PacBio HiFi reads and ONT ultralong reads had their own merits. Further genome reference constructions could leverage both techniques to lessen the impact of assembly errors and subsequent annotation mistakes rooted in each.
Collapse
Affiliation(s)
- Dandan Lang
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Shilai Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, No.2, North Cuihu Road, Kunming, Yunnan 650091, China
| | - Pingping Ren
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Fan Liang
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Zongyi Sun
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Guanliang Meng
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Yuntao Tan
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Xiaokang Li
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Qihua Lai
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Lingling Han
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Depeng Wang
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
| | - Fengyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, No.2, North Cuihu Road, Kunming, Yunnan 650091, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No.32, East Jiaochang Road, Kunming, Yunnan 650223, China
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, No.127, West Youyi Road, Xi'an, Shanxi 710072, China
| | - Shanlin Liu
- GrandOmics Biosciences, No.1, East Nengyuan Road, Beijing 102200, China
- Department of Entomology, College of Plant Protection, China Agricultural University, No.2, West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
81
|
Large-Scale Metagenome Assembly Reveals Novel Animal-Associated Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic Diversity. mSystems 2020; 5:5/6/e01045-20. [PMID: 33144315 PMCID: PMC7646530 DOI: 10.1128/msystems.01045-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Large-scale metagenome assemblies of human microbiomes have produced a vast catalogue of previously unseen microbial genomes; however, comparatively few microbial genomes derive from other vertebrates. Here, we generated 5,596 metagenome-assembled genomes (MAGs) from the gut metagenomes of 180 predominantly wild animal species representing 5 classes, in addition to 14 existing animal gut metagenome data sets. The MAGs comprised 1,522 species-level genome bins (SGBs), most of which were novel at the species, genus, or family level, and the majority were enriched in host versus environment metagenomes. Many traits distinguished SGBs enriched in host or environmental biomes, including the number of antimicrobial resistance genes. We identified 1,986 diverse biosynthetic gene clusters; only 23 clustered with any MIBiG database references. Gene-based assembly revealed tremendous gene diversity, much of it host or environment specific. Our MAG and gene data sets greatly expand the microbial genome repertoire and provide a broad view of microbial adaptations to the vertebrate gut.IMPORTANCE Microbiome studies on a select few mammalian species (e.g., humans, mice, and cattle) have revealed a great deal of novel genomic diversity in the gut microbiome. However, little is known of the microbial diversity in the gut of other vertebrates. We studied the gut microbiomes of a large set of mostly wild animal species consisting of mammals, birds, reptiles, amphibians, and fish. Unfortunately, we found that existing reference databases commonly used for metagenomic analyses failed to capture the microbiome diversity among vertebrates. To increase database representation, we applied advanced metagenome assembly methods to our animal gut data and to many public gut metagenome data sets that had not been used to obtain microbial genomes. Our resulting genome and gene cluster collections comprised a great deal of novel taxonomic and genomic diversity, which we extensively characterized. Our findings substantially expand what is known of microbial genomic diversity in the vertebrate gut.
Collapse
|
82
|
Peña A, Busquets A, Gomila M, Mulet M, Gomila RM, Garcia-Valdes E, Reddy TBK, Huntemann M, Varghese N, Ivanova N, Chen IM, Göker M, Woyke T, Klenk HP, Kyrpides N, Lalucat J. High-quality draft genome sequences of Pseudomonas monteilii DSM 14164 T, Pseudomonas mosselii DSM 17497 T, Pseudomonas plecoglossicida DSM 15088 T, Pseudomonas taiwanensis DSM 21245 T and Pseudomonas vranovensis DSM 16006 T: taxonomic considerations. Access Microbiol 2020; 1:e000067. [PMID: 32974501 PMCID: PMC7491935 DOI: 10.1099/acmi.0.000067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas is the bacterial genus of Gram-negative bacteria with the highest number of recognized species. It is divided phylogenetically into three lineages and at least 11 groups of species. The Pseudomonas putida group of species is one of the most versatile and best studied. It comprises 15 species with validly published names. As a part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project, we present the genome sequences of the type strains of five species included in this group: Pseudomonas monteilii (DSM 14164T), Pseudomonas mosselii (DSM 17497T), Pseudomonas plecoglossicida (DSM 15088T), Pseudomonas taiwanensis (DSM 21245T) and Pseudomonas vranovensis (DSM 16006T). These strains represent species of environmental and also of clinical interest due to their pathogenic properties against humans and animals. Some strains of these species promote plant growth or act as plant pathogens. Their genome sizes are among the largest in the group, ranging from 5.3 to 6.3 Mbp. In addition, the genome sequences of the type strains in the Pseudomonas taxonomy were analysed via genome-wide taxonomic comparisons of ANIb, gANI and GGDC values among 130 Pseudomonas strains classified within the group. The results demonstrate that at least 36 genomic species can be delineated within the P. putida phylogenetic group of species.
Collapse
Affiliation(s)
- Arantxa Peña
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma de, Mallorca, Spain
| | - Antonio Busquets
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma de, Mallorca, Spain
| | - Margarita Gomila
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma de, Mallorca, Spain
| | - Magdalena Mulet
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma de, Mallorca, Spain
| | - Rosa M Gomila
- Serveis Cientifico-Tècnics, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Elena Garcia-Valdes
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma de, Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Palma de Mallorca, Spain
| | - T B K Reddy
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - Marcel Huntemann
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - Neha Varghese
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - I-Min Chen
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Nikos Kyrpides
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA
| | - Jorge Lalucat
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma de, Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Palma de Mallorca, Spain
| |
Collapse
|
83
|
Zhang Q, Ren JW, Wang W, Zhai J, Yang J, Liu N, Huang Y, Chen Y, Pan G, Fan K. A Versatile Transcription-Translation in One Approach for Activation of Cryptic Biosynthetic Gene Clusters. ACS Chem Biol 2020; 15:2551-2557. [PMID: 32786260 DOI: 10.1021/acschembio.0c00581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ever-growing drug resistance problem worldwide highlights the urgency to discover and develop new drugs. Microbial natural products are a prolific source of drugs. Genome sequencing has revealed a tremendous amount of uncharacterized natural product biosynthetic gene clusters (BGCs) encoded within microbial genomes, most of which are cryptic or express at very low levels under standard culture conditions. Therefore, developing effective strategies to awaken these cryptic BGCs is of great interest for natural product discovery. In this study, we designed and validated a Transcription-Translation in One (TTO) approach for activation of cryptic BGCs. This approach aims to alter the metabolite profiles of target strains by directly overexpressing exogenous rpsL (encoding ribosomal protein S12) and rpoB (encoding RNA polymerase β subunit) genes containing beneficial mutations for natural product production using a plug-and-play plasmid system. As a result, this approach bypasses the tedious screening work and overcomes the false positive problem in the traditional ribosome engineering approach. In this work, the TTO approach was successfully applied to activating cryptic BGCs in three Streptomyces strains, leading to the discovery of two aromatic polyketide antibiotics, piloquinone and homopiloquinone. We further identified a single BGC responsible for the biosynthesis of both piloquinone and homopiloquinone, which features an unusual starter unit incorporation step. This powerful strategy can be further exploited for BGC activation in strains even beyond streptomycetes, thus facilitating natural product discovery research in the future.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji’an Zhai
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jing Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
84
|
Webster G, Jones C, Mullins AJ, Mahenthiralingam E. A rapid screening method for the detection of specialised metabolites from bacteria: Induction and suppression of metabolites from Burkholderia species. J Microbiol Methods 2020; 178:106057. [PMID: 32941961 PMCID: PMC7684528 DOI: 10.1016/j.mimet.2020.106057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022]
Abstract
Screening microbial cultures for specialised metabolites is essential for the discovery of new biologically active compounds. A novel, cost-effective and rapid screening method is described for extracting specialised metabolites from bacteria grown on agar plates, coupled with HPLC for basic identification of known and potentially novel metabolites. The method allows the screening of culture collections to identify optimal production strains and metabolite induction conditions. The protocol was optimised on two Burkholderia species known to produce the antibiotics, enacyloxin IIa (B. ambifaria) and gladiolin (B. gladioli), respectively; it was then applied to strains of each species to identify high antibiotic producers. B. ambifaria AMMD and B. gladioli BCC0238 produced the highest concentrations of the respective antibiotic under the conditions tested. To induce expression of silent biosynthetic gene clusters, the addition of low concentrations of antibiotics to growth media was evaluated as known elicitors of Burkholderia specialised metabolites. Subinhibitory concentrations of trimethoprim and other clinically therapeutic antibiotics were evaluated and screened against a panel of B. gladioli and B. ambifaria. To enhance rapid strain screening with more antibiotic elicitors, antimicrobial susceptibility testing discs were included within the induction medium. Low concentrations of trimethoprim suppressed the production of specialised metabolites in B. gladioli, including the toxins, toxoflavin and bongkrekic acid. However, the addition of trimethoprim significantly improved enacylocin IIa concentrations in B. ambifaria AMMD. Rifampicin and ceftazidime significantly improved the yield of gladiolin and caryoynencin by B. gladioli BCC0238, respectively, and cepacin increased 2-fold with tobramycin in B. ambifaria BCC0191. Potentially novel metabolites were also induced by subinhibitory concentrations of tobramycin and chloramphenicol in B. ambifaria. In contrast to previous findings that low concentrations of antibiotic elicit Burkholderia metabolite production, we found they acted as both inducers or suppressors dependent on the metabolite and the strains producing them. In conclusion, the screening protocol enabled rapid characterization of Burkholderia metabolites, the identification of suitable producer strains, potentially novel natural products and an understanding of metabolite regulation in the presence of inducing or suppressing conditions.
Collapse
Affiliation(s)
- Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK..
| | - Cerith Jones
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK..
| | - Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK..
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK..
| |
Collapse
|
85
|
Guo M, Liu G, Chen J, Ma J, Lin J, Fu Y, Fan G, Lee SMY, Zhang L. Dynamics of bacteriophages in gut of giant pandas reveal a potential regulation of dietary intake on bacteriophage composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139424. [PMID: 32464399 DOI: 10.1016/j.scitotenv.2020.139424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Fecal samples of cubs and adults of giant pandas were examined to determine the effects of diets on the diversity and dynamics of gut bacteriophages. Enterobacteria phage, Salmonella phage, Escherichia phage, Shigella phage, Klebsiella phage, and Lactococcus phage were found to be dominant in both cub and adult samples. Citrobacter phage, Cronobacter phage, Pectobacterium phage, Erwinia phage, Dickeya phage, Erwinia phage, Enterococcus phage, and Pseudomonas phage were more abundant in adults, while Lactococcus phage, Streptococcus phage, Lactobacillus phage, and Leuconostoc phage were more abundant in cubs. The abundance and diversity of the majority of phage species were increased in pandas with age. There was an increase in the abundance of Pectobacterium phage and a decrease in the abundance of Lactobacillus phage, Leuconostoc phage, Bacillus phage, and Streptococcus phage in adults. As cubs and adults of giant pandas have different dietary habits, these observations suggest a significant effect of diets on the composition and abundance of gut bacteriophages in giant pandas.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China; State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China; Synthetic Biology Technology Innovation Center of Shandong Province, Qingdao, China
| | | | | | - Ying Fu
- Faculty of Science and Technology, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; BGI-Qingdao, BGI-Shenzhen, Qingdao, China; BGI-Shenzhen, Shenzhen, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China.
| |
Collapse
|
86
|
Salvà-Serra F, Jaén-Luchoro D, Jakobsson HE, Gonzales-Siles L, Karlsson R, Busquets A, Gomila M, Bennasar-Figueras A, Russell JE, Fazal MA, Alexander S, Moore ERB. Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies. Sci Rep 2020; 10:11656. [PMID: 32669560 PMCID: PMC7363880 DOI: 10.1038/s41598-020-68249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023] Open
Abstract
We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198T and CCUG 4207T, the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198T and CCUG 4207T are derived from deposit of the same strain at two different culture collections. NCTC 8198T was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207T was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden.
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Hedvig E Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
- Nanoxis Consulting AB, 400 16, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | | | - Julie E Russell
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Mohammed Abbas Fazal
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Sarah Alexander
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
87
|
Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 2020; 10:10946. [PMID: 32616801 PMCID: PMC7331816 DOI: 10.1038/s41598-020-67892-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.
Collapse
|
88
|
Santana-Molina C, Rivas-Marin E, Rojas AM, Devos DP. Origin and Evolution of Polycyclic Triterpene Synthesis. Mol Biol Evol 2020; 37:1925-1941. [PMID: 32125435 PMCID: PMC7306690 DOI: 10.1093/molbev/msaa054] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycyclic triterpenes are members of the terpene family produced by the cyclization of squalene. The most representative polycyclic triterpenes are hopanoids and sterols, the former are mostly found in bacteria, whereas the latter are largely limited to eukaryotes, albeit with a growing number of bacterial exceptions. Given their important role and omnipresence in most eukaryotes, contrasting with their scant representation in bacteria, sterol biosynthesis was long thought to be a eukaryotic innovation. Thus, their presence in some bacteria was deemed to be the result of lateral gene transfer from eukaryotes. Elucidating the origin and evolution of the polycyclic triterpene synthetic pathways is important to understand the role of these compounds in eukaryogenesis and their geobiological value as biomarkers in fossil records. Here, we have revisited the phylogenies of the main enzymes involved in triterpene synthesis, performing gene neighborhood analysis and phylogenetic profiling. Squalene can be biosynthesized by two different pathways containing the HpnCDE or Sqs proteins. Our results suggest that the HpnCDE enzymes are derived from carotenoid biosynthesis ones and that they assembled in an ancestral squalene pathway in bacteria, while remaining metabolically versatile. Conversely, the Sqs enzyme is prone to be involved in lateral gene transfer, and its emergence is possibly related to the specialization of squalene biosynthesis. The biosynthesis of hopanoids seems to be ancestral in the Bacteria domain. Moreover, no triterpene cyclases are found in Archaea, invoking a potential scenario in which eukaryotic genes for sterol biosynthesis assembled from ancestral bacterial contributions in early eukaryotic lineages.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
89
|
Watterson WJ, Tanyeri M, Watson AR, Cham CM, Shan Y, Chang EB, Eren AM, Tay S. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. eLife 2020; 9:e56998. [PMID: 32553109 PMCID: PMC7351490 DOI: 10.7554/elife.56998] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional cultivation approaches in microbiology are labor-intensive, low-throughput, and yield biased sampling of environmental microbes due to ecological and evolutionary factors. New strategies are needed for ample representation of rare taxa and slow-growers that are often outcompeted by fast-growers in cultivation experiments. Here we describe a microfluidic platform that anaerobically isolates and cultivates microbial cells in millions of picoliter droplets and automatically sorts them based on colony density to enhance slow-growing organisms. We applied our strategy to a fecal microbiota transplant (FMT) donor stool using multiple growth media, and found significant increase in taxonomic richness and larger representation of rare and clinically relevant taxa among droplet-grown cells compared to conventional plates. Furthermore, screening the FMT donor stool for antibiotic resistance revealed 21 populations that evaded detection in plate-based assessment of antibiotic resistance. Our method improves cultivation-based surveys of diverse microbiomes to gain deeper insights into microbial functioning and lifestyles.
Collapse
Affiliation(s)
- William J Watterson
- Pritzker School of Molecular Engineering, The University of ChicagoChicagoUnited States
- Institute for Genomics and Systems Biology, The University of ChicagoChicagoUnited States
| | - Melikhan Tanyeri
- Pritzker School of Molecular Engineering, The University of ChicagoChicagoUnited States
- Institute for Genomics and Systems Biology, The University of ChicagoChicagoUnited States
- Department of Engineering, Duquesne UniversityPittsburghUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Candace M Cham
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yue Shan
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Eugene B Chang
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Graduate Program in the Biophysical Sciences, The University of ChicagoChicagoUnited States
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleUnited States
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of ChicagoChicagoUnited States
- Institute for Genomics and Systems Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
90
|
Mbadinga Mbadinga DL, Li Q, Ranocha P, Martinez Y, Dunand C. Global analysis of non-animal peroxidases provides insights into the evolution of this gene family in the green lineage. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3350-3360. [PMID: 32185389 DOI: 10.1093/jxb/eraa141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 05/13/2023]
Abstract
The non-animal peroxidases belong to a superfamily of oxidoreductases that reduce hydrogen peroxide and oxidize numerous substrates. Since their initial characterization in 1992, a number of studies have provided an understanding of the origin and evolution of this protein family. Here, we report a comprehensive evolutionary analysis of non-animal peroxidases using integrated in silico and biochemical approaches. Thanks to the availability of numerous genomic sequences from more than 2500 species belonging to 14 kingdoms together with expert and comprehensive annotation of peroxidase sequences that have been centralized in a dedicated database, we have been able to use phylogenetic reconstructions to increase our understanding of the evolutionary processes underlying the diversification of non-animal peroxidases. We analysed the distribution of all non-animal peroxidases in more than 200 eukaryotic organisms in silico. First, we show that the presence or absence of non-animal peroxidases correlates with the presence or absence of certain organelles or with specific biological processes. Examination of almost 2000 organisms determined that ascorbate peroxidases (APxs) and cytochrome c peroxidases (CcPs) are present in those containing chloroplasts and mitochondria, respectively. Plants, which contain both organelles, are an exception and contain only APxs without CcP. Class II peroxidases (CII Prxs) are only found in fungi with wood-decay and plant-degradation abilities. Class III peroxidases (CIII Prxs) are only found in streptophyte algae and land plants, and have been subjected to large family expansion. Biochemical activities of APx, CcP, and CIII Prx assessed using protein extracts from 30 different eukaryotic organisms support the distribution of the sequences resulting from our in silico analysis. The biochemical results confirmed both the presence and classification of the non-animal peroxidase encoding sequences.
Collapse
Affiliation(s)
| | - Qiang Li
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, PR China
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Martinez
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
91
|
Shi W, Qi H, Sun Q, Fan G, Liu S, Wang J, Zhu B, Liu H, Zhao F, Wang X, Hu X, Li W, Liu J, Tian Y, Wu L, Ma J. gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res 2020; 47:D637-D648. [PMID: 30365027 PMCID: PMC6324004 DOI: 10.1093/nar/gky1008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/13/2018] [Indexed: 11/26/2022] Open
Abstract
Meta-omics approaches have been increasingly used to study the structure and function of the microbial communities. A variety of large-scale collaborative projects are being conducted to encompass samples from diverse environments and habitats. This change has resulted in enormous demands for long-term data maintenance and capacity for data analysis. The Global Catalogue of Metagenomics (gcMeta) is a part of the ‘Chinese Academy of Sciences Initiative of Microbiome (CAS-CMI)’, which focuses on studying the human and environmental microbiome, establishing depositories of samples, strains and data, as well as promoting international collaboration. To accommodate and rationally organize massive datasets derived from several thousands of human and environmental microbiome samples, gcMeta features a database management system for archiving and publishing data in a standardized way. Another main feature is the integration of more than ninety web-based data analysis tools and workflows through a Docker platform which enables data analysis by using various operating systems. This platform has been rapidly expanding, and now hosts data from the CAS-CMI and a number of other ongoing research projects. In conclusion, this platform presents a powerful and user-friendly service to support worldwide collaborative efforts in the field of meta-omics research. This platform is freely accessible at https://gcmeta.wdcm.org/.
Collapse
Affiliation(s)
- Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heyuan Qi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangjiang Liu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases First Attainted Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China.,Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochen Wang
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Liu
- Internet of Things Information Technology and Application Laboratory, Computer Network Information Center, Chinese Academy of Sciences. Beijing 100101, China
| | - Ye Tian
- Internet of Things Information Technology and Application Laboratory, Computer Network Information Center, Chinese Academy of Sciences. Beijing 100101, China
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
92
|
Wiese J, Imhoff JF, Horn H, Borchert E, Kyrpides NC, Göker M, Klenk HP, Woyke T, Hentschel U. Genome analysis of the marine bacterium Kiloniella laminariae and first insights into comparative genomics with related Kiloniella species. Arch Microbiol 2020; 202:815-824. [PMID: 31844948 DOI: 10.1007/s00203-019-01791-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6-96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.
Collapse
Affiliation(s)
- Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Hannes Horn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Tanja Woyke
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts-University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
93
|
Abstract
High-quality draft genome sequences were determined for 6 Massilia sp. type strains. The genomes of these strains show considerable biosynthetic potential for producing secondary metabolites. High-quality draft genome sequences were determined for 6 Massilia sp. type strains. The genomes of these strains show considerable biosynthetic potential for producing secondary metabolites.
Collapse
|
94
|
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079-1086. [DOI: 10.1038/s41587-020-0501-8] [Citation(s) in RCA: 518] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
|
95
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
96
|
Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331-1355. [PMID: 31808738 DOI: 10.1099/ijsem.0.003920] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome analysis is one of the main criteria for description of new taxa. Availability of genome sequences for all the actinobacteria with a valid nomenclature will, however, require another decade's works of sequencing. This paper describes the rearrangement of the higher taxonomic ranks of the members of the phylum 'Actinobacteria', using the phylogeny of 16S rRNA gene sequences and supported by the phylogeny of the available genome sequences. Based on the refined phylogeny of the 16S rRNA gene sequences, we could arrange all the members of the 425 genera of the phylum 'Actinobacteria' with validly published names currently in use into six classes, 46 orders and 79 families, including 16 new orders and 10 new families. The order Micrococcales Prévot 1940 (Approved Lists 1980) emend. Nouioui et al. 2018 is now split into 11 monophyletic orders: the emended order Micrococcales and ten proposed new orders Aquipuribacterales, Beutenbergiales, Bogoriellales, Brevibacteriales, Cellulomonadales, Demequinales, Dermabacterales, Dermatophilales, Microbacteriales and Ruaniales. Further, the class 'Actinobacteria' Stackebrandt et al. 1997 emend. Nouioui et al. 2018 was described without any nomenclature type, and therefore the name 'Actinobacteria' is deemed illegitimate. In accordance to Rule 8 of the International Code of Nomenclature of Prokaryotes, Parker et al. 2019, we proposed the name Actinomycetia which is formed by using the stem of the name Actinomycetales Buchanan 1917 (Approved Lists 1980) emend. Zhi et al. 2009, to replace the name 'Actinobacteria'. The nomenclature type of the proposed new class Actinomycetia is the order Actinomycetales Buchanan 1917 (Approved Lists 1980) emend. Zhi et al. 2009.
Collapse
Affiliation(s)
- Nimaichand Salam
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jian-Yu Jiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xiao-Tong Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 830011, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
97
|
Abstract
Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.
Collapse
|
98
|
Abstract
In recent decades, the taxonomy of Bacteria and Archaea, and therefore genus designation, has been largely based on the use of a single ribosomal gene, the 16S rRNA gene, as a taxonomic marker. We propose an approach to delineate genera that excludes the direct use of the 16S rRNA gene and focuses on a standard genome relatedness index, the average nucleotide identity. Our findings are of importance to the microbiology community because the emergent properties of Bacteria and Archaea that are identified in this study will help assign genera with higher taxonomic resolution. Genus assignment is fundamental in the characterization of microbes, yet there is currently no unambiguous way to demarcate genera solely using standard genomic relatedness indices. Here, we propose an approach to demarcate genera that relies on the combined use of the average nucleotide identity, genome alignment fraction, and the distinction between type- and non-type species. More than 3,500 genomes representing type strains of species from >850 genera of either bacterial or archaeal lineages were tested. Over 140 genera were analyzed in detail within the taxonomic context of order/family. Significant genomic differences between members of a genus and type species of other genera in the same order/family were conserved in 94% of the cases. Nearly 90% (92% if polyphyletic genera are excluded) of the type strains were classified in agreement with current taxonomy. The 448 type strains that need reclassification directly impact 33% of the genera analyzed in detail. The results provide a first line of evidence that the combination of genomic indices provides added resolution to effectively demarcate genera within the taxonomic framework that is currently based on the 16S rRNA gene. We also identify the emergence of natural breakpoints at the genome level that can further help in the circumscription of taxa, increasing the proportion of directly impacted genera to at least 43% and pointing at inaccuracies on the use of the 16S rRNA gene as a taxonomic marker, despite its precision. Altogether, these results suggest that genomic coherence is an emergent property of genera in Bacteria and Archaea.
Collapse
|
99
|
Bremges A, Fritz A, McHardy AC. CAMITAX: Taxon labels for microbial genomes. Gigascience 2020; 9:giz154. [PMID: 31909794 PMCID: PMC6946028 DOI: 10.1093/gigascience/giz154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The number of microbial genome sequences is increasing exponentially, especially thanks to recent advances in recovering complete or near-complete genomes from metagenomes and single cells. Assigning reliable taxon labels to genomes is key and often a prerequisite for downstream analyses. FINDINGS We introduce CAMITAX, a scalable and reproducible workflow for the taxonomic labelling of microbial genomes recovered from isolates, single cells, and metagenomes. CAMITAX combines genome distance-, 16S ribosomal RNA gene-, and gene homology-based taxonomic assignments with phylogenetic placement. It uses Nextflow to orchestrate reference databases and software containers and thus combines ease of installation and use with computational reproducibility. We evaluated the method on several hundred metagenome-assembled genomes with high-quality taxonomic annotations from the TARA Oceans project, and we show that the ensemble classification method in CAMITAX improved on all individual methods across tested ranks. CONCLUSIONS While we initially developed CAMITAX to aid the Critical Assessment of Metagenome Interpretation (CAMI) initiative, it evolved into a comprehensive software package to reliably assign taxon labels to microbial genomes. CAMITAX is available under Apache License 2.0 at https://github.com/CAMI-challenge/CAMITAX.
Collapse
Affiliation(s)
- Andreas Bremges
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Adrian Fritz
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
100
|
Kim M, Benayoun BA. The microbiome: An emerging key player in aging and longevity. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2020.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|