51
|
|
52
|
Brigui I, Djavanbakht-Samani T, Jollès B, Pigaglio S, Laigle A. Minimally modified phosphodiester antisense oligodeoxyribonucleotide directed against the multidrug resistance gene mdr1. Biochem Pharmacol 2003; 65:747-54. [PMID: 12628488 DOI: 10.1016/s0006-2952(02)01558-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the perspective of reversing multidrug resistance through antisense strategy while avoiding non-antisense effects of all-phosphorothioate oligonucleotides which non-specifically bind to proteins, a minimally modified antisense phosphodiester oligodeoxyribonucleotide has been designed against mdr1, one of the multidrug resistance genes. Its stability in lysates prepared from NIH/3T3 cells transfected with the human mdr1 gene has already been demonstrated. Confocal microspectrofluorometry using a fluorescence resonance energy transfer technique allowed its stability inside living cells to be proven. Its internalization into the cells was achieved with different delivery agents (addition of a cholesteryl group, Superfect or an amphotericin B cationic derivative) and has been followed by fluorescence imaging. For each of the delivery systems, Western blotting allowed its antisense efficiency to be compared to that of an all-phosphorothioate antisense oligonucleotide. No antisense efficiency was demonstrated for the minimally modified ODN when internalized with Superfect. In both other cases, the best extinction of the P-glycoprotein expression has always been achieved with the all-phosphorothioate antisense. While the difference was significant in the case the amphotericin B derivative was used as delivery agent (20% remaining protein expression with the all-phosphorothioate vs. 40% with the minimally modified antisense), it was negligible for the cholesterol conjugates (2% vs. 6%). It is of great interest to prove that an almost all-phosphodiester oligonucleotide can be an efficient antisense against an overexpressed gene. The reduction of non-antisense effects as non-specific binding to proteins are of importance in the case relatively high ODN concentrations are used, which can prove to be necessary in the case of overexpressed genes.
Collapse
Affiliation(s)
- Imane Brigui
- Laboratoire de Physicochimie Biomoléculaire et cellulaire, CNRS (URA 7033) et Université P. et M. Curie, 4 place Jussieu, case 138, 75005 Paris, France
| | | | | | | | | |
Collapse
|
53
|
Deer EL, Douk B, Lanchy JM, Lodmell JS. Elucidation and characterization of oligonucleotide-accessible sites on HIV-2 leader region RNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2003; 13:45-55. [PMID: 12691535 PMCID: PMC1403296 DOI: 10.1089/108729003764097331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The retroviruses, including the human pathogens HIV-1 and HIV-2, are diploid inasmuch as they encapsidate two copies of their RNA genome. Prior to or during encapsidation, two copies of full-length genomic RNA recognize and stably bind each other in a process called dimerization. RNA structures within the viral genome promote dimerization in both HIV-1 and HIV-2 and are located in the 5'-untranslated leader region. Inhibition of dimerization by mutation of these RNA signals has been demonstrated to drastically reduce viral infectivity and replication kinetics and, thus, represents a potential target for antiretroviral therapy. In this study, we identified sites in HIV-2 leader region RNA that are functionally accessible to hybridization with oligonucleotides (ODNs) by reverse transcription with random ODN libraries (RT-ROL). We then tested specific ODNs directed against these regions for their efficacy in inhibiting RNA dimerization in vitro. We determined that of several hybridization-competent ODNs, only two were very effective in inhibiting RNA dimerization. Both of these ODNs were complementary to viral RNA at the primer binding site (PBS). These results identify regions with high accessibility to ODN binding on HIV-2 RNA and help to map the region(s) essential for dimerization within the viral RNA.
Collapse
Affiliation(s)
- Emily L Deer
- Division of Biological Sciences, Biochemistry/Microbiology Graduate Program, The University of Montana, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
54
|
Futami T, Miyagishi M, Iwai S, Seki M, Taira K. Stimulatory effect of an indirectly attached RNA helicase-recruiting sequence on the suppression of gene expression by antisense oligonucleotides. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2003; 13:9-17. [PMID: 12691532 DOI: 10.1089/108729003764097304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antisense oligonucleotides (ODNs) are powerful tools with which to determine the consequences of the reduced expression of a selected target gene, and they may have important therapeutic applications. Methods for predicting optimum antisense sites are not always effective because various factors, such as RNA-binding proteins, influence the secondary and tertiary structures of RNAs in vivo. To overcome this obstacle, we have attempted to engineer an antisense system that can unravel secondary and tertiary RNA structures. To create such an antisense system, we connected the constitutive transport element (CTE), an RNA motif that has the ability to interact with intracellular RNA helicases, to an antisense sequence so that helicase-binding hybrid antisense ODN would be produced in cells. We postulated that this modification would enhance antisense activity in vivo, with more frequent hybridization of the antisense ODN with its targeting site. Western blotting analysis demonstrated that a hybrid antisense ODN targeted to the bcl-2 gene suppressed the expression of this gene more effectively than did the antisense ODN alone. Our results suggest that the effects of antisense ODNs can be enhanced when their actions are combined with those of RNA helicases.
Collapse
Affiliation(s)
- Takashi Futami
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
55
|
Brodsky AS, Silver PA. A microbead-based system for identifying and characterizing RNA-protein interactions by flow cytometry. Mol Cell Proteomics 2002; 1:922-9. [PMID: 12543929 DOI: 10.1074/mcp.t200010-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present a high throughput, versatile approach to identify RNA-protein interactions and to determine nucleotides important for specific protein binding. In this approach, oligonucleotides are coupled to microbeads and hybridized to RNA-protein complexes. The presence or absence of RNA and/or protein fluorescence indicates the formation of an oligo-RNA-protein complex on each bead. The observed fluorescence is specific for both the hybridization and the RNA-protein interaction. We find that the method can discriminate noncomplementary and mismatch sequences. The observed fluorescence reflects the affinity and specificity of the RNA-protein interaction. In addition, the fluorescence patterns footprint the protein recognition site to determine nucleotides important for protein binding. The system was developed with the human protein U1A binding to RNAs derived from U1 snRNA but can also detect RNA-protein interactions in total RNA backgrounds. We propose that this strategy, in combination with emerging coded bead systems, can identify RNAs and RNA sequences important for interacting with RNA-binding proteins on genomic scales.
Collapse
Affiliation(s)
- Alexander S Brodsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and The Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
56
|
Abstract
The recent acceleration in the identification and characterisation of new molecular targets for cancer and the limited effectiveness of conventional treatment strategies has focused considerable interest on the development of new types of anticancer agents. These new drugs are hoped to be highly specific for malignant cells with a favorable side-effect profile due to well-defined mechanisms of action. Antisense oligonucleotides are one such class of new agent--they are short, synthetic stretches of DNA which hybridise with specific mRNA strands that correspond to target genes. By binding to the mRNA, the antisense oligonucleotides prevent the sequence of the target gene being converted into a protein, thereby blocking the action of the gene. Several genes known to be important in the regulation of apoptosis, cell growth, metastasis, and angiogenesis, have been validated as molecular targets for antisense therapy. Furthermore, new targets are rapidly being uncovered through coordinated functional genomics and proteomics initiatives. Phosphorothioate oligonucleotides are the current gold standard for antisense therapy; they have acceptable physical and chemical properties and show reasonable resistance to nucleases. Recently, new generations of these phosphorothioate oligonucleotides that contain 2'-modified nucleoside building blocks to enhance RNA binding affinity and decrease indirect toxic effects have been developed. Antisense therapeutics are, after decades of difficulties, finally close to fulfilling their promise in the clinic.
Collapse
Affiliation(s)
- Burkhard Jansen
- Prostate Centre and the Division of Dermatology Vancouver General Hospital, University of British Columbia, BC, Vancouver, Canada.
| | | |
Collapse
|
57
|
Smith RM, Walton CM, Wu CH, Wu GY. Secondary structure and hybridization accessibility of hepatitis C virus 3'-terminal sequences. J Virol 2002; 76:9563-74. [PMID: 12208936 PMCID: PMC136501 DOI: 10.1128/jvi.76.19.9563-9574.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 3'-terminal sequences of hepatitis C virus (HCV) positive- and negative-strand RNAs contribute cis-acting functions essential for viral replication. The secondary structure and protein-binding properties of these highly conserved regions are of interest not only for the further elucidation of HCV molecular biology, but also for the design of antisense therapeutic constructs. The RNA structure of the positive-strand 3' untranslated region has been shown previously to influence binding by various host and viral proteins and is thus thought to promote HCV RNA synthesis and genome stability. Recent studies have attributed analogous functions to the negative-strand 3' terminus. We evaluated the HCV negative-strand secondary structure by enzymatic probing with single-strand-specific RNases and thermodynamic modeling of RNA folding. The accessibility of both 3'-terminal sequences to hybridization by antisense constructs was evaluated by RNase H cleavage mapping in the presence of combinatorial oligodeoxynucleotide libraries. The mapping results facilitated identification of antisense oligodeoxynucleotides and a 10-23 deoxyribozyme active against the positive-strand 3'-X region RNA in vitro.
Collapse
Affiliation(s)
- Robert M Smith
- Division of Gastroenterology-Hepatology, Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
58
|
Ho SP, Scully MS, Krauthauser CM, Wexler EJ, Stow MD, Dinchuk JE, Kerr JS, Friedman PA. Antisense oligonucleotides selectively regulate aspartyl beta-hydroxylase and its truncated protein isoform in vitro but distribute poorly into A549 tumors in vivo. J Pharmacol Exp Ther 2002; 302:795-803. [PMID: 12130746 DOI: 10.1124/jpet.302.2.795] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alternative splicing of the human beta-aspartyl (asparaginyl) hydroxylase (BAH) gene results in the expression of humbug, a truncated form of BAH that lacks the catalytic domain of the enzyme. Overexpression of BAH and humbug has been associated with a variety of human cancers, and although humbug lacks enzymatic activity, it is expressed at levels comparable with that of BAH in various cancer cell lines. Phosphorothioate antisense oligonucleotides (ONs) were designed to dissect out the function of these hydroxylase protein isoforms. In A549 cells, these ONs differentially down-regulated BAH and humbug at the mRNA and protein level. Phosphorothioate ON uptake and antisense studies were conducted in parallel in nude mice bearing A549 tumor xenografts. Microscopic examination of the tumor after administration of a fluorescein-labeled ON showed strong labeling of the outer layers of the tumor connective tissue but cells within the interior of the tumor were sparsely labeled. A modest but significant effect on tumor growth was observed in animals treated with an antisense ON directed against both BAH and humbug transcripts. However, Northern analysis of tumor RNA did not indicate a down-regulation of the targeted mRNA species. These results demonstrate the successful development of antisense ONs that selectively differentiate between the closely related beta-hydroxylase protein isoforms. However, determination of the biological function of these proteins in vivo was limited by the poor uptake properties of phosphorothioate ONs in A549 tumors.
Collapse
Affiliation(s)
- Siew Peng Ho
- Experimental Station E336, Bristol-Myers Squibb Company, Route 141 and Henry Clay Road, Wilmington, DE 19880-0400, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002; 1:503-14. [PMID: 12120257 DOI: 10.1038/nrd837] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sequencing of the human genome and the elucidation of many molecular pathways that are important in disease have provided unprecedented opportunities for the development of new therapeutics. The types of molecule in development are increasingly varied, and include antisense oligonucleotides and ribozymes. Antisense technology and catalytic nucleic-acid enzymes are important tools for blocking the expression of abnormal genes. One FDA-approved antisense drug is already in the clinic for the treatment of cytomegalovirus retinitis, and other nucleic-acid therapies are undergoing clinical trials. This article reviews different strategies for modulating gene expression, and discusses the successes and problems that are associated with this type of therapy.
Collapse
Affiliation(s)
- Joanna B Opalinska
- Department of Hematology, Pommeranian Academy of Medicine, Ul Rybacka 1, 71-252 Szczecin, Poland
| | | |
Collapse
|
60
|
Klasa RJ, Gillum AM, Klem RE, Frankel SR. Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:193-213. [PMID: 12162702 DOI: 10.1089/108729002760220798] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The components of the apoptotic program are targets for anticancer therapy. Bcl-2 protein inhibits apoptosis and confers resistance to treatment with traditional cytotoxic chemotherapy, radiotherapy, and monoclonal antibodies (mAb). Oblimersen sodium (G3139, Genasense, Genta Inc., Berkeley Heights, NJ) is an antisense oligonucleotide (AS-ON) compound designed to specifically bind to the first 6 codons of the human bcl-2 mRNA sequence, resulting in degradation of bcl-2 mRNA and subsequent decrease in Bcl-2 protein translation. Oblimersen is the first oligonucleotide to demonstrate proof of principle of an antisense effect in human tumors by the documented downregulation of the target Bcl-2 protein. A growing body of preclinical and clinical evidence suggests that oblimersen synergizes with many cytotoxic and biologic/immunotherapeutic agents against a variety of hematologic malignancies and solid tumors. Randomized clinical trials are currently underway to evaluate the efficacy and tolerability of oblimersen in combination with cytotoxic chemotherapy in chronic lymphocytic leukemia, multiple myeloma, malignant melanoma, and non-small cell lung cancer. In addition, nonrandomized trials are under way to evaluate oblimersen in non-Hodgkin's lymphoma, acute myeloid leukemia, and hormone-refractory prostate cancer. Preclinical data also support the clinical evaluation of oblimersen in additional tumor types, including chronic myelogenous leukemia and breast, small cell lung, gastric, colon, bladder, and Merkel cell cancers. Enhancement of the efficacy of anticancer treatments with oblimersen Bcl-2 antisense therapy represents a promising new apoptosis-modulating strategy, and ongoing clinical trials will test this therapeutic approach.
Collapse
Affiliation(s)
- Richard J Klasa
- Department of Advanced Therapeutics, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | |
Collapse
|
61
|
Lin L, Yuan WJ. Effects of different preproendothelin-1 mRNA anti-sense oligodeoxynucleotides on ischemic arrhythmias in rats. J Cardiovasc Pharmacol 2002; 39:590-9. [PMID: 11904533 DOI: 10.1097/00005344-200204000-00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of four anti-sense oligodeoxynucleotides (AS-ODNs) against rat or human preproendothelin-1 mRNA on ischemic arrhythmias in anesthetized rats were studied. AS-ODN (60 nmol/kg) or control (normal saline; sense-ODN, and scrambled-ODN, 60 nmol/kg) was injected 2 h before acute myocardial ischemia elicited by the occlusion of the left anterior descending coronary artery. Arrhythmias during 60-min ischemia were assessed, and plasma endothelin-1 was determined with an endothelin-1-specific radioimmunoassay system. The results showed that anti-senses against human preproendothelin-1 mRNA were anti-arrhythmic without significant impact on hemodynamics, whereas two against rat preproendothelin-1 mRNA and the three controls failed to be anti-arrhythmic. In human antisense groups, both the incidence of reversible ventricular fibrillation and the mortality were decreased to zero. The incidences of ventricular tachycardia and salvos were significantly decreased from almost 100% in the controls to < or =30% (p < 0.01), the arrhythmia score from an average of approximately 3.6 to 0 and 0.7, respectively (p < 0.01 versus controls), and the total ventricular ectopic beats from an average of 307-338 to < 40 (p < 0.01). The human AS-ODNs led to less plasma endothelin-1, which was associated with suppressed ischemic arrhythmias in this rat model, indicating a contributory role of endothelin-1 in ischemic arrhythmias. Conversely, considering the two- or three-base mismatches between the human AS-ODNs and rat preproendothelin-1 mRNA, and the failure of the rat AS-ODNs in suppressing arrhythmias, the possibility could not be excluded that human endothelin-1 AS-ODNs acted via an undetermined pathway other than endothelin-1.
Collapse
Affiliation(s)
- Li Lin
- Department of Physiology, College of Basic Medical Sciences, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | | |
Collapse
|
62
|
Kurreck J, Bieber B, Jahnel R, Erdmann VA. Comparative study of DNA enzymes and ribozymes against the same full-length messenger RNA of the vanilloid receptor subtype I. J Biol Chem 2002; 277:7099-107. [PMID: 11751899 DOI: 10.1074/jbc.m107206200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The efficiencies of 32 antisense oligodeoxynucleotides, 35 DNA enzymes and 6 ribozymes to bind and cleave the full-length messenger RNA of the vanilloid receptor subtype I were analyzed. Systematic screening of the mRNA revealed that good accessibility of a putative cleavage site for antisense oligodeoxynucleotides is a necessary but not a sufficient prerequisite for efficient DNA enzymes. Comparison of DNA enzymes and ribozymes against the same target sites revealed: 1) DNA enzymes were more active with longer recognition arms (9 nucleotides on either side), whereas ribozymes revealed higher activities with shorter recognition arms (7 nucleotides on either side). 2) It does not only depend on the target site but also on the enzyme sequence, whether a DNA enzyme or a ribozyme is more active. 3) The most efficient DNA enzyme found in this study had an approximately 15-fold higher reaction rate, k(react), and a 100-fold higher k(react)/K(m) under single turnover conditions compared with the fastest ribozyme. DNA enzymes as well as ribozymes showed significant activity under multiple turnover conditions, the DNA enzymes again being more active. We therefore conclude that DNA enzymes are an inexpensive, very stable and active alternative to ribozymes for the specific cleavage of long RNA molecules.
Collapse
Affiliation(s)
- Jens Kurreck
- Free University Berlin, Institute of Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
63
|
Walton SP, Stephanopoulos GN, Yarmush ML, Roth CM. Thermodynamic and kinetic characterization of antisense oligodeoxynucleotide binding to a structured mRNA. Biophys J 2002; 82:366-77. [PMID: 11751323 PMCID: PMC1302476 DOI: 10.1016/s0006-3495(02)75401-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antisense oligonucleotides act as exogenous inhibitors of gene expression by binding to a complementary sequence on the target mRNA, preventing translation into protein. Antisense technology is being applied successfully as a research tool and as a molecular therapeutic. However, a quantitative understanding of binding energetics between short oligonucleotides and longer mRNA targets is lacking, and selecting a high-affinity antisense oligonucleotide sequence from the many possibilities complementary to a particular RNA is a critical step in designing an effective antisense inhibitor. Here, we report measurements of the thermodynamics and kinetics of hybridization for a number of oligodeoxynucleotides (ODNs) complementary to the rabbit beta-globin (RBG) mRNA using a binding assay that facilitates rapid separation of bound from free species in solution. A wide range of equilibrium dissociation constants were observed, and association rate constants within the measurable range correlated strongly with binding affinity. In addition, a significant correlation was observed of measured binding affinities with binding affinity values predicted using a thermodynamic model involving DNA and RNA unfolding, ODN hybridization, and RNA restructuring to a final free energy minimum. In contrast to the behavior observed for hybridization of short strands, the association rate constant increased with temperature, suggesting that the kinetics of association are related to disrupting the native structure of the target RNA. The rate of cleavage of the RBG mRNA in the presence of ribonuclease H and ODNs of varying association kinetics displayed apparent first-order kinetics, with the rate constant exhibiting binding-limited behavior at low association rates and reaction-limited behavior at higher rates. Implications for the rational design of effective antisense reagents are discussed.
Collapse
Affiliation(s)
- S Patrick Walton
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
64
|
Affiliation(s)
- Muhammad Sohail
- University of Oxford, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK
| |
Collapse
|
65
|
Scherr M, LeBon J, Castanotto D, Cunliffe HE, Meltzer PS, Ganser A, Riggs AD, Rossi JJ. Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA. Mol Ther 2001; 4:454-60. [PMID: 11708882 DOI: 10.1006/mthe.2001.0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The efficacies of antisense oligonucleotides and ribozymes are greatly dependent on the accessibility of their mRNA targets. Target site accessibility is affected by both RNA structure and the proteins associated along the length of the RNA. To mimic the native state of mRNA for site identification, we have previously used endogenous mRNAs in cellular extracts as targets for defined sequence oligodeoxynucleotides (ODNs) designed to identify both antisense pairing and potential ribozyme cleavage sites. The rationale for this approach is that the specific pairing of an ODN with a mRNA forms a DNA:RNA hybrid that is cleaved by the endogenous RNaseH in the cell extract. To extend the usefulness of this basic approach, we report here the use of semi-random ODN libraries to identify hammerhead ribozyme cleavage sites. Thus, the most accessible sites for antisense and ribozyme base pairing are selected by this approach. A novel feature of the approach described here is the use of terminal transferase-dependent PCR (TDPCR) after reverse transcription to estimate the cleavage efficiency and to precisely determine the RNaseH and ribozyme cleavage sites on mRNAs in cell extracts following treatment with ODN or ribozyme libraries. As a model system, we have targeted the NCOA3 (also known as AIB-1) mRNA in cell extracts. The NCOA3 mRNA encodes a nuclear receptor co-activator that is amplified and over-expressed in a high proportion of breast and ovarian cancers. A highly accessible site on this mRNA was identified, and a ribozyme targeted to this site was demonstrated to effectively downregulate NCOA3 function in cells.
Collapse
Affiliation(s)
- M Scherr
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010-3011, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Kostenko E, Dobrikov M, Pyshnyi D, Petyuk V, Komarova N, Vlassov V, Zenkova M. 5'-bis-pyrenylated oligonucleotides displaying excimer fluorescence provide sensitive probes of RNA sequence and structure. Nucleic Acids Res 2001; 29:3611-20. [PMID: 11522831 PMCID: PMC55892 DOI: 10.1093/nar/29.17.3611] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Revised: 07/17/2001] [Accepted: 07/17/2001] [Indexed: 11/12/2022] Open
Abstract
Oligonucleotide conjugates bearing two pyrene residues attached to 5'-phosphate through a phosphoramide bond were synthesised. Fluorescence spectra of the conjugates show a peak typical of monomer emission (lambda(max) 382 nm) and a broad emission peak with lambda(max )476 nm, which indicates the excimer formation between the two pyrene residues. Conjugation of these two pyrene residues to the 5'-phosphate of oligonucleotides does not affect the stabilities of heteroduplexes formed by conjugates with the corresponding linear strands. A monomer fluorescence of the conjugates is considerably affected by the heteroduplex formation allowing the conjugates to be used as fluorescent hybridisation probes. The 5'-bis-pyrenylated oligonucleotides have been successfully used for investigation of affinity and kinetics of antisense oligonucleotides binding to the multidrug resistance gene 1 (PGY1/MDR1) mRNA. The changes of excimer fluorescence of the conjugates occurring during hybridisation depended on the structure of the binding sites: hybridisation to heavily structured parts of RNA resulted in quenching of the excimer fluorescence, while binding to RNA regions with a loose secondary structure was accompanied by an enhancement of the excimer fluorescence. Potentially, these conjugates may be considered as fluorescent probes for RNA structure investigation.
Collapse
Affiliation(s)
- E Kostenko
- Novosibirsk Institute of Bioorganic Chemistry, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
67
|
Lloyd BH, Giles RV, Spiller DG, Grzybowski J, Tidd DM, Sibson DR. Determination of optimal sites of antisense oligonucleotide cleavage within TNFalpha mRNA. Nucleic Acids Res 2001; 29:3664-73. [PMID: 11522838 PMCID: PMC55886 DOI: 10.1093/nar/29.17.3664] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antisense oligonucleotides provide a powerful tool in order to determine the consequences of the reduced expression of a selected target gene and may include target validation and therapeutic applications. Methods of predicting optimum antisense sites are not always effective. We have compared the efficacy of antisense oligonucleotides, which were selected in vitro using random combinatorial oligonucleotide libraries of differing length and complexity, upon putative target sites within TNFalpha mRNA. The relationship of specific target site accessibility and oligonucleotide efficacy with respect to these parameters proved to be complex. Modification of the length of the recognition sequence of the oligonucleotide library illustrated that independent target sites demonstrated a preference for antisense oligonucleotides of a defined and independent optimal length. The efficacy of antisense oligonucleotide sequences selected in vitro paralleled that observed in phorbol 12-myristate 13-acetate (PMA)-activated U937 cells. The application of methylphosphonate:phosphodiester chimaeric oligonucleotides to U937 cells reduced mRNA levels to up to 19.8% that of the untreated cell population. This approach provides a predictive means to profile any mRNA of known sequence with respect to the identification and optimisation of sites accessible to antisense oligonucleotide activity.
Collapse
Affiliation(s)
- B H Lloyd
- Clatterbridge Cancer Research Trust, J. K. Douglas Research Laboratories, Clatterbridge Hospital, Bebington, Wirral CH63 4JY, UK.
| | | | | | | | | | | |
Collapse
|
68
|
Jayaraman A, Walton SP, Yarmush ML, Roth CM. Rational selection and quantitative evaluation of antisense oligonucleotides. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:105-14. [PMID: 11513951 DOI: 10.1016/s0167-4781(01)00229-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antisense oligonucleotides are an attractive therapeutic option to modulate specific gene expression. However, not all antisense oligonucleotides are effective in inhibiting gene expression, and currently very few methods exist for selecting the few effective ones from all candidate oligonucleotides. The lack of quantitative methods to rapidly assess the efficacy of antisense oligonucleotides also contributes to the difficulty of discovering potent and specific antisense oligonucleotides. We have previously reported the development of a prediction algorithm for identifying high affinity antisense oligonucleotides based on mRNA-oligonucleotide hybridization. In this study, we report the antisense activity of these rationally selected oligonucleotides against three model target mRNAs (human lactate dehydrogenase A and B and rat gp130) in cell culture. The effectiveness of oligonucleotides was evaluated by a kinetic PCR technique, which allows quantitative evaluation of mRNA levels and thus provides a measure of antisense-mediated decreases in target mRNA, as occurs through RNase H recruitment. Antisense oligonucleotides that were predicted to have high affinity for their target proved effective in almost all cases, including tests against three different targets in two cell types with phosphodiester and phosphorothioate oligonucleotide chemistries. This approach may aid the development of antisense oligonucleotides for a variety of applications.
Collapse
Affiliation(s)
- A Jayaraman
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
69
|
Sohail M, Hochegger H, Klotzbücher A, Guellec RL, Hunt T, Southern EM. Antisense oligonucleotides selected by hybridisation to scanning arrays are effective reagents in vivo. Nucleic Acids Res 2001; 29:2041-51. [PMID: 11353073 PMCID: PMC55457 DOI: 10.1093/nar/29.10.2041] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcripts representing mRNAs of three Xenopus cyclins, B1, B4 and B5, were hybridised to arrays of oligonucleotides scanning the first 120 nt of the coding region to assess the ability of the immobilised oligonucleotides to form heteroduplexes with their targets. Oligonucleotides that produced high heteroduplex yield and others that showed little annealing were assayed for their effect on translation of endogenous cyclin mRNAs in Xenopus egg extracts and their ability to promote cleavage of cyclin mRNAs in oocytes by RNase H. Excellent correlation was found between antisense potency and affinity of oligonucleotides for the cyclin transcripts as measured by the array, despite the complexity of the cellular environment.
Collapse
Affiliation(s)
- M Sohail
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | |
Collapse
|
70
|
Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 2001. [PMID: 11312305 DOI: 10.1523/jneurosci.21-09-03207.2001] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide the first evidence that prolactin is a neuromodulator of behavioral and neuroendocrine stress coping in the rat. In virgin female and male rats, intracerebral infusion of ovine prolactin (oPRL) into the lateral cerebral ventricle (intracerebroventricular) exerted an anxiolytic effect on the elevated plus-maze in a dose-dependent manner (0.1 and 1.0 microg/5 microl; p < 0.01). In contrast, downregulation of the expression of the long form of brain prolactin receptors by chronic intracerebroventricular infusion of an antisense oligodeoxynucleotide (ODN) (osmotic minipump, 0.5 microg. 0.5 microl(-1). hr(-1); 5 d) increased anxiety-related behavior on the plus-maze compared with mixed bases-treated and vehicle-treated rats (p < 0.01), again demonstrating an anxiolytic effect of PRL acting at brain level. Furthermore, in jugular vein-catheterized female rats, the stress-induced increase of corticotropin secretion was decreased after chronic intracerebroventricular infusion of oPRL (osmotic minipump, 1.0 microg. 0.5 microl(-1). hr(-1); p < 0.05) and, in contrast, was further elevated by antisense targeting of the brain prolactin receptors (p < 0.01). This provides evidence for a receptor-mediated attenuation of the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis by prolactin. The antisense ODN sequence was selected on the basis of secondary structure molecular modeling of the target mRNA to improve antisense ODN-mRNA hybridization. Receptor autoradiography confirmed the expected improvement in the efficacy of downregulation of prolactin receptor expression [empirically designed antisense, 30%; p > 0.05, not significant; adjustment of target position after mRNA modeling, 72%; p < 0.05). Taken together, prolactin acting at brain level has to be considered as a novel regulator of both emotionality and HPA axis reactivity.
Collapse
|
71
|
Zamaratski E, Pradeepkumar PI, Chattopadhyaya J. A critical survey of the structure-function of the antisense oligo/RNA heteroduplex as substrate for RNase H. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 48:189-208. [PMID: 11384757 DOI: 10.1016/s0165-022x(01)00149-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this review is to draw a correlation between the structure of the DNA/RNA hybrid and its properties as a substrate for the RNase H, as well as to point the crucial structural requirements for the modified AONs to preserve their RNase H potency. The review is divided into the following parts: (1) mechanistic considerations, (2) target RNA folding-AON folding-RNase H assistance in AON/RNA hybrid formation, (3) carbohydrate modifications, (4) backbone modifications, (5) base modifications, (6) conjugated AONs, (7) importance of the tethered chromophore in AON for the AON/RNA hybrid interactions with the RNase H. The structural changes in the AON/RNA hybrid duplexes brought by different modifications of the sugar, backbone or base in the antisense strand, and the effect of these changes on the RNase H recognition of the modified substrates have been addressed. Only those AON modifications and the corresponding AON/RNA hybrids, which have been structurally characterized by spectroscopic means and functionally analyzed by their ability to elicit RNase H potency in comparison with the native counterpart have been presented here.
Collapse
Affiliation(s)
- E Zamaratski
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-75123, Uppsala, Sweden
| | | | | |
Collapse
|
72
|
Mir AA, Lockett TJ, Hendry P. Identifying ribozyme-accessible sites using NUH triplet-targeting gapmers. Nucleic Acids Res 2001; 29:1906-14. [PMID: 11328874 PMCID: PMC37256 DOI: 10.1093/nar/29.9.1906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Revised: 03/13/2001] [Accepted: 03/13/2001] [Indexed: 11/12/2022] Open
Abstract
Accurately identifying accessible sites in RNA is a critical prerequisite for optimising the cleavage efficiency of hammerhead ribozymes and other small nucleozymes. Here we describe a simple RNase H-based procedure to rapidly identify hammerhead ribozyme-accessible sites in gene length RNAS: Twelve semi-randomised RNA-DNA-RNA chimeric oligonucleotide probes, known as 'gapmers', were used to direct RNase H cleavage of transcripts with the specificity expected for hammerhead ribozymes, i.e. after NUH sites (where H is A, C or U). Cleavage sites were identified simply by the mobility of RNase H cleavage products relative to RNA markers in denaturing polyacrylamide gels. Sites were identified in transcripts encoding human interleukin-2 and platelet-derived growth factor. Thirteen minimised hammerhead ribozymes, miniribozymes (Mrz), were synthesised and in vitro cleavage efficiency (37 degrees C, pH 7.6 and 1 mM MgCl2) at each site was analysed. Of the 13 Mrz, five were highly effective, demonstrating good initial rate constants and extents of cleavage. The speed and accuracy of this method commends its use in screening for hammerhead-accessible sites.
Collapse
Affiliation(s)
- A A Mir
- CSIRO Division of Molecular Science, PO Box 184, North Ryde, NSW 1670, Australia
| | | | | |
Collapse
|
73
|
Ho SP, Takahashi LK, Livanov V, Spencer K, Lesher T, Maciag C, Smith MA, Rohrbach KW, Hartig PR, Arneric SP. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor-2 receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 89:29-40. [PMID: 11311973 DOI: 10.1016/s0169-328x(01)00050-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Corticotropin releasing factor (CRF) is an important regulator of the endocrine, behavioral, autonomic and immune responses to stress. Two high affinity CRF receptors have been identified, which are distributed in distinct anatomical regions. CRF(1) receptors have been relatively well characterized and antagonists to this receptor effectively block stress-induced behaviors in rodents. The function of CRF(2) receptors, which are highly expressed in limbic brain regions, is less well understood. Therefore, an antisense oligonucleotide approach was used to study the role of CRF(2) receptors in the lateral septum in rats. An antisense oligonucleotide directed against the CRF(2) receptor mRNA reduced expression of CRF(2) receptors by 60--80%. In shock-induced freezing tests, animals administered the antisense oligonucleotide exhibited a significant reduction in freezing duration. However, pain sensitivity and locomotor activity were unaltered. A four-base mismatch of the antisense sequence had no significant effects on CRF(2) receptor density and on freezing behavior. These data support the involvement of CRF(2) receptors in fear conditioning. CRF(1) receptor antagonists also reduce freezing in this test. Additional studies to determine the effects of simultaneous inhibition of both receptor subtypes show that rats receiving both CRF(2) receptor antisense oligonucleotide and CRF(1) receptor antagonist froze significantly less than animals treated with either agent alone. These results provide additional evidence for the role of CRF(2) receptors in mediating the stress-induced actions of endogenous CRF.
Collapse
Affiliation(s)
- S P Ho
- CNS Diseases Research, DuPont Pharmaceuticals, Experimental Station E400, Wilmington, DE 19880-0400, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Fennell DA, Cotter FE. A dynamical systems model to simulate the perturbation kinetics of gene expression by antisense oligonucleotides. J Theor Biol 2001; 209:103-12. [PMID: 11237574 DOI: 10.1006/jtbi.2000.2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antisense oligonucleotides owe their efficacy to an ability to induce RNase H-dependent suppression of RNA translation, for sufficient time to allow physiological proteolysis. The magnitude and time delay preceding the protein nadir concentration determine the extent and timing of maximum antisense oligonucleotide activity. Antisense oligonucleotide degradation underlies reversal of RNA downregulation. The kinetics of protein downregulation is therefore determined by the complex interaction of both ligand chemistry (nuclease stability, affinity and RNase H activation), and gene expression kinetics. Optimization of antisense oligonucleotide efficacy and experimental design requires understanding of these interactions. The kinetics of protein and RNA downregulation have therefore been simulated by analysing a two-compartment kinetic model incorporating RNase H-dependent transcript degradation. The system of nonlinear differential equations describing this model was solved numerically using Runge-Kutte integration. The timecourse solutions corresponding to the four state variables (RNA, protein, antisense/RNA heteroduplex and antisense oligonucleotide), were determined simultaneously. This allowed systematic in silico examination of the consequences of altering variables such as oligonucleotide concentration, affinity, and stability, or the scheduling of multiple transfections on RNA and protein perturbations. By providing a tool for examining antisense oligonucleotide action theoretically, this heuristic model should facilitate both the rational design and interpretation of antisense experiments.
Collapse
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's and The Royal London School of Medicine, Turner Street, London, E1 2AD, UK
| | | |
Collapse
|
75
|
Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res 2001; 29:1034-46. [PMID: 11222752 PMCID: PMC29728 DOI: 10.1093/nar/29.5.1034] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 01/11/2001] [Accepted: 01/11/2001] [Indexed: 11/13/2022] Open
Abstract
Single-stranded regions in RNA secondary structure are important for RNA-RNA and RNA-protein interactions. We present a probability profile approach for the prediction of these regions based on a statistical algorithm for sampling RNA secondary structures. For the prediction of phylogenetically-determined single-stranded regions in secondary structures of representative RNA sequences, the probability profile offers substantial improvement over the minimum free energy structure. In designing antisense oligonucleotides, a practical problem is how to select a secondary structure for the target mRNA from the optimal structure(s) and many suboptimal structures with similar free energies. By summarizing the information from a statistical sample of probable secondary structures in a single plot, the probability profile not only presents a solution to this dilemma, but also reveals 'well-determined' single-stranded regions through the assignment of probabilities as measures of confidence in predictions. In antisense application to the rabbit beta-globin mRNA, a significant correlation between hybridization potential predicted by the probability profile and the degree of inhibition of in vitro translation suggests that the probability profile approach is valuable for the identification of effective antisense target sites. Coupling computational design with DNA-RNA array technique provides a rational, efficient framework for antisense oligonucleotide screening. This framework has the potential for high-throughput applications to functional genomics and drug target validation.
Collapse
MESH Headings
- Algorithms
- Animals
- Binding Sites
- Escherichia coli/genetics
- Nucleic Acid Conformation
- Phylogeny
- Probability
- RNA/chemistry
- RNA/genetics
- RNA, Antisense/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- Rabbits
- Tetrahymena thermophila/genetics
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Y Ding
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
76
|
Hughes MD, Hussain M, Nawaz Q, Sayyed P, Akhtar S. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 2001; 6:303-315. [PMID: 11257582 DOI: 10.1016/s1359-6446(00)00326-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The design and development of antisense oligonucleotides and ribozymes for the treatment of diseases arising from genetic abnormalities has become a real possibility over the past few years. Improvements in oligonucleotide chemistry have led to the synthesis of nucleic acids that are relatively stable in the biological milieu. However, advances in cellular targeting and intracellular delivery will probably lead to more widespread clinical applications. This review looks at recent advances in the in vitro and in vivo delivery of antisense oligodeoxynucleotides and ribozymes.
Collapse
Affiliation(s)
- M D. Hughes
- Aston Centre for Gene-based Therapeutics (ACGT), Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, B4 7ET, Birmingham, UK
| | | | | | | | | |
Collapse
|
77
|
Fennell DA, Corbo MV, Dean NM, Monia BP, Cotter FE. In vivo suppression of Bcl-XL expression facilitates chemotherapy-induced leukaemia cell death in a SCID/NOD-Hu model. Br J Haematol 2001; 112:706-13. [PMID: 11260076 DOI: 10.1046/j.1365-2141.2001.02603.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bcl-XL, a member of the Bcl-2-related anti-apoptosis protein family, antagonizes a diverse range of apoptosis-inducing stimuli by preventing mitochondrial permeability transition, release of apoptogenic factors including cytochrome C, and caspase activation. We have tested the hypothesis that the susceptibility of Bcl-XL-expressing leukaemic cells to apoptosis induced by VP16 (etoposide) can be enhanced by pharmacological downregulation of Bcl-XL in vivo. Two subcutaneous xenograft models of B-cell leukaemia-employing SEMK-2 and BV173 cell lines were established in severe combined immunodeficient/non-obese diabetic mice followed by 14 d of continuous subcutaneous administration of Bcl-XL-specific second generation oligonucleotides ISIS 16009 or ISIS 15999. Tumours were disaggregated, enabling investigation of Bcl-XL expression and apoptosis susceptibility at single-cell resolution using cytofluorimetry. Marked sequence-specific reduction of Bcl-XL was associated with sequence-specific enhancement of VP16-induced mitochondrial permeability transition, caspase-3 activation and loss of membrane asymmetry. A negative correlation between Bcl-XL expression and apoptosis susceptibility was observed, together with a positive correlation with respect to a reduced redox state. Bcl-XL downregulation reduces the threshold for VP16-induced apoptosis by potentiating mitochondrial dysfunction and its sequelae, and therefore presents a novel therapeutic strategy for reversing chemoresistance.
Collapse
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's and The Royal London School of Medicine & Dentistry, Turner Street, London E1 2AD, UK
| | | | | | | | | |
Collapse
|
78
|
Liu J, Feldman PA, Lippy JS, Bobkova E, Kurilla MG, Chung TD. A scintillation proximity assay for rna detection. Anal Biochem 2001; 289:239-45. [PMID: 11161317 DOI: 10.1006/abio.2000.4944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A homogeneous scintillation proximity assay (SPA) for detection of RNA transcripts is described. 3H-labeled RNA transcripts are hybridized in solution to biotinylated oligodeoxynucleotides (ODNs), which are then bound by streptavidin-coated, scintillant-embedded beads. Only bound 3H-labeled RNA transcripts are brought in close enough proximity to stimulate light emission from the beads. The results from this novel homogeneous assay correlated well with those obtained using the traditional filter-binding methods to measure RNA polymerase activity. The assay has been miniaturized to a 384-well format compatible with automated high-throughput screening. This SPA method has also been successfully used to probe RNA-accessible sites to hybridization, and thus should provide a useful tool for selecting effective antisense ODNs in antisense research.
Collapse
Affiliation(s)
- J Liu
- DuPont Pharmaceuticals Company, Experimental Station, E400/5442, P.O. Box 80400, Wilmington, DE 19880, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Klasa RJ, List AF, Cheson BD. Rational approaches to design of therapeutics targeting molecular markers. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2001; 2001:443-462. [PMID: 11722998 DOI: 10.1182/asheducation-2001.1.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper introduces novel therapeutic strategies focusing on a molecular marker relevant to a particular hematologic malignancy. Four different approaches targeting specific molecules in unique pathways will be presented. The common theme will be rational target selection in a strategy that has reached the early phase of human clinical trial in one malignancy, but with a much broader potential applicability to the technology. In Section I Dr. Richard Klasa presents preclinical data on the use of antisense oligonucleotides directed at the bcl-2 gene message to specifically downregulate Bcl-2 protein expression in non-Hodgkin's lymphomas and render the cells more susceptible to the induction of apoptosis. In Section II Dr. Alan List reviews the targeting of vascular endothelial growth factor (VEGF) and its receptor in anti-angiogenesis strategies for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). In Section III Dr. Bruce Cheson describes recent progress in inhibiting cell cycle progression by selectively disrupting cyclin D1 with structurally unique compounds such as flavopiridol in mantle cell lymphoma as well as describing a new class of agents that affect proteasome degradation pathways.
Collapse
Affiliation(s)
- R J Klasa
- Division of Medical Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | |
Collapse
|
80
|
Amarzguioui M, Brede G, Babaie E, Grotli M, Sproat B, Prydz H. Secondary structure prediction and in vitro accessibility of mRNA as tools in the selection of target sites for ribozymes. Nucleic Acids Res 2000; 28:4113-24. [PMID: 11058107 PMCID: PMC113158 DOI: 10.1093/nar/28.21.4113] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have investigated the relative merits of two commonly used methods for target site selection for ribozymes: secondary structure prediction (MFold program) and in vitro accessibility assays. A total of eight methylated ribozymes with DNA arms were synthesized and analyzed in a transient co-transfection assay in HeLa cells. Residual expression levels ranging from 23 to 72% were obtained with anti-PSKH1 ribozymes compared to cells transfected with an irrelevant control ribozyme. Ribozyme efficacy depended on both ribozyme concentration and the steady state expression levels of the target mRNA. Allylated ribozymes against a subset of the target sites generally displayed poorer efficacy than their methylated counterparts. This effect appeared to be influenced by in vivo accessibility of the target site. Ribozymes designed on the basis of either selection method displayed a wide range of efficacies with no significant differences in the average activities of the two groups of ribozymes. While in vitro accessibility assays had limited predictive power, there was a significant correlation between certain features of the predicted secondary structure of the target sequence and the efficacy of the corresponding ribozyme. Specifically, ribozyme efficacy appeared to be positively correlated with the presence of short stem regions and helices of low stability within their target sequences. There were no correlations with predicted free energy or loop length.
Collapse
MESH Headings
- Algorithms
- Animals
- Base Sequence
- Cation Exchange Resins
- Down-Regulation
- Fluorescein-5-isothiocyanate
- Gene Library
- Genes, Reporter/genetics
- Genetic Engineering
- HeLa Cells
- Humans
- Lipids
- Luciferases/genetics
- Methylation
- Molecular Sequence Data
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Oligoribonucleotides/administration & dosage
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Promoter Regions, Genetic/genetics
- RNA Stability
- RNA, Catalytic/administration & dosage
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonuclease H/metabolism
- Software
- Substrate Specificity
- Thermodynamics
- Transfection
Collapse
Affiliation(s)
- M Amarzguioui
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, 0349 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
81
|
Bramlage B, Luzi E, Eckstein F. HIV-1 LTR as a target for synthetic ribozyme-mediated inhibition of gene expression: site selection and inhibition in cell culture. Nucleic Acids Res 2000; 28:4059-67. [PMID: 11058100 PMCID: PMC113160 DOI: 10.1093/nar/28.21.4059] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A library of three synthetic ribozymes with randomized arms, targeting NUX, GUX and NXG triplets, respectively, were used to identify ribozyme-accessible sites on the HIV-1 LTR transcript comprising positions -533 to 386. Three cleavable sites were identified at positions 109, 115 and 161. Ribozymes were designed against these sites, either unmodified or with 2'-modifications and phosphorothioate groups, and their cleavage activities of the transcript were determined. Their biological activities were assessed in cell culture, using a HIV-1 model assay system where the LTR is a promoter for the expression of the reporter gene luciferase in a transient expression system. Intracellular efficiency of the ribozymes were determined by cotransfection of ribozyme and plasmid DNA, expressing the target RNA. Modified ribozymes, directed against positions 115 and 161, lowered the level of LTR mRNA in the cell resulting in inhibition of expression of the LTR-driven reporter gene luciferase of 87 and 61%, respectively. In the presence of Tat the inhibitions were 43 and 25%. The inactive variants of these ribozymes exhibited a similar inhibitory effect. RNase protection revealed a reduction of RNA which was somewhat stronger for the active than the inactive ribozymes, particularly for ribozyme 115. Unmodified ribozymes showed no inhibition in the cell. The third ribozyme, targeting a GUG-triplet at position 109, possessed only low cleavage activity in vitro and no inhibitory effect in cell culture.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Codon/genetics
- Down-Regulation
- Gene Expression Regulation, Viral
- Gene Library
- Genes, Reporter/genetics
- Genetic Engineering
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- HeLa Cells
- Humans
- Kinetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Oligoribonucleotides/chemical synthesis
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- RNA Stability
- RNA, Catalytic/chemical synthesis
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Substrate Specificity
- Transcription, Genetic/genetics
- Transfection
Collapse
Affiliation(s)
- B Bramlage
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strabetae 3, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
82
|
Abstract
Selection of the appropriate target site is crucial to the success of an antisense experiment. The selection is difficult because RNAs fold to form secondary structures, rendering most of the molecule inaccessible to intermolecular base pairing with complementary nucleic acids. Conventional approaches, such as selection by 'sequence-walking' or computer-assisted design, have not brought significant success. Several empirical selection methods have been reported, a number of which are summarised in this review. Of notable significance are the 'global' methods based on mapping of transcripts with the endoribonuclease H (RNase H) and oligonucleotide scanning arrays.
Collapse
Affiliation(s)
- M Sohail
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK.
| | | |
Collapse
|
83
|
Fennell DA, Cotter FE. Controlling the mitochondrial gatekeeper for effective chemotherapy. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02271.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Smith L, Andersen KB, Hovgaard L, Jaroszewski JW. Rational selection of antisense oligonucleotide sequences. Eur J Pharm Sci 2000; 11:191-8. [PMID: 11042224 DOI: 10.1016/s0928-0987(00)00100-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this review is to identify rational selection procedures for the identification of optimal antisense oligonucleotide sequences. The review is firstly focused on how to find optimal hybridization sites, and secondly on how to select sequences that bind to structured RNA. The methods reviewed range from the more empirical testing of large numbers of mRNA complementary sequences to the more systematic techniques, i.e. RNase H mapping, use of combinatorial arrays and prediction of secondary structure of mRNA by computational methods. Structures that bind to structured RNA, i.e. aptastrucs and tethered oligonucleotide probes, and foldback triplex-forming oligonucleotides are also discussed. Relating to selection of antisense sequences by aid of computational analysis, valuable www addresses are given along with examples of folded structures of mRNA.
Collapse
MESH Headings
- Base Sequence
- Drug Design
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides, Antisense/chemical synthesis
- Oligodeoxyribonucleotides, Antisense/chemistry
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/pharmacology
- RNA, Messenger/chemistry
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Ribonuclease H/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- L Smith
- Department of Pharmaceutics, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|
85
|
Scherr M, Rossi JJ, Sczakiel G, Patzel V. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. Nucleic Acids Res 2000; 28:2455-61. [PMID: 10871393 PMCID: PMC102709 DOI: 10.1093/nar/28.13.2455] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2000] [Accepted: 05/11/2000] [Indexed: 01/30/2023] Open
Abstract
The use of antisense oligodeoxyribonucleotides (ODN) or ribozymes to specifically suppress gene expression is simple in concept and relies on efficient binding of the antisense strand to the target RNA. Although the identification of target sites accessible to base pairing is gradually being overcome by different techniques, it remains a major problem in the antisense and ribozyme approaches. In this study we have investigated the potential of a recent experimental and theoretical approach to predict the local accessibility of murine DNA-methyltransferase (MTase) mRNA in a comparative way. The accessibility of the native target RNA was probed with antisense ODN in cellular extracts. The results strongly correlated with the theoretically predicted target accessibility. This work suggests an effective two-step procedure for predicting RNA accessibility: first, computer-aided selection of ODN binding sites defined by an accessibility score followed by a more detailed experimental procedure to derive information about target accessibility at the single nucleotide level.
Collapse
Affiliation(s)
- M Scherr
- Abteilung für Hämatologie und Onkologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | | | |
Collapse
|
86
|
|
87
|
|
88
|
Sohail M, Southern EM. Antisense arrays. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:67-72. [PMID: 10775501 DOI: 10.1006/mcbr.2000.0178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Sohail
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, England, United Kingdom.
| | | |
Collapse
|
89
|
Robbins I, Lebleu B. Vesicular stomatitis virus as model system for studies of antisense oligonucleotide translation arrest. Methods Enzymol 2000; 313:189-203. [PMID: 10595357 DOI: 10.1016/s0076-6879(00)13013-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- I Robbins
- Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, France
| | | |
Collapse
|
90
|
Affiliation(s)
- S T Crooke
- ISIS Pharmaceuticals, Inc., Carlsbad, California 92008, USA
| |
Collapse
|
91
|
Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:141-58. [PMID: 10807004 DOI: 10.1016/s0167-4781(99)00150-5] [Citation(s) in RCA: 490] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNase H-competent phosphorothioates (S-DNAs) have dominated the antisense field in large part because they offer reasonable resistance to nucleases, they afford good efficacy in cell-free test systems, they can be targeted against sites throughout the RNA transcript of a gene, and they are widely available from commercial sources at modest prices. However, these merits are counterbalanced by significant limitations, including: degradation by nucleases, poor in-cell targeting predictability, low sequence specificity, and a variety of non-antisense activities. In cell-free and cultured-cell systems where one wishes to block the translation of a messenger RNA coding for a normal protein, RNase H-independent morpholino antisense oligos provide complete resistance to nucleases, generally good targeting predictability, generally high in-cell efficacy, excellent sequence specificity, and very preliminary results suggest they may exhibit little non-antisense activity.
Collapse
|
92
|
Agarwal N, Gewirtz AM. Oligonucleotide therapeutics for hematologic disorders. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:85-96. [PMID: 10806999 DOI: 10.1016/s0167-4781(99)00142-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the last decade, the catalogue of known genes responsible for cell growth, development, and neoplastic transformation has expanded dramatically. Attempts to translate this information into new therapeutic strategies for both hematologic and non-hematologic diseases have accelerated at a rapid pace as well. Inserting genes into cells which either replace, or counter the effects of disease causing genes has been one of the primary ways in which scientists have tried to exploit this new knowledge. Strategies to directly downregulate gene expression have developed in parallel with this approach. The latter include triple helix forming oligonucleotides (ODN) and 'antisense' ODN. The latter have already entered clinical trials for a variety of disorders. In this monograph, we review the use of these materials in the treatment of hematologic diseases, particularly myelogenous leukemias. Problems and possible solutions associated with the use of ODN will be discussed as well.
Collapse
MESH Headings
- Animals
- Blood Coagulation Disorders/drug therapy
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Hematologic Diseases/drug therapy
- Humans
- Leukemia, Experimental/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myeloid, Acute/drug therapy
- Lymphoma, Non-Hodgkin/drug therapy
- Mice
- Mice, SCID
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-myb/antagonists & inhibitors
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myc/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Messenger/antagonists & inhibitors
- Signal Transduction/drug effects
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- N Agarwal
- Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | |
Collapse
|
93
|
Affiliation(s)
- C Schumacher
- Novartis Pharmaceuticals Corporation, Summit, New Jersey 07901-1398, USA
| |
Collapse
|
94
|
Ho SP, Britton DH, Bao Y, Scully MS. RNA mapping: selection of potent oligonucleotide sequences for antisense experiments. Methods Enzymol 1999; 314:168-83. [PMID: 10565012 DOI: 10.1016/s0076-6879(99)14102-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The importance of finding good antisense sequences cannot be underestimated. Poor inhibition of the targeted protein can compromise the final outcome of an antisense experiment, making it difficult to arrive at a definitive understanding of the function of the protein of interest. In antisense therapeutics, identification of potent sequences becomes even more important. RNA mapping greatly increases the odds of finding active sequences. When antisense sequences are selected randomly or by gene walking, a substantial number of the oligonucleotides have little to no activity. In contrast, oligonucleotides selected by RNA mapping typically produce an antisense inhibition of greater than 50%. Oligonucleotides targeted to 60% of the accessible sites in the 5' portion of the multidrug resistance transcript inhibited P-glycoprotein function with high potency. In the angiotensin type 1 receptor system, oligonucleotides to the eight accessible sites examined inhibited AT1 receptor binding by at least 50%, with oligonucleotides to four of the sites producing at least 70% inhibition. The RNA mapping assay, which is based on standard molecular techniques, therefore provides an easy and reliable method for potent antisense sequence selection.
Collapse
Affiliation(s)
- S P Ho
- DuPont Pharmaceuticals, Wilmington, Delaware 19880, USA
| | | | | | | |
Collapse
|
95
|
Patzel V, Steidl U, Kronenwett R, Haas R, Sczakiel G. A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res 1999; 27:4328-34. [PMID: 10536139 PMCID: PMC148713 DOI: 10.1093/nar/27.22.4328] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Up to now, out of approximately 20 antisense oligodeoxyribonucleotides (as ODN) selected and tested against a given target gene, only one species shows substantial suppression of target gene expression. In part, this seems to be related to the general assumption that the structures of local target sequences or antisense nucleic acids are unfavorable for efficient annealing. Experimental approaches to find effective as ODN are extremely expensive when including a large number of antisense species and when considering their moderate success. Here, we make use of a systematic alignment of computer-predicted secondary structures of local sequence stretches of the target RNA and of semi-empirical rules to identify favorable local target sequences and, hence, to design more effective as ODN. The intercellular adhesion molecule 1 (ICAM-1) gene was chosen as a target because it had been shown earlier to be sensitive to antisense-mediated gene suppression. By applying the protocol described here, 10 ICAM-1-directed as ODN species were found that showed substantially improved inhibition of target gene expression in the endothelial cell line ECV304 when compared with the most effective published as ODN. Further, 17 out of 34 antisense species (50%) selected on the theoretical basis described here showed significant (>50%) inhibition of ICAM-1 expression in mammalian cells.
Collapse
Affiliation(s)
- V Patzel
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
96
|
Walton SP, Stephanopoulos GN, Yarmush ML, Roth CM. Prediction of antisense oligonucleotide binding affinity to a structured RNA target. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19991005)65:1<1::aid-bit1>3.0.co;2-f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
97
|
The 3rd Annual NIH Symposium on Therapeutic Oligonucleotides. Bethesda, Maryland, USA. December 4, 1998. Abstracts. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:359-431. [PMID: 10498436 DOI: 10.1089/oli.1.1999.9.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
98
|
Seidman S, Eckstein F, Grifman M, Soreq H. Antisense technologies have a future fighting neurodegenerative diseases. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:333-40. [PMID: 10463077 DOI: 10.1089/oli.1.1999.9.333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our growing understanding of the role that unfavorable patterns of gene expression play in the etiology of neurodegenerative disease emphasizes the need for strategies to selectively block the biosynthesis of harmful proteins in the brain. Antisense technologies are ideally suited to this purpose. Tailor-designed to target specific RNA, antisense oligonucleotides and ribozymes offer tools to suppress the production of proteins mediating neurodegeneration. Although technical limitations must still be overcome, the antisense approach represents a novel and exciting strategy for intervention in diseases of the central nervous system.
Collapse
Affiliation(s)
- S Seidman
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
99
|
Schmajuk G, Sierakowska H, Kole R. Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem 1999; 274:21783-9. [PMID: 10419493 DOI: 10.1074/jbc.274.31.21783] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel, positive read-out assay that quantifies only sequence-specific nuclear activity of antisense oligonucleotides was used to evaluate morpholino and 2'-O-methyl sugar-phosphate oligonucleotides. The assay is based on modification of the splicing pathway of human beta-globin pre-mRNA. In addition, scrape-loading of cells with oligonucleotides allows the separate assessment of intracellular antisense activity of the oligonucleotides and their ability to penetrate the cell membrane barrier. The results show that, with scrape-loading, the morpholino oligonucleotides were approximately 3-fold more effective in their intrinsic antisense activity than alternating phosphodiester/phosphorothioate 2'-O-methyl-oligoribonucleotides and 6-9- and almost 200-fold more effective than the exclusively phosphorothioate and phosphodiester derivatives, respectively. The morpholino oligonucleotides were over 20-fold more effective than the phosphorothioate 2'-O-methyl-oligoribonucleotides in free uptake from the culture media. The antisense activity of the morpholino oligonucleotides was detectable not only in monolayer HeLa cells but also in suspension K562 cells. Time course experiments suggest that both the free uptake and efflux of morpholino oligonucleotides are slow.
Collapse
Affiliation(s)
- G Schmajuk
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
100
|
Flatschart RB, Sogayar MC. Functional analysis of newly discovered growth control genes: experimental approaches. Braz J Med Biol Res 1999; 32:867-75. [PMID: 10454746 DOI: 10.1590/s0100-879x1999000700011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A large number of DNA sequences corresponding to human and animal transcripts have been filed in data banks, as cDNAs or ESTs (expression sequence tags). However, the actual function of their corresponding gene products is still largely unknown. Several of these genes may play a role in regulation of important biological processes such as cell division, differentiation, malignant transformation and oncogenesis. Elucidation of gene function is based on 2 main approaches, namely, overexpression and expression interference, which respectively mimick or suppress a given phenotype. The currently available tools and experimental approaches to gene functional analysis and the most recent advances in mass cDNA screening by functional analysis are discussed.
Collapse
|