51
|
Cleaton MA, Edwards CA, Ferguson-Smith AC. Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu Rev Genomics Hum Genet 2014; 15:93-126. [DOI: 10.1146/annurev-genom-091212-153441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge CB2 3EG, United Kingdom;
| | | |
Collapse
|
52
|
Spencer HG, Clark AG. Non-conflict theories for the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:112-8. [PMID: 24398886 PMCID: PMC4105448 DOI: 10.1038/hdy.2013.129] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023] Open
Abstract
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.
Collapse
Affiliation(s)
- H G Spencer
- Allan Wilson Centre for Molecular Ecology & Evolution and Gravida: National Centre for Growth & Development, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
53
|
Pires ND, Grossniklaus U. Different yet similar: evolution of imprinting in flowering plants and mammals. F1000PRIME REPORTS 2014; 6:63. [PMID: 25165562 PMCID: PMC4126536 DOI: 10.12703/p6-63] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic imprinting refers to a form of epigenetic gene regulation whereby alleles are differentially expressed in a parent-of-origin-dependent manner. Imprinting evolved independently in flowering plants and in therian mammals in association with the elaboration of viviparity and a placental habit. Despite the striking differences in plant and animal reproduction, genomic imprinting shares multiple characteristics between them. In both groups, imprinted expression is controlled, at least in part, by DNA methylation and chromatin modifications in cis-regulatory regions, and many maternally and paternally expressed genes display complementary dosage-dependent effects during embryogenesis. This suggests that genomic imprinting evolved in response to similar selective pressures in flowering plants and mammals. Nevertheless, there are important differences between plant and animal imprinting. In particular, genomic imprinting has been shown to be more flexible and evolutionarily labile in plants. In mammals, imprinted genes are organized mainly in highly conserved clusters, whereas in plants they occur in isolation throughout the genome and are affected by local gene duplications. There is a large degree of intra- and inter-specific variation in imprinted gene expression in plants. These differences likely reflect the distinct life cycles and the different evolutionary dynamics that shape plant and animal genomes.
Collapse
|
54
|
Biological imprinting: Some genetic considerations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
55
|
Stoeckius M, Grün D, Rajewsky N. Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J 2014; 33:1740-50. [PMID: 24894551 DOI: 10.15252/embj.201488117] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Development of the early embryo is thought to be mainly driven by maternal gene products and post-transcriptional gene regulation. Here, we used metabolic labeling to show that RNA can be transferred by sperm into the oocyte upon fertilization. To identify genes with paternal expression in the embryo, we performed crosses of males and females from divergent Caenorhabditis elegans strains. RNA sequencing of mRNAs and small RNAs in the 1-cell hybrid embryo revealed that about one hundred sixty paternal mRNAs are reproducibly expressed in the embryo and that about half of all assayed endogenous siRNAs and piRNAs are also of paternal origin. Together, our results suggest an unexplored paternal contribution to early development.
Collapse
Affiliation(s)
- Marlon Stoeckius
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Dominic Grün
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| |
Collapse
|
56
|
Abstract
Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.
Collapse
Affiliation(s)
- Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | | |
Collapse
|
57
|
Daughtry B, Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl Med 2014; 3:290-8. [PMID: 24443005 DOI: 10.5966/sctm.2013-0127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient's immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies.
Collapse
Affiliation(s)
- Brittany Daughtry
- Departments of Cell and Developmental Biology and Molecular and Medical Genetics, and Program in Molecular and Cellular Biosciences, School of Medicine, and Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, and Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
58
|
Leeb M, Wutz A. Haploid genomes illustrate epigenetic constraints and gene dosage effects in mammals. Epigenetics Chromatin 2013; 6:41. [PMID: 24305551 PMCID: PMC4175507 DOI: 10.1186/1756-8935-6-41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
Sequencing projects have revealed the information of many animal genomes and thereby enabled the exploration of genome evolution. Insights into how genomes have been repeatedly modified provide a basis for understanding evolutionary innovation and the ever increasing complexity of animal developmental programs. Animal genomes are diploid in most cases, suggesting that redundant information in two copies of the genome increases evolutionary fitness. Genomes are well adapted to a diploid state. Changes of ploidy can be accommodated early in development but they rarely permit successful development into adulthood. In mammals, epigenetic mechanisms including imprinting and X inactivation restrict haploid development. These restrictions are relaxed in an early phase of development suggesting that dosage regulation appears less critical. Here we review the recent literature on haploid genomes and dosage effects and try to embed recent findings in an evolutionary perspective.
Collapse
Affiliation(s)
- Martin Leeb
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | |
Collapse
|
59
|
Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 2013; 41:4104-17. [PMID: 23471003 PMCID: PMC3627604 DOI: 10.1093/nar/gkt132] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing attention has focused on the significance of RNA in sperm, in light of its contribution to the birth and long-term health of a child, role in sperm function and diagnostic potential. As the composition of sperm RNA is in flux, assigning specific roles to individual RNAs presents a significant challenge. For the first time RNA-seq was used to characterize the population of coding and non-coding transcripts in human sperm. Examining RNA representation as a function of multiple methods of library preparation revealed unique features indicative of very specific and stage-dependent maturation and regulation of sperm RNA, illuminating their various transitional roles. Correlation of sperm transcript abundance with epigenetic marks suggested roles for these elements in the pre- and post-fertilization genome. Several classes of non-coding RNAs including lncRNAs, CARs, pri-miRNAs, novel elements and mRNAs have been identified which, based on factors including relative abundance, integrity in sperm, available knockout data of embryonic effect and presence or absence in the unfertilized human oocyte, are likely to be essential male factors critical to early post-fertilization development. The diverse and unique attributes of sperm transcripts that were revealed provides the first detailed analysis of the biology and anticipated clinical significance of spermatozoal RNAs.
Collapse
Affiliation(s)
- Edward Sendler
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Yang H, Shi L, Wang BA, Liang D, Zhong C, Liu W, Nie Y, Liu J, Zhao J, Gao X, Li D, Xu GL, Li J. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 2012; 149:605-17. [PMID: 22541431 DOI: 10.1016/j.cell.2012.04.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/21/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022]
Abstract
Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.
Collapse
Affiliation(s)
- Hui Yang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ragina NP, Schlosser K, Knott JG, Senagore PK, Swiatek PJ, Chang EA, Fakhouri WD, Schutte BC, Kiupel M, Cibelli JB. Downregulation of H19 improves the differentiation potential of mouse parthenogenetic embryonic stem cells. Stem Cells Dev 2011; 21:1134-44. [PMID: 21793658 DOI: 10.1089/scd.2011.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parthenogenetic embryonic stem cells (P-ESCs) offer an alternative source of pluripotent cells, which hold great promise for autologous transplantation and regenerative medicine. P-ESCs have been successfully derived from blastocysts of several mammalian species. However, compared with biparental embryonic stem cells (B-ESCs), P-ESCs are limited in their ability to fully differentiate into all 3 germ layers. For example, it has been observed that there is a differentiation bias toward ectoderm derivatives at the expense of endoderm and mesoderm derivatives-muscle in particular-in chimeric embryos, teratomas, and embryoid bodies. In the present study we found that H19 expression was highly upregulated in P-ESCs with more than 6-fold overexpression compared with B-ESCs. Thus, we hypothesized that manipulation of the H19 gene in P-ESCs would alleviate their limitations and allow them to function like B-ESCs. To test this hypothesis we employed a small hairpin RNA approach to reduce the amount of H19 transcripts in mouse P-ESCs. We found that downregulation of H19 led to an increase of mesoderm-derived muscle and endoderm in P-ESCs teratomas similar to that observed in B-ESCs teratomas. This phenomenon coincided with upregulation of mesoderm-specific genes such as Myf5, Myf6, and MyoD. Moreover, H19 downregulated P-ESCs differentiated into a higher percentage of beating cardiomyocytes compared with control P-ESCs. Collectively, these results suggest that P-ESCs are amenable to molecular modifications that bring them functionally closer to true ESCs.
Collapse
Affiliation(s)
- Neli P Ragina
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kaneda M. Genomic imprinting in mammals—Epigenetic parental memories. Differentiation 2011; 82:51-6. [DOI: 10.1016/j.diff.2011.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 01/12/2023]
|
63
|
Abstract
The emerging awareness of the contribution of epigenetic processes to genome function in health and disease is underpinned by decades of research in model systems. In particular, many principles of the epigenetic control of genome function have been uncovered by studies of genomic imprinting. The phenomenon of genomic imprinting, which results in some genes being expressed in a parental--origin-specific manner, is essential for normal mammalian growth and development and exemplifies the regulatory influences of DNA methylation, chromatin structure and non-coding RNA. Setting seminal discoveries in this field alongside recent progress and remaining questions shows how the study of imprinting continues to enhance our understanding of the epigenetic control of genome function in other contexts.
Collapse
|
64
|
Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a002592. [PMID: 21576252 DOI: 10.1101/cshperspect.a002592] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Normal mammalian development requires a maternal and paternal contribution, which is attributed to imprinted genes, or genes that are expressed from a single parental allele. Approximately 100 imprinted genes have been reported in mammals thus far. Imprinted genes are controlled by cis-acting regulatory elements, termed imprinting control regions (ICRs), which have parental-specific epigenetic modifications, including DNA methylation. ICRs are methylated by de novo DNA methyltransferases during germline development; these parental-specific modifications must be maintained following fertilization when the genome is extensively reprogrammed. Many imprinted genes reside in ∼1-megabase clusters, with two major mechanisms of imprinting regulation currently recognized, CTCF-dependent insulators and long noncoding RNAs. Unclustered imprinted genes are generally regulated by germline-derived differential promoter methylation. Here, we describe the identification and functions of imprinted genes, cis-acting control sequences, trans-acting factors, and imprinting mechanisms in clusters. Finally, we define questions that require more extensive research.
Collapse
Affiliation(s)
- Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19063, USA.
| | | |
Collapse
|
65
|
Rodriguez S, Campo-Engelstein L, Tingen C, Woodruff T. An obscure rider obstructing science: the conflation of parthenotes with embryos in the Dickey-Wicker amendment. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2011; 11:20-28. [PMID: 21400380 DOI: 10.1080/15265161.2010.546472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In 1996 Congress passed the Dickey-Wicker Amendment (DWA) as part of an appropriations bill; it has been renewed every year since. The DWA bans federal funding for research using embryos and parthenotes. In this paper, we call for a public discussion on parthenote research and a questioning of its inclusion in the DWA. We begin by explaining what parthenotes are and why they are useful for research on reproduction, cancer, and stem cells. We then argue that the scientific difference between embryos and parthenotes translates into ethical differences, and claim that research on parthenotes is much less ethically problematic. Finally, we contextualize the original passage of the DWA to provide an explanation for why the two were possibly conflated in this law. We conclude by calling for a public discussion on reconsidering the DWA in its entirety, starting with the removal of parthenogenesis from this prohibition of National Institutes of Health (NIH) funding.
Collapse
Affiliation(s)
- Sarah Rodriguez
- Oncofertility Consortium, Northwestern University, 303 E. Superior, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
66
|
Campo-Engelstein L, Rodriguez S, Tingen C, Woodruff T. Practical parthenote policy and the practice of science. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2011; 11:W1-W2. [PMID: 21400373 DOI: 10.1080/15265161.2011.563162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
67
|
Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 2011; 141:21-36. [PMID: 20876223 PMCID: PMC5358669 DOI: 10.1530/rep-10-0322] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the sperm nucleus, the paternal genome remains functionally inert and protected following protamination. This is marked by a structural morphogenesis that is heralded by a striking reduction in nuclear volume. Despite these changes, both human and mouse spermatozoa maintain low levels of nucleosomes that appear non-randomly distributed throughout the genome. These regions may be necessary for organizing higher order genomic structure through interactions with the nuclear matrix. The promoters of this transcriptionally quiescent genome are differentially marked by modified histones that may poise downstream epigenetic effects. This notion is supported by increasing evidence that the embryo inherits these differing levels of chromatin organization. In concert with the suite of RNAs retained in the mature sperm, they may synergistically interact to direct early embryonic gene expression. Irrespective, these features reflect the transcriptional history of spermatogenic differentiation. As such, they may soon be utilized as clinical markers of male fertility. In this review, we explore and discuss how this may be orchestrated.
Collapse
Affiliation(s)
- Graham D. Johnson
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Claudia Lalancette
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Amelia K. Linnemann
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Frédéric Leduc
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stephen A. Krawetz
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Institute for Scientific Computing, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| |
Collapse
|
68
|
OBATA Y. Study on the Mechanism of Maternal Imprinting During Oocyte Growth. J Reprod Dev 2011; 57:1-8. [DOI: 10.1262/jrd.10-195e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yayoi OBATA
- Department of BioScience, Tokyo University of Agriculture
| |
Collapse
|
69
|
Abstract
In this issue of Biology of Reproduction, Deng and colleagues present a method by which offspring originating from two male mouse genomes can efficiently be produced.
Collapse
Affiliation(s)
- Peter de Boer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
70
|
de Magalhães JP. Paternal genome effects on aging: evidence for a role of Rasgrf1 in longevity determination? Mech Ageing Dev 2010; 132:72-3. [PMID: 21182853 DOI: 10.1016/j.mad.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 11/28/2010] [Indexed: 01/23/2023]
Abstract
A recent study by Kawahara and Kono (2010) reports that mice artificially produced with two sets of female genomes have an increased average lifespan of 28%. Moreover, these animals exhibit a smaller body size, a trait also observed in several other long-lived mouse models. One hypothesis is that alterations in the expression of paternally methylated imprinted genes are responsible for the life-extension of bi-maternal mice. Considering the similarities in postnatal growth retardation between mice with mutations in the Rasgrf1 imprinted gene and bi-maternal mice, Rasgrf1 is the most likely culprit for the low body weight and extended lifespan of bi-maternal mice. Rasgrf1 is a neuronal guanine-nucleotide exchange factor that induces Ras signaling in a calcium-dependent manner and has been implicated in learning and memory. Like other long-lived mouse strains, Rasgrf1 mutants are known to have low growth hormone and IGF-1 levels and the Rasgrf1 yeast homolog CDC25 had been previously associated with lifespan. Therefore, although the evidence is not conclusive, it does point towards the involvement of Rasgrf1 in the regulation of longevity, hypothetically through a mechanism similar to that observed in other long-lived mice of low GH/IGF-1 signaling causing a low body weight and life-extension.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
71
|
Deng JM, Satoh K, Wang H, Chang H, Zhang Z, Stewart MD, Cooney AJ, Behringer RR. Generation of viable male and female mice from two fathers. Biol Reprod 2010; 84:613-8. [PMID: 21148107 DOI: 10.1095/biolreprod.110.088831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In sexual species, fertilization of oocytes produces individuals with alleles derived from both parents. Here we use pluripotent stem cells derived from somatic cells to combine the haploid genomes from two males to produce viable sons and daughters. Male (XY) mouse induced pluripotent stem cells (Father #1) were used to isolate subclones that had spontaneously lost the Y chromosome to become genetically female (XO). These male-derived XO stem cells were used to generate female chimeras that were bred with genetically distinct males (Father #2), yielding progeny possessing genetic information that was equally derived from both fathers. Thus, functional oocytes can be generated from male somatic cells after reprogramming and spontaneous sex reversal. These findings have novel implications for mammalian reproduction and assisted reproductive technology.
Collapse
Affiliation(s)
- Jian Min Deng
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin CS, Lin SP, Prissette M, Oakey RJ, Bourc'his D. The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet 2010; 6:e1001214. [PMID: 21124941 PMCID: PMC2987832 DOI: 10.1371/journal.pgen.1001214] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 10/20/2010] [Indexed: 11/24/2022] Open
Abstract
In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | | - Timothy H. Bestor
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Kathryn Woodfine
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Chyuan-Sheng Lin
- Transgenic Animal Facility, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Marine Prissette
- Department of Pathology, Columbia University, New York, New York, United States of America
| | - Rebecca J. Oakey
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | |
Collapse
|
73
|
Criscuolo F, Font-Sala C, Bouillaud F, Poulin N, Trabalon M. Increased ROS production: a component of the longevity equation in the male mygalomorph, Brachypelma albopilosa. PLoS One 2010; 5. [PMID: 20957044 PMCID: PMC2948510 DOI: 10.1371/journal.pone.0013104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/09/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The diversity of longevities encountered in wildlife is one of the most intriguing problems in biology. Evolutionary biologists have proposed different theories to explain how longevity variability may be driven by bad genes expression in late life or by gene pleiotropic effects. This reflexion has stimulated, in the last ten years, an active research on the proximal mechanisms that can shape lifespan. Reactive oxygen species (ROS), i.e., the by-products of oxidative metabolism, have emerged as the main proximate cause of ageing. Because ROS are mainly produced by the mitochondria, their production is linked to metabolic rate, and this may explain the differences in longevity between large and small species. However, their implication in the sex difference in longevity within a species has never been tested, despite the fact that these differences are widespread in the animal kingdom. METHODOLOGY/PRINCIPAL FINDINGS Mitochondrial superoxide production of hemolymph immune cells and antioxidant and oxidative damages plasma levels were measured in adult male and female B. albopilosa at different ages. We found that female spiders are producing less mitochondrial superoxide, are better protected against oxidative attack and are then suffering less oxidative damages than males at adulthood. CONCLUSIONS/SIGNIFICANCE In tarantulas, once reaching sexual maturity, males have a life expectancy reduced to 1 to 2 years, while females can still live for 20 years, in spite of the fact that females continue to grow and moult. This study evidences an increased exposure of males to oxidative stress due to an increase in mitochondrial superoxide production and a decrease in hemolymph antioxidant defences. Such a phenomenon is likely to be part of the explanation for the sharp reduction of longevity accompanying male tarantula maturity. This opens several fundamental research roads in the future to better understand how reproduction and longevity are linked in an original ageing model.
Collapse
Affiliation(s)
- Francois Criscuolo
- Institut Pluridisciplinaire Hubert Curien, Département Ecologie, Physiologie et Ethologie, CNRS-UDS, UMR 7178, Strasbourg, France.
| | | | | | | | | |
Collapse
|
74
|
Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 2010; 32:473-80. [PMID: 20486133 DOI: 10.1002/bies.200900170] [Citation(s) in RCA: 461] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The H19 gene produces a non-coding RNA, which is abundantly expressed during embryonic development and down-regulated after birth. Although this gene was discovered over 20 years ago, its function has remained unclear. Only recently a role was identified for the non-coding RNA and/or its microRNA partner, first as a tumour suppressor gene in mice, then as a trans-regulator of a group of co-expressed genes belonging to the imprinted gene network that is likely to control foetal and early postnatal growth in mice. The mechanisms underlying this transcriptional or post-transcriptional regulation remain to be discovered, perhaps by identifying the protein partners of the full-length H19 RNA or the targets of the microRNA. This first in vivo evidence of a functional role for the H19 locus provides new insights into how genomic imprinting helps to control embryonic growth.
Collapse
Affiliation(s)
- Anne Gabory
- Biology of Development and Reproduction, INRA-ENVA, UMR 1198, Jouy en Josas, France
| | | | | |
Collapse
|
75
|
Zhao LX, Zhao GP, Zhou HM. [Review on the genomic imprinting at the mammalian DLK1-DIO3 cluster.]. YI CHUAN = HEREDITAS 2010; 32:769-778. [PMID: 20709673 DOI: 10.3724/sp.j.1005.2010.00769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The mammalian imprinting domain DLK1-DIO3 is located on distal human chromosome 14, mouse chromosome 12 and sheep chromosome 18. This cluster contains three imprinted protein-coding genes (Dlk1, Rtl1, and Dio3), which were expressed from the paternally inherited chromosome and several imprinted noncoding RNA genes expressed from the maternally inherited allele, such as miRNAs, snoRNAs, and large noncoding RNA Gtl2. The altered gene dosage of DLK1-DIO3 cluster resulted in several severe abnormal phenotypes in human and mouse, even death, suggesting the importance of these genes for normal development. This review focuses on the function of imprinted genes on this domain and the mechanism of their imprinting regulation.
Collapse
Affiliation(s)
- Li-Xia Zhao
- College of Biotechnology and Bioengineering, Inner Mongolia Agricultural University, Huhhot, China.
| | | | | |
Collapse
|
76
|
Hikichi T, Ohta H, Wakayama S, Wakayama T. Functional full-term placentas formed from parthenogenetic embryos using serial nuclear transfer. Development 2010; 137:2841-7. [PMID: 20659973 DOI: 10.1242/dev.051375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian parthenogenetic embryos invariably die in mid-gestation from imprinted gene defects and placental hypoplasia. Based on chimera experiments, trophoblastic proliferation is supposed to be inhibited in the absence of a male genome. Here, we show that parthenogenetic mouse embryonic cell nuclei can be reprogrammed by serial rounds of nuclear transfer without using any genetic modification. The durations of survival in uteri of cloned foetuses derived from green fluorescent protein (GFP)-labelled parthenogenetic cell nuclei were extended with repeated nuclear transfers. After five repeats, live cloned foetuses were obtained up to day 14.5 of gestation; however, they did not survive longer even when we repeated nuclear transfer up to nine times. All foetuses showed intestinal herniation and possessed well-expanded large placentas. When embryonic stem (ES) cells derived from fertilised embryos were aggregated with the cloned embryos, full-term offspring with large placentas were obtained from the chimeric embryos. Those placentas were derived from parthenogenetic cell nuclei, judging from GFP expression. The patterns of imprinted gene expression and methylation status were similar to their parthenogenetic origin, except for Peg10, which showed the same level as in the normal placenta. These results suggest that there is a limitation for foetal development in the ability to reprogramme imprinted genes by repeated rounds of nuclear transfer. However, the placentas of parthenogenetic embryos can escape epigenetic regulation when developed using nuclear transfer techniques and can support foetal development to full gestation.
Collapse
Affiliation(s)
- Takafusa Hikichi
- RIKEN Center for Developmental Biology, Minatojima-minamimachi Chuo-ku, Kobe, Japan
| | | | | | | |
Collapse
|
77
|
Takahashi N, Kobayashi R, Kono T. Restoration of Dlk1 and Rtl1 is necessary but insufficient to rescue lethality in intergenic differentially methylated region (IG-DMR)-deficient mice. J Biol Chem 2010; 285:26121-5. [PMID: 20511218 DOI: 10.1074/jbc.m109.075325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the Dlk1-Dio3 imprinted domain, an intergenic differentially methylated region (IG-DMR) regulates the parental allele-specific expression of imprinted genes. The maternally inherited deletion of IG-DMR (IG-DMR((-/+))) results in perinatal lethality because of the overexpression of paternally expressed genes and repression of maternally expressed noncoding RNAs (ncRNAs), including Gtl2. To better understand the possible contribution of paternally expressed genes to the lethality, we attempted to rescue the lethality of IG-DMR((-/+)) mutants by restoring the paternally expressed genes. Because the paternally inherited Gtl2 deletion (Gtl2((+/-))) induced a decrease in the expression of paternally expressed genes, we crossed female IG-DMR heterozygous mice and male Gtl2 heterozygous mutant mice. The resultant IG-DMR((-/+))/Gtl2((+/-)) double mutant mice had normal expression levels of paternally expressed genes, and none of them showed perinatal lethality; however, most mice showed postnatal lethality with decreased expression of the maternally expressed ncRNAs. Thus, we inferred that paternally expressed genes are necessary for perinatal survivability and that maternally expressed ncRNAs are involved in postnatal lethality.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-0054, Japan
| | | | | |
Collapse
|
78
|
Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters AHFM. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 2010; 17:679-87. [PMID: 20473313 DOI: 10.1038/nsmb.1821] [Citation(s) in RCA: 505] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/24/2010] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, histone methylation is involved in maintaining cellular identity during somatic development. As most nucleosomes are replaced by protamines during spermatogenesis, it is unclear whether histone modifications function in paternal transmission of epigenetic information. Here we show that two modifications important for Trithorax- and Polycomb-mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa. Histone H3 Lys4 dimethylation (H3K4me2) marks genes that are relevant in spermatogenesis and cellular homeostasis. In contrast, histone H3 Lys27 trimethylation (H3K27me3) marks developmental regulators in sperm, as in somatic cells. However, nucleosomes are only moderately retained at regulatory regions in human sperm. Nonetheless, genes with extensive H3K27me3 coverage around transcriptional start sites in particular tend not to be expressed during male and female gametogenesis or in preimplantation embryos. Promoters of orthologous genes are similarly modified in mouse spermatozoa. These data are compatible with a role for Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.
Collapse
|
79
|
Pozharny Y, Lambertini L, Ma Y, Ferrara L, Litton CG, Diplas A, Jacobs AR, Chen J, Stone JL, Wetmur J, Lee MJ. Genomic loss of imprinting in first-trimester human placenta. Am J Obstet Gynecol 2010; 202:391.e1-8. [PMID: 20350649 DOI: 10.1016/j.ajog.2010.01.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate imprinting patterns in first-trimester human placentas. STUDY DESIGN Using samples of 17 first-trimester and 14 term placentas from uncomplicated pregnancies, we assessed loss of imprinting (LOI) at the RNA level in a panel of 14 genes that are known to be imprinted in the placenta with the use of a quantitative allele-specific reverse transcriptase polymerase chain reaction analysis of those genes that contained readout single nucleotide polymorphisms in their transcripts. RESULTS There is significant LOI (ie, biallelic expression) in all 14 genes in first-trimester placentas. LOI was more variable and generally at lower levels at term. Although there is little difference in gene expression, the level of LOI is higher in the first-trimester placentas, compared with term placentas. CONCLUSION Genomic imprinting appears to be a dynamic maturational process across gestation in human placenta. In contrast with prevailing theories, epigenetic imprints may continue to evolve past 12 weeks of gestation.
Collapse
|
80
|
Han L, Szabó PE, Mann JR. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet 2010; 6:e1000803. [PMID: 20062522 PMCID: PMC2794364 DOI: 10.1371/journal.pgen.1000803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/08/2009] [Indexed: 11/19/2022] Open
Abstract
The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome. Parthenogenetic mouse embryos with two maternal genomes die early in development due to the misexpression of imprinted genes. To gain further insight into which misexpressions might be involved, we examined some of the misexpressions that could determine the small size and fetal death of a “partial parthenogenone”—embryos with maternal duplication of distal Chr 7 (MatDup.dist7). We investigated the involvement of two maternal copies of the Igf2/H19 imprinting control region (ICR), which is associated with lack of activity of the Igf2 gene, encoding a growth factor, and over-activity of H19. By introducing a mutant ICR, we activated Igf2 and expected to correct other misexpressions, such as that of H19. The result was substantial increase in growth and full postnatal viability of MatDup.dist7 fetuses, demonstrating the dependency of their abnormal phenotype on two maternal copies of the ICR. Activation of Igf2 was probably the main effector of this rescue. These results are consistent with the idea that reduced expression of IGF2 is causal in the human growth deficit disorder, Silver-Russell syndrome.
Collapse
Affiliation(s)
- Li Han
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Piroska E. Szabó
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey R. Mann
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Laboratory and Community Genetics Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
81
|
|
82
|
Sandhu KS, Shi C, Sjölinder M, Zhao Z, Göndör A, Liu L, Tiwari VK, Guibert S, Emilsson L, Imreh MP, Ohlsson R. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev 2009; 23:2598-603. [PMID: 19933149 DOI: 10.1101/gad.552109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent observations highlight that the mammalian genome extensively communicates with itself via long-range chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted. Moreover, CTCF-binding sites within the H19 imprinting control region (ICR) not only determine the physical proximity among imprinted domains, but also transvect allele-specific epigenetic states, identified by replication timing patterns, to interacting, nonallelic imprinted regions during germline development. We conclude that one locus can directly or indirectly pleiotropically influence epigenetic states of multiple regions on other chromosomes with which it interacts.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- Department of Development and Genetics, Evolution Biology Centre, Uppsala University, S-752 36 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kawahara M, Wu Q, Kono T. Involvement of insulin-like growth factor 2 in angiogenic factor transcription in Bi-maternal mouse conceptuses. J Reprod Dev 2009; 56:79-85. [PMID: 19881219 DOI: 10.1262/jrd.09-140a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Imprinted genes in which only one of the two parental chromosome copies is expressed have a substantial effect on mammalian ontogenesis. On mouse distal chromosome 7, the paternally expressed gene insulin-like growth factor 2 (Igf2) is separated by approximate 100 kb from the maternally expressed non-coding gene H19. However, there is limited knowledge of the manner in which Igf2 transcription affects the other genes involved in embryonic development. To clarify this, we performed quantitative gene expression analysis for representative angiogenic factors-Vegf, Flt1, Flt4, Flk1, Ang1, Ang2, Tie1, and Tie2-for 3 types of bi-maternal conceptuses containing genomes with non-growing (ng) and fully grown (fg) oocytes. The genetic backgrounds of the ng oocytes were 1) the wild type (ng(wt)), 2) mutant mice carrying a 3-kb deletion of the H19 transcription unit (ng(H19Delta3-KO)/fg) and 3) mutant mice carrying a 13-kb deletion in the H19 transcription unit, including the germline-derived differentially methylated region on chromosome 7 (ng(H19Delta13-KO)/fg). In the ng(wt)/fg and ng(H19Delta3-KO)/fg placentae, Vegf and Flt1 were upregulated compared with the mean value for the wt placenta, whereas in the ng(H19Delta13-KO)/fg placenta, these transcriptional levels were restored. In the fetus, however, only 2 genes among the 8 genes analyzed were significantly changed in the bi-maternal fetuses, indicating that the effects of the Igf2 mRNA level on angiogenic factor transcription in the fetus differed from those in the placenta. Our results indicated that the Igf2 mRNA level affects transcription of angiogenic factors in both bi-maternal placentae and fetuses.
Collapse
Affiliation(s)
- Manabu Kawahara
- Laboratory of Animal Resource Development, Faculty of Agriculture, Saga University, Japan
| | | | | |
Collapse
|
84
|
Abstract
We describe how recent advances in stem cell research may be interpreted by various regulatory regimes and use Canada as a model to demonstrate how broad-based prohibitive legislation can unintentionally restrict research direction. We encourage scientists and policymakers to collaborate to ensure a clear regulatory framework that accommodates future advances.
Collapse
|
85
|
Absence of paternal accessory sex gland secretions disturbs epigenetic reprogramming and expression of Igf2 and Dlk1 in golden hamster embryos. Theriogenology 2009; 71:1367-80. [DOI: 10.1016/j.theriogenology.2008.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/18/2008] [Accepted: 12/21/2008] [Indexed: 11/21/2022]
|
86
|
Kobayashi H, Yamada K, Morita S, Hiura H, Fukuda A, Kagami M, Ogata T, Hata K, Sotomaru Y, Kono T. Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2. Genomics 2009; 93:461-72. [DOI: 10.1016/j.ygeno.2008.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/20/2022]
|
87
|
Kawahara M, Morita S, Takahashi N, Kono T. Defining contributions of paternally methylated imprinted genes at the Igf2-H19 and Dlk1-Gtl2 domains to mouse placentation by transcriptomic analysis. J Biol Chem 2009; 284:17751-65. [PMID: 19380578 DOI: 10.1074/jbc.m109.000299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parental genome functions in ontogeny are determined by interactions among transcripts from the maternal and paternal genomes, which contain many genes whose expression is strictly dependent on their parental origin as a result of genomic imprinting. Comprehensive recognition of the interactions between parental genomes is important for understanding genomic imprinting in mammalian development. The placenta is a key organ for exploring the biological significance of genomic imprinting. To decipher the unknown roles of paternally methylated imprinted genes on chromosomes 7 and 12 in mouse placentation, we performed a transcriptomic analysis on placentae in three types of bimaternal conceptuses that contained genomes derived from both non-growing and fully grown oocytes. Furthermore, we used the Ingenuity pathway analysis software to predict key networks and identify functions specific to paternally methylated imprinted genes regulated by the Igf2-H19 imprinting control region and Dlk1-Dio3 imprinting control region. The data suggested that dynamic conversion of the gene expression profile by restoring the expression of paternally methylated imprinted genes resulted in phenotypic improvements in bimaternal placentae. These results provide a framework to further explore the role of epigenetic modifications in paternal genome during mouse placentation.
Collapse
Affiliation(s)
- Manabu Kawahara
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|
88
|
Abstract
Full mammalian development typically requires genomes from both the oocyte and spermatozoon. Biparental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis; that is, a maternal methylation imprint imposed during the oocyte growth period and a paternal methylation imprint imposed in pregonadal gonocytes. This leads to unequivalent expression of imprinted genes from the maternal and paternal alleles in embryos and individuals. It is possible to hypothesise that the maternal methylation imprint is necessary to prevent parthenogenesis, which extinguishes the opportunity for having descendents, whereas the paternal methylation imprint prevents parthenogenesis, ensuring that a paternal contribution is obligatory for any descendants. To date, there are several lines of direct evidence that the epigenetic modifications that occur during oocyte growth have a decisive effect on mammalian development. Using bimaternal embryos with two sets of maternal genomes, the present paper illustrates how parental methylation imprints are an obstacle to the progression of parthenogenesis.
Collapse
Affiliation(s)
- Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
89
|
Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L. Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 2009; 18:2177-87. [PMID: 19324901 DOI: 10.1093/hmg/ddp150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian parthenogenetic embryos (pE) are not viable due to placental deficiency, presumably resulting from lack of paternally expressed imprinted genes. Pluripotent parthenogenetic embryonic stem (pES) cells derived from pE could advance regenerative medicine by avoiding immuno-rejection and ethical roadblocks. We attempted to explore the epigenetic status of imprinted genes in the generation of pES cells from parthenogenetic blastocysts, and its relationship to pluripotency of pES cells. Pluripotency was evaluated for developmental and differentiation potential in vivo, based on contributions of pES cells to chimeras and development to day 9.5 of pES fetuses complemented by tetraploid embryos (TEC). Consistently, pE and fetuses failed to express paternally expressed imprinted genes, but pES cells expressed those genes in a pattern resembling that of fertilized embryos (fE) and fertilized embryonic stem (fES) cells derived from fE. Like fE and fES cells, but unlike pE or fetuses, pES cells and pES cell-fetuses complemented by TEC exhibited balanced methylation of Snrpn, Peg1 and U2af1-rs1. Coincidently, global methylation increased in pE but decreased in pES cells, further suggesting dramatic epigenetic reprogramming occurred during isolation and culture of pES cells. Moreover, we identified decreased methylation of Igf2r, Snrpn, and especially U2af1-rs1, in association with increased contributions of pES cells to chimeras. Our data show that in vitro culture changes epigenetic status of imprinted genes during isolation of pES cells from their progenitor embryos and that increased expression of U2af1-rs1 and Snrpn and decreased expression of Igf2r correlate with pluripotency of pES cells.
Collapse
Affiliation(s)
- Chao Li
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y, Ogawa H, Sotomaru Y, Kono T. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum Mol Genet 2009; 18:1879-88. [PMID: 19264764 DOI: 10.1093/hmg/ddp108] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cluster of imprinted genes located in the Dlk1-Dio3 domain spanning 1 Mb plays an essential role in controlling pre- and postnatal growth and differentiation in mice and humans. The failure of parent-of-origin-dependent gene expression in this domain results in grave disorders, leading to death in some cases. However, little is known about the role of maternally expressed non-coding RNAs (ncRNAs) including many miRNAs and snoRNAs in this domain. In order to further understand the role of these ncRNAs, we created Gtl2-mutant mice harboring a 10 kb deletion in exons 1-5. The mutant mice exhibited a very unique inheritance mode: when the deletion was inherited from the mother (Mat-KO), the pups were born with normal phenotypes; however, all of them died within 4 weeks after birth, probably due to severely hypoplastic pulmonary alveoli and hepatocellular necrosis. Mice carrying the paternal deletion (Pat-KO) showed severe growth retardation and perinatal lethality. Interestingly, the homozygous mutants (Homo-KO) survived and developed into fertile adults. Our results show that these phenotypes occur due to altered expression of the Dlk1-Dio3 cluster genes including miRNAs and snoRNAs via the cis and trans effects.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Chang G, Liu S, Wang F, Zhang Y, Kou Z, Chen D, Gao S. Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells. Genomics 2009; 93:112-9. [DOI: 10.1016/j.ygeno.2008.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 11/26/2022]
|
92
|
|
93
|
Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15:547-57. [PMID: 18854139 DOI: 10.1016/j.devcel.2008.08.014] [Citation(s) in RCA: 448] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 06/20/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
The mechanisms responsible for maintaining genomic methylation imprints in mouse embryos are not understood. We generated a knockout mouse in the Zfp57 locus encoding a KRAB zinc finger protein. Loss of just the zygotic function of Zfp57 causes partial neonatal lethality, whereas eliminating both the maternal and zygotic functions of Zfp57 results in a highly penetrant embryonic lethality. In oocytes, absence of Zfp57 results in failure to establish maternal methylation imprints at the Snrpn imprinted region. Intriguingly, methylation imprints are reacquired specifically at the maternally derived Snrpn imprinted region when the zygotic Zfp57 is present in embryos. This suggests that there may be DNA methylation-independent memory for genomic imprints. Zfp57 is also required for the postfertilization maintenance of maternal and paternal methylation imprints at multiple imprinted domains. The effects on genomic imprinting are consistent with the maternal-zygotic lethality of Zfp57 mutants.
Collapse
Affiliation(s)
- Xiajun Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
A reliable nuclear transfer method was first reported in 1983; it provided definite evidence that parthenogenetic embryos are lethal at early postimplantation in mammals. Subsequently, nuclear transfer has been extensively used as an important and versatile tool for investigating embryo and somatic-cell cloning and nucleo-cytoplasmic interactions. Further development of this technique has enabled the generation of bimaternal embryos containing two haploid sets of maternal genomes from female germ cells of different origins. By using a 2-d nuclear transfer system for oocyte reconstruction, viable mice can be produced solely from maternal genomes, without the participation of the paternal genome. This oocyte reconstruction system, as described in this protocol, could provide valuable guidelines for exploring the potential endowments of gametes and for conferring novel properties to them.
Collapse
|
95
|
da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008; 24:306-16. [PMID: 18471925 DOI: 10.1016/j.tig.2008.03.011] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 01/29/2023]
Abstract
Genomic imprinting causes genes to be expressed or repressed depending on their parental origin. The majority of imprinted genes identified to date map in clusters and much of our knowledge of the mechanisms, function and evolution of imprinting have emerged from their analysis. The cluster of imprinted genes delineated by the delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (Dlk1-Dio3) is located on distal mouse chromosome 12 and human chromosome 14. Its developmental importance is exemplified by severe phenotypes associated with altered dosage of these genes in mice and humans. The domain contains three imprinted protein-coding genes, Dlk1, Rtl1 and Dio3, expressed from the paternally inherited chromosome and several imprinted large and small noncoding RNA genes expressed from the maternally inherited homolog. Here, we discuss the function and regulation of imprinting at this domain.
Collapse
Affiliation(s)
- Simao Teixeira da Rocha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | | | | | | |
Collapse
|
96
|
Genomic imprinting: a balance between antagonistic roles of parental chromosomes. Semin Cell Dev Biol 2008; 19:574-9. [PMID: 18718545 DOI: 10.1016/j.semcdb.2008.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022]
Abstract
Maternally and paternally derived chromosomes might be expected to contribute equally to the various cellular and developmental processes in placental mammals and flowering plants. However, this is not true even in the case of the self-pollinated plant, Arabidopsis, which has identical DNA sequences in both parental genomes. The reason for this is that some genes, called "imprinted genes", are expressed exclusively from paternally or maternally inherited chromosomes. As a result, parental chromosomes express a distinct set of genes and play different roles in biological processes. Here, we review and compare roles of genomic imprinting in flowering plants and placental mammals.
Collapse
|
97
|
Wu Q, Kawahara M, Kono T. Synergistic role of Igf2 and Dlk1 in fetal liver development and hematopoiesis in bi-maternal mice. J Reprod Dev 2008; 54:177-82. [PMID: 18344616 DOI: 10.1262/jrd.19146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse bi-maternal embryos (BMEs) that contain two haploid sets of genomes from non-growing (ng) and fully-grown (fg) oocytes develop to embryonic day (E) 13.5. However, the ng/fg BMEs never develop beyond E13.5 because of repression of the paternally expressed imprinted genes, Igf2 and Dlk1. The present study was conducted to address the issue of whether fetal hematopoietic disorder is involved in the restricted development of BMEs. FACS analysis revealed that the livers of ng(wt)/fg BMEs contained increased numbers of immature c-kit(+)/ter119(-) hematopoietic cells, were while the numbers of mature c-kit(-)/ter119(+) hematopoietic cells were decreased. This finding was supported by histological observations. Quantitative gene expression analysis revealed that Igf2 and Dlk1 expression was repressed in the liver. To understand the role of paternally-methylated imprinted genes on chromosomes 7 and 12, particularly Igf2 and Dlk1, in fetal liver hematopoiesis, we constructed ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs using ng oocytes harboring deletion of differentially methylated regions at distal chromosomes 7 and/or 12. The ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs, respectively, express Igf2, Dlk1 and both, and these embryos developed to term with specific phenotypes; the ng(Deltach7)/fg and ng(Deltach12)/fg BMEs develop to term with severe growth retardation, and the ng(DeltaDouble)/fg BMEs can survive to become normal female adults. By inducing Igf2 and Dlk1 expression, the proportions of mature and immature hematopoietic cells in the livers of the ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs were considerably restored, and particularly in the ng(DeltaDouble)/fg BMEs, hematopoiesis occurred normally with appropriate expressions of the related genes. These data suggest that inappropriate expression of Igf2 and Dlk1 is involved in impaired fetal hematopoiesis.
Collapse
Affiliation(s)
- Qiong Wu
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | | | | |
Collapse
|
98
|
Nuclear Transfer Alters the DNA Methylation Status of Specific Genes in Fertilized and Parthenogenetically Activated Mouse Embryonic Stem Cells. Stem Cells 2008; 26:783-8. [DOI: 10.1634/stemcells.2007-0907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
99
|
Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008; 9:129-40. [PMID: 18197165 DOI: 10.1038/nrg2295] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.
Collapse
|
100
|
Kawahara M, Wu Q, Ferguson-Smith AC, Kono T. Appropriate expression of imprinted genes on mouse chromosome 12 extends development of bi-maternal embryos to term. FEBS Lett 2007; 581:5178-84. [PMID: 17959172 DOI: 10.1016/j.febslet.2007.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/25/2007] [Accepted: 10/01/2007] [Indexed: 11/17/2022]
Abstract
Recently, we reported that the restored regulation of imprinted gene expression from two regions -H19 differentially methylated region (H19-DMR) and intergenic germline-derived DMR (IG-DMR) - is sufficient for accomplishing full-term development in mice. In the present study, we determined the developmental ability of the bi-maternal embryos (BMEs) containing the non-growing oocyte genome with the IG-DMR deletion (ng(Deltach12)) and fully-grown (fg) oocyte genome. Foetuses derived from ng(Deltach12)/fg BMEs were alive at E19.5 but could not survive further. Comparison with BMEs derived from Igf2+/- ng/fg genomes suggests that bi-allelic H19 expression might be involved in foetal development.
Collapse
Affiliation(s)
- Manabu Kawahara
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|