51
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
52
|
Kandimalla SR, Sabitha G. Diversity-Oriented Synthesis of Oxacyclic Spirooxindole Derivatives through Ring-Closing Enyne Metathesis and Intramolecular Pauson-Khand (2+2+1) Cyclization of Oxindole Enynes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satheeshkumar Reddy Kandimalla
- Natural Products Chemistry Division; CSIR - Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110 025 India
| | - Gowravaram Sabitha
- Natural Products Chemistry Division; CSIR - Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110 025 India
| |
Collapse
|
53
|
Barlow TMA, Tourwé D, Ballet S. Cyclisation To Form Small, Medium and Large Rings by Use of Catalysed and Uncatalysed Azide-Alkyne Cycloadditions (AACs). European J Org Chem 2017. [DOI: 10.1002/ejoc.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas M. A. Barlow
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
54
|
Saupe J, Kunz O, Haustedt LO, Jakupovic S, Mang C. MacroEvoLution: A New Method for the Rapid Generation of Novel Scaffold-Diverse Macrocyclic Libraries. Chemistry 2017; 23:11784-11791. [PMID: 28715083 PMCID: PMC5601232 DOI: 10.1002/chem.201703209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Macrocycles are a structural class bearing great promise for future challenges in medicinal chemistry. Nevertheless, there are few flexible approaches for the rapid generation of structurally diverse macrocyclic compound collections. Here, an efficient method for the generation of novel macrocyclic peptide‐based scaffolds is reported. The process, named here as “MacroEvoLution”, is based on a cyclization screening approach that gives reliable access to novel macrocyclic architectures. Classification of building blocks into specific pools ensures that scaffolds with orthogonally addressable functionalities are generated, which can easily be used for the generation of structurally diverse compound libraries. The method grants rapid access to novel scaffolds with scalable synthesis (multi gram scale) and the introduction of further diversity at a late stage. Despite being developed for peptidic systems, the approach can easily be extended for the synthesis of systems with a decreased peptidic character.
Collapse
Affiliation(s)
- Jörn Saupe
- AnalytiCon Discovery GmbH, Hermannswerder Haus 17, 14473, Potsdam, Germany
| | - Oliver Kunz
- AnalytiCon Discovery GmbH, Hermannswerder Haus 17, 14473, Potsdam, Germany
| | - Lars Ole Haustedt
- AnalytiCon Discovery GmbH, Hermannswerder Haus 17, 14473, Potsdam, Germany
| | - Sven Jakupovic
- AnalytiCon Discovery GmbH, Hermannswerder Haus 17, 14473, Potsdam, Germany
| | - Christian Mang
- AnalytiCon Discovery GmbH, Hermannswerder Haus 17, 14473, Potsdam, Germany
| |
Collapse
|
55
|
Hu L, Liu YA, Liao X. In situ generation of N-unsubstituted imines from alkyl azides and their applications for imine transfer via copper catalysis. SCIENCE ADVANCES 2017; 3:e1700826. [PMID: 28808683 PMCID: PMC5550227 DOI: 10.1126/sciadv.1700826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Although azides have been widely used in nitrene transfer reactions, in situ generation of N-H imines from azides for downstream transformations has rarely been explored. We report copper-mediated formation of N-unsubstituted aliphatic imines from easily available aliphatic azides using a customized phenanthroline-based ligand (L1*). Through trapping in situ-generated N-H imines, multisubstituted pyridines or indoles were readily synthesized. 13C-labeled azide was used as part of an isotope labeling study, which suggests that the construction of pyridine derivatives involves a three-component dehydrogenative condensation. The construction of 2,3,5-triaryl pyridines using this method provided evidence supporting a proposed pathway involving both imine formation and abnormal Chichibabin pyridine synthesis. The generation of N-unsubstituted imine intermediates was also confirmed by formation of indole derivatives from alkyl azides.
Collapse
Affiliation(s)
- Lu Hu
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yahu A. Liu
- Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
56
|
Hsu WS, Tsai MH, Barve IJ, Yellol GS, Sun CM. Synthesis of Aminofuran-Linked Benzimidazoles and Cyanopyrrole-Fused Benzimidazoles by Condition-Based Skeletal Divergence. ACS COMBINATORIAL SCIENCE 2017; 19:492-499. [PMID: 28445030 DOI: 10.1021/acscombsci.7b00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A condition-based skeletal divergent synthesis was explored to achieve skeletal diversity in two component condensation reaction. Cyanomethyl benzimidazole was reacted with α-bromoketone under thermal conditions to furnish 2-aminofuranyl-benzimidazoles, while the same reaction afforded 3-cyano-benzopyrrolo-imidazoles under microwave irradiation. Two nonequivalent nucleophilic centers on benzimidazole moiety were manipulated elegantly by different reaction conditions to achieve the skeletal diversity.
Collapse
Affiliation(s)
- Wei-Shun Hsu
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Min-Huan Tsai
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Indrajeet J. Barve
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Gorakh S. Yellol
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
57
|
Godin É, Bédard AC, Raymond M, Collins SK. Phase Separation Macrocyclization in a Complex Pharmaceutical Setting: Application toward the Synthesis of Vaniprevir. J Org Chem 2017; 82:7576-7582. [DOI: 10.1021/acs.joc.7b01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Éric Godin
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Anne-Catherine Bédard
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Michaël Raymond
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Shawn K. Collins
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| |
Collapse
|
58
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
59
|
Guarnieri-Ibáñez A, Medina F, Besnard C, Kidd SL, Spring DR, Lacour J. Diversity-oriented synthesis of heterocycles and macrocycles by controlled reactions of oxetanes with α-iminocarbenes. Chem Sci 2017; 8:5713-5720. [PMID: 28989611 PMCID: PMC5621157 DOI: 10.1039/c7sc00964j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Using N-sulfonyl triazoles as substrates, compounds as diverse as 2-imino tetrahydrofurans, 13- and 15-membered ring aza-macrocycles can be prepared selectively via formal [1 + 4], [5 + 4 + 4] and [3 + 4 + 4 + 4] condensations of α-imino carbenes and oxetanes under Rh(ii)-catalysis or thermal activation. Spirocyclic N-heterocycles are also accessible by means of Buchwald-Hartwig and Pictet-Spengler cyclizations. By reaction control, substrate selection or further derivatization, a large variety of chemical structures is thus achievable. Finally, using triazoles reacting under thermal activation, interesting mechanistic insight was obtained.
Collapse
Affiliation(s)
- Alejandro Guarnieri-Ibáñez
- Department of Organic Chemistry , University of Geneva , quai Ernest Ansermet 30 , CH-1211 Geneva 4 , Switzerland
| | - Florian Medina
- Department of Organic Chemistry , University of Geneva , quai Ernest Ansermet 30 , CH-1211 Geneva 4 , Switzerland
| | - Céline Besnard
- Laboratory of Crystallography , University of Geneva , quai Ernest Ansermet 24 , CH-1211 Geneva 4 , Switzerland
| | - Sarah L Kidd
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Jérôme Lacour
- Department of Organic Chemistry , University of Geneva , quai Ernest Ansermet 30 , CH-1211 Geneva 4 , Switzerland
| |
Collapse
|
60
|
Maurya SK, Rana R. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Beilstein J Org Chem 2017; 13:1106-1118. [PMID: 28684990 PMCID: PMC5480360 DOI: 10.3762/bjoc.13.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.
Collapse
Affiliation(s)
- Sushil K Maurya
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| | - Rohit Rana
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| |
Collapse
|
61
|
Dow M, Marchetti F, Abrahams KA, Vaz L, Besra GS, Warriner S, Nelson A. Modular Synthesis of Diverse Natural Product-Like Macrocycles: Discovery of Hits with Antimycobacterial Activity. Chemistry 2017; 23:7207-7211. [PMID: 28374952 PMCID: PMC5488202 DOI: 10.1002/chem.201701150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 12/24/2022]
Abstract
A modular synthetic approach was developed in which variation of the triplets of building blocks used enabled systematic variation of the macrocyclic scaffolds prepared. The approach was demonstrated in the synthesis of 17 diverse natural product-like macrocyclic scaffolds of varied (12-20-membered) ring size. The biological relevance of the chemical space explored was demonstrated through the discovery of a series of macrocycles with significant antimycobacterial activity.
Collapse
Affiliation(s)
- Mark Dow
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Francesco Marchetti
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | | | - Luis Vaz
- AstraZenecaCharter WayMacclesfieldSK10 2NAUK
| | - Gurdyal S. Besra
- School of BiosiencesUniversity of BirminghamEdgbaston, BirminghamB15 2TTUK
| | - Stuart Warriner
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
62
|
“MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
63
|
Macrocycles as protein-protein interaction inhibitors. Biochem J 2017; 474:1109-1125. [PMID: 28298556 DOI: 10.1042/bcj20160619] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Macrocyclic compounds such as cyclic peptides have emerged as a new and exciting class of drug candidates for inhibition of intracellular protein-protein interactions, which are challenging targets for conventional drug modalities (i.e. small molecules and proteins). Over the past decade, several complementary technologies have been developed to synthesize macrocycle libraries and screen them for binding to therapeutically relevant targets. Two different approaches have also been explored to increase the membrane permeability of cyclic peptides. In this review, we discuss these methods and their applications in the discovery of macrocyclic compounds against protein-protein interactions.
Collapse
|
64
|
Ciardiello JJ, Stewart HL, Sore HF, Galloway WRJD, Spring DR. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Bioorg Med Chem 2017; 25:2825-2843. [PMID: 28283333 DOI: 10.1016/j.bmc.2017.02.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 01/15/2023]
Abstract
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated.
Collapse
Affiliation(s)
- J J Ciardiello
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H L Stewart
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H F Sore
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W R J D Galloway
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D R Spring
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
65
|
Paciaroni NG, Ratnayake R, Matthews JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens RW. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine. Chemistry 2017; 23:4327-4335. [PMID: 27900785 DOI: 10.1002/chem.201604795] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 02/06/2023]
Abstract
High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health.
Collapse
Affiliation(s)
- Nicholas G Paciaroni
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Verrill M Norwood
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Austin C Arnold
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Long H Dang
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
66
|
Alogheli H, Olanders G, Schaal W, Brandt P, Karlén A. Docking of Macrocycles: Comparing Rigid and Flexible Docking in Glide. J Chem Inf Model 2017; 57:190-202. [PMID: 28079375 DOI: 10.1021/acs.jcim.6b00443] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, there has been an increased interest in using macrocyclic compounds for drug discovery and development. For docking of these commonly large and flexible compounds to be addressed, a screening and a validation set were assembled from the PDB consisting of 16 and 31 macrocycle-containing protein complexes, respectively. The macrocycles were docked in Glide by rigid docking of pregenerated conformational ensembles produced by the macrocycle conformational sampling method (MCS) in Schrödinger Release 2015-3 or by direct Glide flexible docking after performing ring-templating. The two protocols were compared to rigid docking of pregenerated conformational ensembles produced by an exhaustive Monte Carlo multiple minimum (MCMM) conformational search and a shorter MCMM conformational search (MCMM-short). The docking accuracy was evaluated and expressed as the RMSD between the heavy atoms of the ligand as found in the X-ray structure after refinement and the poses obtained by the docking protocols. The median RMSD values for top-scored poses of the screening set were 0.83, 0.80, 0.88, and 0.58 Å for MCMM, MCMM-short, MCS, and Glide flexible docking, respectively. There was no statistically significant difference in the performance between rigid docking of pregenerated conformations produced by the MCS and direct docking using Glide flexible docking. However, the flexible docking protocol was 2-times faster in docking the screening set compared to that of the MCS protocol. In a final study, the new Prime-MCS method was evaluated in Schrödinger Release 2016-3. This method is faster compared that of to MCS; however, the conformations generated were found to be suboptimal for rigid docking. Therefore, on the basis of timing, accuracy, and ease of set up, standard Glide flexible docking with prior ring-templating is recommended over current gold standard protocols using rigid docking of pregenerated conformational ensembles.
Collapse
Affiliation(s)
- Hiba Alogheli
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC , Box 574, SE-751 23 Uppsala, Sweden
| | - Gustav Olanders
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC , Box 574, SE-751 23 Uppsala, Sweden
| | - Wesley Schaal
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC , Box 574, SE-751 23 Uppsala, Sweden
| | - Peter Brandt
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC , Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC , Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
67
|
He X, Chen X, Lin S, Mo X, Zhou P, Zhang Z, Lu Y, Yang Y, Gu H, Shang Z, Lou Y, Wu J. Diversity-Oriented Synthesis of Natural-Product-like Libraries Containing a 3-Methylbenzofuran Moiety for the Discovery of New Chemical Elicitors. ChemistryOpen 2017; 6:102-111. [PMID: 28168155 PMCID: PMC5288756 DOI: 10.1002/open.201600118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
Natural products are a major source of biological molecules. The 3-methylfuran scaffold is found in a variety of plant secondary metabolite chemical elicitors that confer host-plant resistance against insect pests. Herein, the diversity-oriented synthesis of a natural-product-like library is reported, in which the 3-methylfuran core is fused in an angular attachment to six common natural product scaffolds-coumarin, chalcone, flavone, flavonol, isoflavone and isoquinolinone. The structural diversity of this library is assessed computationally using cheminformatic analysis. Phenotypic high-throughput screening of β-glucuronidase activity uncovers several hits. Further in vivo screening confirms that these hits can induce resistance in rice to nymphs of the brown planthopper Nilaparvata lugens. This work validates the combination of diversity-oriented synthesis and high-throughput screening of β-glucuronidase activity as a strategy for discovering new chemical elicitors.
Collapse
Affiliation(s)
- Xingrui He
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Xia Chen
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Songbo Lin
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Xiaochang Mo
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Pengyong Zhou
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Zhihao Zhang
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Yaoyao Lu
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhou310023P. R. China
| | - Yu Yang
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhou310023P. R. China
| | - Haining Gu
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Zhicai Shang
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Yonggen Lou
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Jun Wu
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
68
|
Baud LG, Manning MA, Arkless HL, Stephens TC, Unsworth WP. Ring-Expansion Approach to Medium-Sized Lactams and Analysis of Their Medicinal Lead-Like Properties. Chemistry 2017; 23:2225-2230. [PMID: 27935197 DOI: 10.1002/chem.201605615] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Medium-sized rings are widely considered to be under-represented in biological screening libraries for lead identification in medicinal chemistry. To help address this, a library of medium-sized lactams has been generated by using a simple, scalable and versatile ring-expansion protocol. Analysis of the library by using open-access computational tool LLAMA suggested that these lactams and their derivatives have highly promising physicochemical and 3D spatial properties and thus have much potential in drug discovery.
Collapse
|
69
|
Panahi F, Niknam E, Sarikhani S, Haghighi F, Khalafi-Nezhad A. Multicomponent synthesis of new curcumin-based pyrano[2,3-d]pyrimidine derivatives using a nano-magnetic solid acid catalyst. NEW J CHEM 2017. [DOI: 10.1039/c7nj02370g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An novel nano-magnetic solid acid catalyst was used for the efficient synthesis of new curcumin-based pyrano[2,3-d]pyrimidine derivatives via a multicomponent reaction under mild conditions.
Collapse
Affiliation(s)
- Farhad Panahi
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| | - Esmaeil Niknam
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| | - Samira Sarikhani
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| | - Fatemeh Haghighi
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| | - Ali Khalafi-Nezhad
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| |
Collapse
|
70
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
71
|
Kim J, Jung J, Koo J, Cho W, Lee WS, Kim C, Park W, Park SB. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction. Nat Commun 2016; 7:13196. [PMID: 27774980 PMCID: PMC5078997 DOI: 10.1038/ncomms13196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.
Collapse
Affiliation(s)
- Jonghoon Kim
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Jinjoo Jung
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Jaeyoung Koo
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Wansang Cho
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Won Seok Lee
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Chanwoo Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Wonwoo Park
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, CRI Center for Chemical Proteomics, Seoul National University, Seoul 151-747, Korea
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
72
|
Bansode AH, Chimala P, Patil NT. Catalytic Branching Cascades in Diversity Oriented Synthesis. ChemCatChem 2016. [DOI: 10.1002/cctc.201600766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Avinash H. Bansode
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune - 411 008 India
| | - Prathyusha Chimala
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune - 411 008 India
| | - Nitin T. Patil
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune - 411 008 India
| |
Collapse
|
73
|
Nie F, Kunciw DL, Wilcke D, Stokes JE, Galloway WRJD, Bartlett S, Sore HF, Spring DR. A Multidimensional Diversity-Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles. Angew Chem Int Ed Engl 2016; 55:11139-43. [PMID: 27484830 PMCID: PMC5025730 DOI: 10.1002/anie.201605460] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 12/11/2022]
Abstract
Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity-oriented synthesis, and its application towards macrocycles. This enabled the step-efficient generation of a library of 45 novel, structurally diverse, and highly-functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza-ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity-generating steps of the synthesis strategy impact on molecular shape.
Collapse
Affiliation(s)
- Feilin Nie
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Dominique L Kunciw
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David Wilcke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jamie E Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Warren R J D Galloway
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sean Bartlett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
74
|
A Multidimensional Diversity-Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
75
|
Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 2016; 537:214-219. [PMID: 27479323 PMCID: PMC5161617 DOI: 10.1038/nature18941] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023]
Abstract
Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.
Collapse
Affiliation(s)
- Thomas J Osberger
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Donald C Rogness
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Jeffrey T Kohrt
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, USA
| | - Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
76
|
Richmond E, Khan IU, Moran J. Enantioselective and Regiodivergent Functionalization ofN-Allylcarbamates by Mechanistically Divergent Multicatalysis. Chemistry 2016; 22:12274-7. [DOI: 10.1002/chem.201602792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Edward Richmond
- Institut de Science et d'Ingénierie Supramoleculaires (ISIS); Centre International de Recherche aux Frontières de la Chimie (icFRC); Université de Strasbourg; CNRS; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ismat Ullah Khan
- Institut de Science et d'Ingénierie Supramoleculaires (ISIS); Centre International de Recherche aux Frontières de la Chimie (icFRC); Université de Strasbourg; CNRS; 8 allée Gaspard Monge 67000 Strasbourg France
- Department of Chemistry; Quaid i Azam University; Islamabad 45320 Pakistan
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoleculaires (ISIS); Centre International de Recherche aux Frontières de la Chimie (icFRC); Université de Strasbourg; CNRS; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
77
|
Mao J, Li H, Wen H, Li M, Fan X, Bao W. Palladium-Catalyzed Two-Component Domino Coupling Reaction of (Z)-β-Bromostyrenes with Norbornenes: Synthesis of 1,5-Enynes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
78
|
Ciardiello JJ, Galloway WR, O'Connor CJ, Sore HF, Stokes JE, Wu Y, Spring DR. An expedient strategy for the diversity-oriented synthesis of macrocyclic compounds with natural product-like characteristics. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
79
|
Pathoor R, Bahulayan D. Synthesis of large Stokes shift and narrow emission indole–triazole–carboxamide peptidomimetics via MCR-click strategy. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
80
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden- und Wirkstoffsuche. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Stefan Zimmermann
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Muthukumar G. Sankar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Kamal Kumar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| |
Collapse
|
81
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angew Chem Int Ed Engl 2016; 55:7586-605. [DOI: 10.1002/anie.201508818] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/19/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Stefan Zimmermann
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Muthukumar G. Sankar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Kamal Kumar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
82
|
Javed S, Bodugam M, Torres J, Ganguly A, Hanson PR. Modular Synthesis of Novel Macrocycles Bearing α,β-Unsaturated Chemotypes through a Series of One-Pot, Sequential Protocols. Chemistry 2016; 22:6755-6758. [PMID: 27059428 PMCID: PMC5094705 DOI: 10.1002/chem.201601004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/08/2022]
Abstract
A series of one-pot, sequential protocols was developed for the synthesis of novel macrocycles bearing α,β-unsaturated chemotypes. The method highlights a phosphate tether-mediated approach to establish asymmetry, and consecutive one-pot, sequential processes to access the macrocycles with minimal purification procedures. This library amenable strategy provided diverse macrocycles containing α,β-unsaturated carbon-, sulfur-, or phosphorus-based warheads.
Collapse
Affiliation(s)
- Salim Javed
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Mahipal Bodugam
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Jessica Torres
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Arghya Ganguly
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Paul R. Hanson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| |
Collapse
|
83
|
Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem 2016; 8:531-41. [PMID: 27219696 DOI: 10.1038/nchem.2479] [Citation(s) in RCA: 769] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Daniel Reker
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Petra Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.,inSili.com LLC, Segantinisteig 3, 8049 Zürich, Switzerland
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
84
|
Kim C, Jung J, Tung TT, Park SB. β-Turn mimetic-based stabilizers of protein-protein interactions for the study of the non-canonical roles of leucyl-tRNA synthetase. Chem Sci 2016; 7:2753-2761. [PMID: 28660052 PMCID: PMC5477029 DOI: 10.1039/c5sc03493k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
For the systematic perturbation of protein–protein interactions, we designed and synthesized tetra-substituted hexahydro-4H-pyrazino[2,1-c][1,2,4]triazine-4,7(6H)-diones as β-turn mimetics. 5c{3,9} stabilizes the direct interaction between LRS and RagD and activates mTORC1 in living cells.
For the systematic perturbation of protein–protein interactions, we designed and synthesized tetra-substituted hexahydro-4H-pyrazino[2,1-c][1,2,4]triazine-4,7(6H)-diones as β-turn mimetics. We then devised a new synthetic route to obtain β-turn mimetic scaffolds via tandem N-acyliminium cyclization and constructed a 162-member library of tetra-substituted pyrazinotriazinediones with an average purity of 90% using a solid-phase parallel synthesis platform. Each library member was subjected to ELISA-based modulator screening for the LRS–RagD interaction, which plays a pivotal role in the nutrient-dependent mTORC1 signalling pathway. Western blot analysis of phosphorylated S6K1 as well as FRET-based imaging confirmed that 5c{3,9} stabilizes the direct interaction between LRS and RagD and activates mTORC1 in live cells under leucine-deprived conditions. Thus, 5c{3,9} can be used as a new research tool for studying the non-canonical role of LRS.
Collapse
Affiliation(s)
- Chanwoo Kim
- Department of Chemistry , Seoul National University , Seoul 151-747 , Korea .
| | - Jinjoo Jung
- Department of Biophysics and Chemical Biology , Seoul National University , Seoul 151-747 , Korea
| | - Truong T Tung
- Department of Chemistry , Seoul National University , Seoul 151-747 , Korea .
| | - Seung Bum Park
- Department of Chemistry , Seoul National University , Seoul 151-747 , Korea . .,Department of Biophysics and Chemical Biology , Seoul National University , Seoul 151-747 , Korea
| |
Collapse
|
85
|
Sun YH, Sun TY, Wu YD, Zhang X, Rao Y. A diversity-oriented synthesis of bioactive benzanilides via a regioselective C(sp 2)-H hydroxylation strategy. Chem Sci 2016; 7:2229-2238. [PMID: 29910911 PMCID: PMC5975941 DOI: 10.1039/c5sc03905c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022] Open
Abstract
A diversity-oriented synthesis of bioactive benzanilides via C(sp2)-H hydroxylation has been studied. Different regioselectivity was observed with Ru(ii) and Pd(ii) catalysts. The reaction demonstrates excellent regioselectivity, good tolerance of functional groups, and high yields. A wide range of ortho-hydroxylated-benzanilides can be readily synthesized with excellent regioselectivity via this new synthetic strategy. Computational investigations revealed that the regioselectivity was controlled mainly by both steric and electronic factors. Steric effects determine the regioselective outcomes in the Ru-catalyzed reaction, while electronic effects are dominant in the Pd-catalyzed reaction.
Collapse
Affiliation(s)
- Yong-Hui Sun
- MOE Key Laboratory of Protein Sciences , Department of Pharmacology and Pharmaceutical Sciences , School of Medicine and School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Tian-Yu Sun
- Lab of Computational Chemistry and Drug Design , Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China .
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design , Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China .
- College of Chemistry , Peking University , Beijing 100871 , China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design , Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China .
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences , Department of Pharmacology and Pharmaceutical Sciences , School of Medicine and School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
86
|
Konnert L, Dimassi M, Gonnet L, Lamaty F, Martinez J, Colacino E. Poly(ethylene) glycols and mechanochemistry for the preparation of bioactive 3,5-disubstituted hydantoins. RSC Adv 2016. [DOI: 10.1039/c6ra03222b] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mechanochemistry was effective for the preparation of 3,5-disubstituted hydantoins from α-amino methyl esters, using either 1,1′-carbonyldiimidazole (CDI) or alkyl isocyanates.
Collapse
Affiliation(s)
- L. Konnert
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS – UM – ENSCM
- Green Chemistry and Enabling Technology Team
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - M. Dimassi
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS – UM – ENSCM
- Green Chemistry and Enabling Technology Team
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - L. Gonnet
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS – UM – ENSCM
- Green Chemistry and Enabling Technology Team
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - F. Lamaty
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS – UM – ENSCM
- Green Chemistry and Enabling Technology Team
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - J. Martinez
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS – UM – ENSCM
- Green Chemistry and Enabling Technology Team
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - E. Colacino
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS – UM – ENSCM
- Green Chemistry and Enabling Technology Team
- Université de Montpellier
- 34095 Montpellier Cedex 5
| |
Collapse
|
87
|
Kitsiou C, Hindes JJ, I'Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Kitsiou C, Hindes JJ, I'Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angew Chem Int Ed Engl 2015; 54:15794-8. [PMID: 26768697 DOI: 10.1002/anie.201509153] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/28/2015] [Indexed: 11/10/2022]
Abstract
Structurally diverse macrocycles and medium-sized rings (9-24 membered scaffolds, 22 examples) can be generated through a telescoped acylation/ring-expansion sequence, leading to the insertion of linear fragments into cyclic β-ketoesters without performing a discrete macrocyclization step. The key β-ketoester motif is regenerated in the ring-expanded product, meaning that the same sequence of steps can then be repeated (in theory indefinitely) with other linear fragments, allowing macrocycles with precise substitution patterns to be "grown" from smaller rings using the successive ring-expansion (SuRE) method.
Collapse
|
89
|
Loh J, Asad N, Samarakoon TB, Hanson PR. Modular, One-Pot, Sequential Aziridine Ring Opening-S(N)Ar Strategy to 7-, 10-, and 11-Membered Benzo-Fused Sultams. J Org Chem 2015; 80:9926-41. [PMID: 26446396 PMCID: PMC4943336 DOI: 10.1021/acs.joc.5b01429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/12/2022]
Abstract
The generation of common and stereochemically rich medium-sized benzo-fused sultams via complementary pairing of heretofore-unknown (o-fluoroaryl)sulfonyl aziridine building blocks with an array of amino alcohols/amines in a modular one-pot, sequential protocol using an aziridine ring opening and intramolecular nucleophilic aromatic substitution is reported. The strategy employs a variety of amino alcohols/amines and proceeds with 6 + 4/6 + 5 and 6 + 1 cycloetherification pathways in a highly chemo- and regioselective fashion to obtain skeletally and structurally diverse, polycyclic, 10- to 11- and 7-membered benzo-fused sultams for broad-scale screening.
Collapse
Affiliation(s)
- Joanna
K. Loh
- Department of Chemistry, University
of Kansas, 1251 Wescoe
Hall Drive, Lawrence, Kansas 66045, United
States
- Center
for Chemical Methodologies
and Library Development (KU-CMLD), Delbert M. Shankel Structural Biology
Center, The University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Naeem Asad
- Department of Chemistry, University
of Kansas, 1251 Wescoe
Hall Drive, Lawrence, Kansas 66045, United
States
- Center
for Chemical Methodologies
and Library Development (KU-CMLD), Delbert M. Shankel Structural Biology
Center, The University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Thiwanka B. Samarakoon
- Department of Chemistry, University
of Kansas, 1251 Wescoe
Hall Drive, Lawrence, Kansas 66045, United
States
- Center
for Chemical Methodologies
and Library Development (KU-CMLD), Delbert M. Shankel Structural Biology
Center, The University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
90
|
Bédard AC, Santandrea J, Collins SK. Efficient continuous-flow synthesis of macrocyclic triazoles. J Flow Chem 2015. [DOI: 10.1556/jfc-d-14-00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Sheng C, Dong G, Miao Z, Zhang W, Wang W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 2015; 44:8238-59. [PMID: 26248294 DOI: 10.1039/c5cs00252d] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeting protein-protein interactions (PPIs) has emerged as a viable approach in modern drug discovery. However, the identification of small molecules enabling us to effectively interrupt their interactions presents significant challenges. In the recent past, significant advances have been made in the development of new biological and chemical strategies to facilitate the discovery process of small-molecule PPI inhibitors. This review aims to highlight the state-of-the-art technologies and the achievements made recently in this field. The "hot spots" of PPIs have been proved to be critical for small molecules to bind. Three strategies including screening, designing, and synthetic approaches have been explored for discovering PPI inhibitors by targeting the "hot spots". Although the classic high throughput screening approach can be used, fragment screening, fragment-based drug design and newly improved virtual screening are demonstrated to be more effective in the discovery of PPI inhibitors. In addition to screening approaches, design strategies including anchor-based and small molecule mimetics of secondary structures involved in PPIs have become powerful tools as well. Finally, constructing new chemically spaced libraries with high diversity and complexity is becoming an important area of interest for PPI inhibitors. The successful cases from the recent five year studies are used to illustrate how these approaches are implemented to uncover and optimize small molecule PPI inhibitors and notably some of them have become promising therapeutics.
Collapse
Affiliation(s)
- Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
92
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
93
|
Treder AP, Hickey JL, Tremblay MCJ, Zaretsky S, Scully CCG, Mancuso J, Doucet A, Yudin AK, Marsault E. Solid-Phase Parallel Synthesis of Functionalised Medium-to-Large Cyclic Peptidomimetics through Three-Component Coupling Driven by Aziridine Aldehyde Dimers. Chemistry 2015; 21:9249-55. [PMID: 26014974 DOI: 10.1002/chem.201500068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/06/2022]
Abstract
The first solid-phase parallel synthesis of macrocyclic peptides using three-component coupling driven by aziridine aldehyde dimers is described. The method supports the synthesis of 9- to 18-membered aziridine-containing macrocycles, which are then functionalized by nucleophilic opening of the aziridine ring. This constitutes a robust approach for the rapid parallel synthesis of macrocyclic peptides.
Collapse
Affiliation(s)
- Adam P Treder
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord Sherbrooke (QC) J1H 5N4 (Canada)
| | - Jennifer L Hickey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto (ON) M5S 3H6 (Canada)
| | - Marie-Claude J Tremblay
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord Sherbrooke (QC) J1H 5N4 (Canada)
| | - Serge Zaretsky
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto (ON) M5S 3H6 (Canada)
| | - Conor C G Scully
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto (ON) M5S 3H6 (Canada)
| | - John Mancuso
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord Sherbrooke (QC) J1H 5N4 (Canada)
| | - Annie Doucet
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord Sherbrooke (QC) J1H 5N4 (Canada)
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto (ON) M5S 3H6 (Canada)
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord Sherbrooke (QC) J1H 5N4 (Canada).
| |
Collapse
|
94
|
Isidro-Llobet A, Hadje Georgiou K, Galloway WRJD, Giacomini E, Hansen MR, Méndez-Abt G, Tan YS, Carro L, Sore HF, Spring DR. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds. Org Biomol Chem 2015; 13:4570-80. [PMID: 25778821 PMCID: PMC4441267 DOI: 10.1039/c5ob00371g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 01/23/2023]
Abstract
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Rose TE, Lawson KV, Harran PG. Large ring-forming alkylations provide facile access to composite macrocycles. Chem Sci 2015; 6:2219-2223. [PMID: 28694951 PMCID: PMC5485560 DOI: 10.1039/c4sc03848g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022] Open
Abstract
Macrocyclic compounds have potential to enable drug discovery for protein targets with extended, solvent-exposed binding sites. Crystallographic structures of peptides bound at such sites show strong surface complementarity and frequent aromatic side-chain contacts. In an effort to capture these features in stabilized small molecules, we describe a method to convert linear peptides into constrained macrocycles based upon their aromatic content. Designed templates initiate the venerable Friedel-Crafts alkylation to form large rings efficiently at room temperature - routinely within minutes - and unimpeded by polar functional groups. No protecting groups, metals, or air-free techniques are required. Regiochemistry can be tuned electronically to explore diverse macrocycle connectivities. Templates with additional reaction capabilities can further manipulate macrocycle structure. The chemistry lays a foundation to extend studies of how the size, shape and constitution of peptidyl macrocycles correlate with their pharmacological properties.
Collapse
Affiliation(s)
- Tristan E Rose
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| | - Kenneth V Lawson
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| | - Patrick G Harran
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| |
Collapse
|
96
|
De novo branching cascades for structural and functional diversity in small molecules. Nat Commun 2015; 6:6516. [DOI: 10.1038/ncomms7516] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
|
97
|
Zhou J, Reidy M, O’Reilly C, Jarikote DV, Negi A, Samali A, Szegezdi E, Murphy PV. Decorated Macrocycles via Ring-Closing Double-Reductive Amination. Identification of an Apoptosis Inducer of Leukemic Cells That at Least Partially Antagonizes a 5-HT2 Receptor. Org Lett 2015; 17:1672-5. [DOI: 10.1021/acs.orglett.5b00404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jian Zhou
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Mairead Reidy
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Ciaran O’Reilly
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Dilip V. Jarikote
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Arvind Negi
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Eva Szegezdi
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| | - Paul V. Murphy
- School of Chemistry and ‡School of Natural
Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
98
|
Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Divergent Cascade Construction of Skeletally Diverse “Privileged” Pyrazole-Derived Molecular Architectures. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403673] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
99
|
Verlinden S, Geudens N, Martins JC, Tourwé D, Ballet S, Verniest G. Oxidative α,ω-diyne coupling as an approach towards novel peptidic macrocycles. Org Biomol Chem 2015; 13:9398-404. [DOI: 10.1039/c5ob01153a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Glaser–Hay diyne coupling proved to be an efficient cyclisation approach towards diyne containing peptidic macrocycles.
Collapse
Affiliation(s)
- S. Verlinden
- Research Group of Organic Chemistry
- Department of Chemistry and Department of Bio-engineering Sciences
- Faculty of Science and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels
| | - N. Geudens
- NMR and Structure Analysis Unit
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - J. C. Martins
- NMR and Structure Analysis Unit
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - D. Tourwé
- Research Group of Organic Chemistry
- Department of Chemistry and Department of Bio-engineering Sciences
- Faculty of Science and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels
| | - S. Ballet
- Research Group of Organic Chemistry
- Department of Chemistry and Department of Bio-engineering Sciences
- Faculty of Science and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels
| | - G. Verniest
- Research Group of Organic Chemistry
- Department of Chemistry and Department of Bio-engineering Sciences
- Faculty of Science and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels
| |
Collapse
|
100
|
Kim J, Kim H, Park SB. Privileged Structures: Efficient Chemical “Navigators” toward Unexplored Biologically Relevant Chemical Spaces. J Am Chem Soc 2014; 136:14629-38. [DOI: 10.1021/ja508343a] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonghoon Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Heejun Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Seung Bum Park
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|