51
|
Engineering Optogenetic Control of Endogenous p53 Protein Levels. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcription factor p53 is a stress sensor that turns specific sets of genes on to allow the cell to respond to the stress depending on its severity and type. p53 is classified as tumor suppressor because its function is to maintain genome integrity promoting cell cycle arrest, apoptosis, or senescence to avoid proliferation of cells with damaged DNA. While in many human cancers the p53 gene is itself mutated, there are some in which the dysfunction of the p53 pathway is caused by the overexpression of negative regulators of p53, such as Mdm2, that keep it at low levels at all times. Here we develop an optogenetic approach to control endogenous p53 levels with blue light. Specifically, we control the nuclear localization of the Mmd2-binding PMI peptide using the light-inducible export system LEXY. In the dark, the PMI-LEXY fusion is nuclear and binds to Mdm2, consenting to p53 to accumulate and transcribe the target gene p21. Blue light exposure leads to the export of the PMI-LEXY fusion into the cytosol, thereby Mdm2 is able to degrade p53 as in the absence of the peptide. This approach may be useful to study the effect of localized p53 activation within a tissue or organ.
Collapse
|
52
|
Gorman SD, D'Amico RN, Winston DS, Boehr DD. Engineering Allostery into Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:359-384. [PMID: 31707711 PMCID: PMC7508002 DOI: 10.1007/978-981-13-8719-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our ability to engineer protein structure and function has grown dramatically over recent years. Perhaps the next level in protein design is to develop proteins whose function can be regulated in response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward these goals have tested and expanded on our understanding of protein function and allosteric regulation. In this chapter, we provide examples from different methods for developing new allosterically regulated proteins. These methods range from whole insertion of regulatory domains into new host proteins, to covalent attachment of photoswitches to generate light-responsive proteins, and to targeted changes to specific amino acid residues, especially to residues identified to be important for relaying allosteric information across the protein framework. Many of the examples we discuss have already found practical use in medical and biotechnology applications.
Collapse
Affiliation(s)
- Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
53
|
Lerner AM, Yumerefendi H, Goudy OJ, Strahl BD, Kuhlman B. Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution. ACS Synth Biol 2018; 7:2898-2907. [PMID: 30441907 DOI: 10.1021/acssynbio.8b00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control subcellular localization and activity. We previously engineered two optogenetic systems, the light activated nuclear shuttle (LANS) and the light-inducible nuclear exporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favorably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic "tool kit" for the research community.
Collapse
Affiliation(s)
- Andrew M. Lerner
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hayretin Yumerefendi
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York 10965, United States
| | - Odessa J. Goudy
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian D. Strahl
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian Kuhlman
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
54
|
Goglia AG, Toettcher JE. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr Opin Chem Biol 2018; 48:106-113. [PMID: 30529586 DOI: 10.1016/j.cbpa.2018.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, United States.
| |
Collapse
|
55
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
56
|
de Mena L, Rizk P, Rincon-Limas DE. Bringing Light to Transcription: The Optogenetics Repertoire. Front Genet 2018; 9:518. [PMID: 30450113 PMCID: PMC6224442 DOI: 10.3389/fgene.2018.00518] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
The ability to manipulate expression of exogenous genes in particular regions of living organisms has profoundly transformed the way we study biomolecular processes involved in both normal development and disease. Unfortunately, most of the classical inducible systems lack fine spatial and temporal accuracy, thereby limiting the study of molecular events that strongly depend on time, duration of activation, or cellular localization. By exploiting genetically engineered photo sensing proteins that respond to specific wavelengths, we can now provide acute control of numerous molecular activities with unprecedented precision. In this review, we present a comprehensive breakdown of all of the current optogenetic systems adapted to regulate gene expression in both unicellular and multicellular organisms. We focus on the advantages and disadvantages of these different tools and discuss current and future challenges in the successful translation to more complex organisms.
Collapse
Affiliation(s)
- Lorena de Mena
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Patrick Rizk
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Genetics Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| |
Collapse
|
57
|
Abstract
In nature, a multitude of mechanisms have emerged for regulating biological processes and, specifically, protein activity. Light as a natural regulatory element is of outstanding interest for studying and modulating protein activity because it can be precisely applied with regard to a site of action, instant of time, or intensity. Naturally occurring photoresponsive proteins, predominantly those containing a light-oxygen-voltage (LOV) domain, have been characterized structurally and mechanistically and also conjugated to various proteins of interest. Immediate advantages of these new photoresponsive proteins such as genetic encoding, no requirement of chemical modification, and reversibility are paid for by difficulties in predicting the envisaged activity or type and site of domain fusion. In this article, we summarize recent advances and give a survey on currently available design concepts for engineering photoswitchable proteins.
Collapse
Affiliation(s)
- Swantje Seifert
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
58
|
Johnson HE, Toettcher JE. Illuminating developmental biology with cellular optogenetics. Curr Opin Biotechnol 2018; 52:42-48. [PMID: 29505976 PMCID: PMC6082700 DOI: 10.1016/j.copbio.2018.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023]
Abstract
In developmental biology, localization is everything. The same stimulus-cell signaling event or expression of a gene-can have dramatically different effects depending on the time, spatial position, and cell types in which it is applied. Yet the field has long lacked the ability to deliver localized perturbations with high specificity in vivo. The advent of optogenetic tools, capable of delivering highly localized stimuli, is thus poised to profoundly expand our understanding of development. We describe the current state-of-the-art in cellular optogenetic tools, review the first wave of major studies showcasing their application in vivo, and discuss major obstacles that must be overcome if the promise of developmental optogenetics is to be fully realized.
Collapse
Affiliation(s)
- Heath E Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
59
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
60
|
Affiliation(s)
- Mareike Daniela Hoffmann
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Felix Bubeck
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Roland Eils
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Digital Health Center; Berlin Institute of Health (BIH) and Charité-University Medicine Berlin; 10117 Berlin Germany
- Health Data Science Unit; University Hospital Heidelberg; 10117 Heidelberg Germany
| | - Dominik Niopek
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| |
Collapse
|
61
|
Ueda Y, Sato M. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools. Chembiochem 2018; 19:1217-1231. [PMID: 29577530 DOI: 10.1002/cbic.201700635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity with high spatial and temporal precision in cells, tissues, and organs in animals. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review we summarize recent advances in the development of such photoswitches and in how these optotools are applied to signaling processes.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- AMED-PRIME (Japan), Agency for Medical Research and Development, Tokyo, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
62
|
O'Banion CP, Lawrence DS. Optogenetics: A Primer for Chemists. Chembiochem 2018; 19:1201-1216. [DOI: 10.1002/cbic.201800013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Colin P. O'Banion
- Department of Chemistry; Division of Chemical Biology and Medicinal Chemistry and; Department of Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
| | - David S. Lawrence
- Department of Chemistry; Division of Chemical Biology and Medicinal Chemistry and; Department of Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
63
|
Gainza-Cirauqui P, Correia BE. Computational protein design-the next generation tool to expand synthetic biology applications. Curr Opin Biotechnol 2018; 52:145-152. [PMID: 29729544 DOI: 10.1016/j.copbio.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
Abstract
One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells.
Collapse
Affiliation(s)
- Pablo Gainza-Cirauqui
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Bruno Emanuel Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland.
| |
Collapse
|
64
|
Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nat Protoc 2018; 13:1121-1136. [PMID: 29700485 DOI: 10.1038/nprot.2018.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.
Collapse
|
65
|
Yumerefendi H, Wang H, Dickinson DJ, Lerner AM, Malkus P, Goldstein B, Hahn K, Kuhlman B. Light-Dependent Cytoplasmic Recruitment Enhances the Dynamic Range of a Nuclear Import Photoswitch. Chembiochem 2018; 19:1319-1325. [PMID: 29446199 DOI: 10.1002/cbic.201700681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Cellular signal transduction is often regulated at multiple steps to achieve more complex logic or precise control of a pathway. For instance, some signaling mechanisms couple allosteric activation with localization to achieve high signal to noise. Here, we create a system for light-activated nuclear import that incorporates two levels of control. It consists of a nuclear import photoswitch, light-activated nuclear shuttle (LANS), and a protein engineered to preferentially interact with LANS in the dark, Zdk2. First, Zdk2 is tethered to a location in the cytoplasm that sequesters LANS in the dark. Second, LANS incorporates a nuclear localization signal (NLS) that is sterically blocked from binding to the nuclear import machinery in the dark. If activated with light, LANS both dissociates from its tethered location and exposes its NLS, which leads to nuclear accumulation. We demonstrate that this coupled system improves the dynamic range of LANS in mammalian cells, yeast, and Caenorhabditis elegans and provides tighter control of transcription factors that have been fused to LANS.
Collapse
Affiliation(s)
- Hayretin Yumerefendi
- University of North Carolina at Chapel Hill, Department of Biochemistry and Biophysics, Campus Box #7260, 120 Mason Farm Road, Suite 3010, Chapel Hill, NC, 27599-7260, USA
| | - Hui Wang
- University of North Carolina at Chapel Hill, Department of Pharmacology, Campus Box #7260, 120 Mason Farm Road, Suite 4010, Chapel Hill, NC, 27599-7260, USA
| | - Daniel J Dickinson
- University of North Carolina at Chapel Hill, Department of Biology, Campus Box #7260, 120 Mason Farm Road, Suite 3010, Chapel Hill, NC, 27599-7260, USA.,Present address: University of Texas at Austin, Department of Molecular Biosciences, 2415 Speedway, Austin, TX, 78712, USA
| | - Andrew M Lerner
- University of North Carolina at Chapel Hill, Department of Biochemistry and Biophysics, Campus Box #7260, 120 Mason Farm Road, Suite 3010, Chapel Hill, NC, 27599-7260, USA
| | - Per Malkus
- University of North Carolina at Chapel Hill, Department of Biochemistry and Biophysics, Campus Box #7260, 120 Mason Farm Road, Suite 3010, Chapel Hill, NC, 27599-7260, USA.,Present address: Duke University, Department of Molecular Genetics and Microbiology, Box 3580 DUMC, 207 Research Drive, Durham, NC, 27710, USA
| | - Bob Goldstein
- University of North Carolina at Chapel Hill, Department of Biology, Campus Box #7260, 120 Mason Farm Road, Suite 3010, Chapel Hill, NC, 27599-7260, USA
| | - Klaus Hahn
- University of North Carolina at Chapel Hill, Department of Pharmacology, Campus Box #7260, 120 Mason Farm Road, Suite 4010, Chapel Hill, NC, 27599-7260, USA
| | - Brian Kuhlman
- University of North Carolina at Chapel Hill, Department of Biochemistry and Biophysics, Campus Box #7260, 120 Mason Farm Road, Suite 3010, Chapel Hill, NC, 27599-7260, USA
| |
Collapse
|
66
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
67
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
68
|
Werley CA, Chien MP, Cohen AE. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation. BIOMEDICAL OPTICS EXPRESS 2017; 8:5794-5813. [PMID: 29296505 PMCID: PMC5745120 DOI: 10.1364/boe.8.005794] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 05/08/2023]
Abstract
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Collapse
Affiliation(s)
- Christopher A. Werley
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Miao-Ping Chien
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Adam E. Cohen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
69
|
Switchable Cas9. Curr Opin Biotechnol 2017; 48:119-126. [DOI: 10.1016/j.copbio.2017.03.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
|
70
|
Kolar K, Weber W. Synthetic biological approaches to optogenetically control cell signaling. Curr Opin Biotechnol 2017; 47:112-119. [DOI: 10.1016/j.copbio.2017.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022]
|
71
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
72
|
Strategies for the photo-control of endogenous protein activity. Curr Opin Struct Biol 2017; 45:53-58. [DOI: 10.1016/j.sbi.2016.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/13/2016] [Indexed: 11/21/2022]
|
73
|
He L, Jing J, Zhu L, Tan P, Ma G, Zhang Q, Nguyen NT, Wang J, Zhou Y, Huang Y. Optical control of membrane tethering and interorganellar communication at nanoscales. Chem Sci 2017; 8:5275-5281. [PMID: 28959426 PMCID: PMC5606013 DOI: 10.1039/c7sc01115f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) forms an extensive intracellular membranous network in eukaryotes that dynamically connects and communicates with diverse subcellular compartments such as plasma membrane (PM) through membrane contact sites (MCSs), with the inter-membrane gaps separated by a distance of 10-40 nm. Phosphoinositides (PI) constitute an important class of cell membrane phospholipids shared by many MCSs to regulate a myriad of cellular events, including membrane trafficking, calcium homeostasis and lipid metabolism. By installing photosensitivity into a series of engineered PI-binding domains with minimal sizes, we have created an optogenetic toolkit (designated as 'OptoPB') to enable rapid and reversible control of protein translocation and inter-membrane tethering at MCSs. These genetically-encoded, single-component tools can be used as scaffolds for grafting lipid-binding domains to dissect molecular determinants that govern protein-lipid interactions in living cells. Furthermore, we have demonstrated the use of OptoPB as a versatile fusion tag to photomanipulate protein translocation toward PM for reprogramming of PI metabolism. When tethered to the ER membrane with the insertion of flexible spacers, OptoPB can be applied to reversibly photo-tune the gap distances at nanometer scales between the two organellar membranes at MCSs, and to gauge the distance requirement for the free diffusion of protein complexes into MCSs. Our modular optical tools will find broad applications in non-invasive and remote control of protein subcellular localization and interorganellar contact sites that are critical for cell signaling.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Ji Jing
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Lei Zhu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Chinese Academy of Sciences , Hefei 230031 , Anhui , China .
| | - Peng Tan
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Guolin Ma
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Qian Zhang
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
- Department of Infectious Diseases , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Nhung T Nguyen
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Junfeng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Chinese Academy of Sciences , Hefei 230031 , Anhui , China .
| | - Yubin Zhou
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Yun Huang
- Center for Epigenetics and Disease Prevention , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| |
Collapse
|
74
|
Dagliyan O, Tarnawski M, Chu PH, Shirvanyants D, Schlichting I, Dokholyan NV, Hahn KM. Engineering extrinsic disorder to control protein activity in living cells. Science 2017; 354:1441-1444. [PMID: 27980211 DOI: 10.1126/science.aah3404] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/16/2016] [Indexed: 11/03/2022]
Abstract
Optogenetic and chemogenetic control of proteins has revealed otherwise inaccessible facets of signaling dynamics. Here, we use light- or ligand-sensitive domains to modulate the structural disorder of diverse proteins, thereby generating robust allosteric switches. Sensory domains were inserted into nonconserved, surface-exposed loops that were tight and identified computationally as allosterically coupled to active sites. Allosteric switches introduced into motility signaling proteins (kinases, guanosine triphosphatases, and guanine exchange factors) controlled conversion between conformations closely resembling natural active and inactive states, as well as modulated the morphodynamics of living cells. Our results illustrate a broadly applicable approach to design physiological protein switches.
Collapse
Affiliation(s)
- Onur Dagliyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Pei-Hsuan Chu
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Shirvanyants
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nikolay V Dokholyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Klaus M Hahn
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
75
|
Abstract
Chromosomes present one of most challenging of all substrates for biochemical study. This is because genomic DNA is physically associated with an astonishing collection of nuclear factors, which serve to not only store the nucleic acid in a stable form, but also grant access to the information it encodes when needed. Understanding this complex molecular choreography is central to the field of epigenetics. One of the great challenges in this area is to move beyond correlative type information, which is now in abundant supply, to the point where we can truly connect the dots at the molecular level. Establishing such causal relationships requires precise manipulation of the covalent structure of chromatin. Tools for this purpose are currently in short supply, creating an opportunity that, as we will argue in this Perspective, is well suited to the sensibilities of the chemist.
Collapse
Affiliation(s)
- Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
76
|
Liu Q, Tucker CL. Engineering genetically-encoded tools for optogenetic control of protein activity. Curr Opin Chem Biol 2017; 40:17-23. [PMID: 28527343 DOI: 10.1016/j.cbpa.2017.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Optogenetic tools offer fast and reversible control of protein activity with subcellular spatial precision. In the past few years, remarkable progress has been made in engineering photoactivatable systems regulating the activity of cellular proteins. In this review, we discuss general strategies in designing and optimizing such optogenetic tools and highlight recent advances in the field, with specific focus on applications regulating protein catalytic activity.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
77
|
Redchuk TA, Omelina ES, Chernov KG, Verkhusha VV. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat Chem Biol 2017; 13:633-639. [PMID: 28346403 DOI: 10.1038/nchembio.2343] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Multifunctional optogenetic systems are in high demand for use in basic and biomedical research. Near-infrared-light-inducible binding of bacterial phytochrome BphP1 to its natural PpsR2 partner is beneficial for simultaneous use with blue-light-activatable tools. However, applications of the BphP1-PpsR2 pair are limited by the large size, multidomain structure and oligomeric behavior of PpsR2. Here, we engineered a single-domain BphP1 binding partner, Q-PAS1, which is three-fold smaller and lacks oligomerization. We exploited a helix-PAS fold of Q-PAS1 to develop several near-infrared-light-controllable transcription regulation systems, enabling either 40-fold activation or inhibition. The light-induced BphP1-Q-PAS1 interaction allowed modification of the chromatin epigenetic state. Multiplexing the BphP1-Q-PAS1 pair with a blue-light-activatable LOV-domain-based system demonstrated their negligible spectral crosstalk. By integrating the Q-PAS1 and LOV domains in a single optogenetic tool, we achieved tridirectional protein targeting, independently controlled by near-infrared and blue light, thus demonstrating the superiority of Q-PAS1 for spectral multiplexing and engineering of multicomponent systems.
Collapse
Affiliation(s)
- Taras A Redchuk
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Evgeniya S Omelina
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Konstantin G Chernov
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
78
|
Czapiński J, Kiełbus M, Kałafut J, Kos M, Stepulak A, Rivero-Müller A. How to Train a Cell-Cutting-Edge Molecular Tools. Front Chem 2017; 5:12. [PMID: 28344971 PMCID: PMC5344921 DOI: 10.3389/fchem.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.
Collapse
Affiliation(s)
- Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of WarsawWarsaw, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi UniversityTurku, Finland
- Department of Biosciences, Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
79
|
Investigations of human myosin VI targeting using optogenetically controlled cargo loading. Proc Natl Acad Sci U S A 2017; 114:E1607-E1616. [PMID: 28193860 DOI: 10.1073/pnas.1614716114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca2+, lipid, and protein cargo signals in the cell to deploy in a site-specific manner.
Collapse
|
80
|
Mondal P, Khamo JS, Krishnamurthy VV, Cai Q, Zhang K. Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells. Front Mol Neurosci 2017; 10:4. [PMID: 28163671 PMCID: PMC5247435 DOI: 10.3389/fnmol.2017.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer’s disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | | | - Qi Cai
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
81
|
Harrison JS, Cornett EM, Goldfarb D, DaRosa PA, Li ZM, Yan F, Dickson BM, Guo AH, Cantu DV, Kaustov L, Brown PJ, Arrowsmith CH, Erie DA, Major MB, Klevit RE, Krajewski K, Kuhlman B, Strahl BD, Rothbart SB. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife 2016; 5. [PMID: 27595565 PMCID: PMC5012860 DOI: 10.7554/elife.17101] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022] Open
Abstract
The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. DOI:http://dx.doi.org/10.7554/eLife.17101.001 Cells are able to regulate the activity of their genes in response to different cues. Genetic information is encoded in DNA and one way to regulate gene activity is to modify the DNA by attaching chemical “epigenetic” markers to it. When a cell divides, these epigenetic markers can be inherited by the daughter cells so that they share the same patterns of gene activity as the parent cell. When the DNA of the parent cell is copied prior to cell division, the epigenetic markers are also copied onto the new DNA. Mistakes in this process are linked to a wide range of diseases in humans, such as cancer and neurological disorders. One type of epigenetic marker is known as a methyl tag and it is added to DNA by certain enzymes in a process called DNA methylation. A protein called UHRF1 is required for human cells to inherit patterns of DNA methylation through cell division. This protein binds to newly copied DNA that lacks some methyl tags as well as to another protein associated with DNA called histone H3. UHRF1 modifies histone H3 by attaching a small protein molecule called ubiquitin to it. This helps to recruit a DNA methylation enzyme to place methyl tags on the newly copied DNA. However, it was not clear how the various properties of UHRF1 allow it to control how DNA methylation is inherited. Harrison et al. addressed this question by studying purified proteins and DNA fragments outside of living cells. The results show that UHRF1 binding to DNA and histone H3 work together to bring UHRF1 to the sites on DNA that require methylation. Further experiments revealed that the methylation pattern on newly copied DNA is able to activate the ability of UHRF1 to place ubiquitin on histone H3. The findings of Harrison et al. reveal a new mechanism by which dividing cells control how DNA methylation is inherited by their daughter cells. A future challenge will be to find out how attaching ubiquitin to histone H3 activates DNA methylation. DOI:http://dx.doi.org/10.7554/eLife.17101.002
Collapse
Affiliation(s)
- Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Evan M Cornett
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, United States
| | - Dennis Goldfarb
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Paul A DaRosa
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Zimeng M Li
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Feng Yan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, United States
| | - Angela H Guo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Daniel V Cantu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lilia Kaustov
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Dorothy A Erie
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Michael B Major
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, United States
| |
Collapse
|
82
|
Abstract
Cellular optogenetic switches, a novel class of biological tools, have improved our understanding of biological phenomena that were previously intractable. While the design and engineering of these proteins has historically varied, they are all based on borrowed elements from plant and bacterial photoreceptors. In general terms, each of the optogenetic switches designed to date exploits the endogenous light-induced change in photoreceptor conformation while repurposing its effect to target a different biological phenomenon. We focus on the well-characterized light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as our cornerstone for design. While the function of the LOV2 domain in the context of the phototropin protein is not fully elucidated, its thorough biophysical characterization as an isolated domain has created a strong foundation for engineering of photoswitches. In this chapter, we examine the biophysical characteristics of the LOV2 domain that may be exploited to produce an optogenetic switch and summarize previous design efforts to provide guidelines for an effective design. Furthermore, we provide protocols for assays including fluorescence polarization, phage display, and microscopy that are optimized for validating, improving, and using newly designed photoswitches.
Collapse
Affiliation(s)
- S P Zimmerman
- University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - B Kuhlman
- University of North Carolina Chapel Hill, Chapel Hill, NC, United States.
| | - H Yumerefendi
- University of North Carolina Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
83
|
Di Ventura B, Kuhlman B. Go in! Go out! Inducible control of nuclear localization. Curr Opin Chem Biol 2016; 34:62-71. [PMID: 27372352 DOI: 10.1016/j.cbpa.2016.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes taking place inside them. One mechanism consists in tightly controlling the localization of macromolecules, keeping them away from their place of action until needed. Since a large fraction of the cellular response to external stimuli is mediated by gene expression, it is not surprising that transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we review recent methods in chemical biology and optogenetics for controlling the nuclear localization of proteins of interest inside living cells. These methods allow researchers to regulate protein activity with exquisite spatiotemporal control, and open up new possibilities for studying the roles of proteins in a broad array of cellular processes and biological functions.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|