51
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
52
|
Mertes N, Busch M, Huppertz MC, Hacker CN, Wilhelm J, Gürth CM, Kühn S, Hiblot J, Koch B, Johnsson K. Fluorescent and Bioluminescent Calcium Indicators with Tuneable Colors and Affinities. J Am Chem Soc 2022; 144:6928-6935. [PMID: 35380808 PMCID: PMC9026248 DOI: 10.1021/jacs.2c01465] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We introduce a family
of bright, rhodamine-based calcium indicators
with tuneable affinities and colors. The indicators can be specifically
localized to different cellular compartments and are compatible with
both fluorescence and bioluminescence readouts through conjugation
to HaloTag fusion proteins. Importantly, their increase in fluorescence
upon localization enables no-wash live-cell imaging, which greatly
facilitates their use in biological assays. Applications as fluorescent
indicators in rat hippocampal neurons include the detection of single
action potentials and of calcium fluxes in the endoplasmic reticulum.
Applications as bioluminescent indicators include the recording of
the pharmacological modulation of nuclear calcium in high-throughput
compatible assays. The versatility and remarkable ease of use of these
indicators make them powerful tools for bioimaging and bioassays.
Collapse
Affiliation(s)
- Nicole Mertes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marvin Busch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Magnus-Carsten Huppertz
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Christina Nicole Hacker
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jonas Wilhelm
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Clara-Marie Gürth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Stefanie Kühn
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.,Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
53
|
A Novel Zinc Exporter CtpG Enhances Resistance to Zinc Toxicity and Survival in Mycobacterium bovis. Microbiol Spectr 2022; 10:e0145621. [PMID: 35377187 PMCID: PMC9045314 DOI: 10.1128/spectrum.01456-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is a microelement essential for the growth of almost all organisms, but it is toxic at high concentrations and represents an antimicrobial strategy for macrophages. Mycobacterium tuberculosis and Mycobacterium bovis are two well-known intracellular pathogens with strong environmental adaptability, including zinc toxicity. However, the signaling pathway and molecular mechanisms on sensing and resistance to zinc toxicity remains unclear in mycobacteria. Here, we first report that P1B-type ATPase CtpG acts as a zinc efflux transporter and characterize a novel CmtR-CtpG-Zn2+ regulatory pathway that enhances mycobacterial resistance to zinc toxicity. We found that zinc upregulates ctpG expression via transcription factor CmtR and stimulates the ATPase activity of CtpG. The APC residues in TM6 is essential for CtpG to export zinc and enhance M. bovis BCG resistance to zinc toxicity. During infection, CtpG inhibits zinc accumulation in the mycobacteria, and aids bacterial survival in THP-1 macrophage and mice with elevated inflammatory responses. Our findings revealed the existence of a novel regulatory pathway on mycobacteria responding to and adapting to host-mediated zinc toxicity. IMPORTANCE Tuberculosis is caused by the bacillus Mycobacterium tuberculosis and is one of the major sources of mortality. M. tuberculosis has developed unique mechanisms to adapt to host environments, including zinc deficiency and toxicity, during infection. However, the molecular mechanism by which mycobacteria promote detoxification of zinc, and the associated signaling pathways remains largely unclear. In this study, we first report that P1B-type ATPase CtpG acts as a zinc efflux transporter and characterize a novel CmtR-CtpG-Zn2+ regulatory pathway that enhances mycobacterial resistance to zinc toxicity in M. bovis. Our findings reveal the existence of a novel excess zinc-triggered signaling circuit, provide new insights into mycobacterial adaptation to the host environment during infection, and might be useful targets for the treatment of tuberculosis.
Collapse
|
54
|
Alhawsah B, Yan B, Aydin Z, Niu X, Guo M. Highly Selective Fluorescent Probe With an Ideal pH Profile for the Rapid and Unambiguous Determination of Subcellular Labile Iron (III) Pools in Human Cells. ANAL LETT 2022; 55:1954-1970. [DOI: 10.1080/00032719.2022.2039932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Bayan Alhawsah
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Bing Yan
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Ziya Aydin
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Xiangyu Niu
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Maolin Guo
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
55
|
Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Kumar Hazra C. Development of Transition-Metal-Free Lewis Acid-Initiated Double Arylation of Aldehyde: A Facile Approach Towards the Total Synthesis of Anti-Breast-Cancer Agent. Chemistry 2022; 28:e202104545. [PMID: 35060647 DOI: 10.1002/chem.202104545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/21/2022]
Abstract
This work describes a mild and robust double hydroarylation strategy for the synthesis of symmetrical /unsymmetrical diaryl- and triarylmethanes in excellent yields using Lambert salt (0.2-1.0 mol%). Despite the anticipated challenges associated with controlling selective product formation, unsymmetrical diaryl- and triarylmethanes products are obtained unprecedentedly. A highly efficient gram scale reaction has also been reported (TON for symmetrical product=475 and for unsymmetrical product=390). The synthetic utility of the methodology is demonstrated by the preparation of several unexplored diaryl- and triarylmethane-based biologically relevant molecules, such as arundine, vibrindole A, turbomycin B, and certain anti-inflammatory agents. A total synthesis of an anti-breast-cancer agent is also demonstrated. Control experiments, Hammett analysis, HRMS and GC-MS studies reveal the reaction intermediates and reaction mechanism.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pragya Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nagaraju Vodnala
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
56
|
Halogen-Bonded Driven Tetra-Substituted Benzene Dimers and Trimers: Potential Hosts for Metal Ions. SCI 2022. [DOI: 10.3390/sci4010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclic dimers and trimers of tetra-substituted benzenes, ((HOOC)2-C6H2-(NHI)2), are selected as convenient model systems for investigating NI…O=C halogen bond strength and cooperativity. The four substituents in benzene are chosen so that two of them act as halogen bond acceptors (COOH) and two act as halogen bond donors (NHI), as shown in the graphical abstract below. The potential for metal ion binding by each of the halogen-bonded aggregates is also investigated using the monoatomic sodium ion, Na+. Density functional theory calculations performed using the wB97XD functional and the DGDZVP basis set confirmed the ability of halogen bonding to drive the formation of the cyclic dimers and trimers of the model system chosen for this study. Evidence of halogen bond cooperativity is seen, for example, in a 9% shortening of each NI…O=C halogen bond distance with a corresponding 53% increase in the respective critical point density value, ρNI…O=C. Cooperativity also results in a 36% increase in the magnitude of the complexation energy per halogen-bond of the trimer relative to that of the dimer. The results of this study confirm the potential for binding a single Na+ ion by either the dimer or the trimer through their respective halogen-bond networks. Binding of two metal ions was shown to be possible by the dimer. Likewise, the trimer was also found to bind three metal ions. Lastly, the overall structure of the halogen-bonded dimer or trimer endured after complexation of the Na+ ions.
Collapse
|
57
|
Lee SY, Kwon M, Raja IS, Molkenova A, Han DW, Kim KS. Graphene-Based Nanomaterials for Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:125-148. [PMID: 35175615 DOI: 10.1007/978-981-16-4923-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Graphene is sp2-hybridized carbon structure-based two-dimensional (2D) sheet. Graphene-based nanomaterials possess several features such as unique mechanical, electronic, thermal, and optical properties, high specific surface area, versatile surface functionalization, and biocompatibility, which attracted researcher's interests in various fields including biomedicine. In this chapter, we particularly focused on the biomedical imaging applications of graphene-based nanomaterials like graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQDs), graphene oxide quantum dots (GOQDs), and other derivatives, which utilize their outstanding optical properties. There are some biomedical imaging modalities using Graphene-based Nanomaterials, among which we will highlight fluorescence imaging, Raman imaging, magnetic resonance imaging, and photoacoustic imaging. We also discussed the brief perspectives and future application related to them.
Collapse
Affiliation(s)
- So Yun Lee
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan, South Korea
| | - Mina Kwon
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan, South Korea
| | | | - Anara Molkenova
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, South Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan, South Korea.
- Institute of Advanced Organic Materials, Pusan National University, Busan, South Korea.
| |
Collapse
|
58
|
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochim Acta 2022; 189:109. [PMID: 35175435 DOI: 10.1007/s00604-022-05180-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 01/26/2023]
Abstract
Various fluctuations of intracellular ions, biomolecules, and other conditions in the physiological environment play crucial roles in fundamental biological processes. These factors are of great importance for analysis in biomedical detection. Nevertheless, developments of the simple, rapid, and accurate proof for specific detection still encounter major challenges. Upconversion nanoparticles (UCNPs), which could absorb multiple low-energy near-infrared light (NIR) photon excitation and emits high-energy photons caused by anti-Stokes shift, show unique upconversion luminescence (UCL) properties, for example, sharp emission band, high physicochemical stability like near-zero photobleaching, photo blinking in biological tissues, and long luminescence lifetime. Furthermore, the NIR used for the light source to excite UCNPs enable lower photo-damage effect and deeper penetration of tissue, and in the meantime, it can avoid the auto-fluorescence and light scattering from biological tissue interference. Thus, the lanthanide-doped UCNP-based functional platform with controlled structure, crystalline phase, size, and multicolor emission has become an appropriate nanomaterial for bioapplications such as biosensing, bioimaging, drug release, and therapies. In this review, the recent progress about synthesis and biomedical applications of UCNPs related to sensing and bioimaging is summarized. Firstly, the different luminescence mechanisms of the upconversion process are presented. Secondly, four of the most common methods for synthesizing UCNPs are compared as well as the advantages and disadvantages of these synthetic routes. Meanwhile, the surface modification of lanthanide-doped UCNPs was introduced to pave the way for their biochemistry applications. Next, this review detailed the biological applications of lanthanide-doped UCNPs, particularly in bioimaging, including UCL and multi-modal imaging and biosensing (monitoring intracellular ions and biomolecules). Finally, the challenges and future perspectives in materials science and biomedical fields of UCNPs are concluded: the low quantum yield of the upconversion process should be considered when they are executed as imaging contrast agents. And the biosafety of lanthanide-doped UCNPs needs to be evaluated.
Collapse
|
59
|
Bao L, Liu S. A dual-emission polymer carbon nanoparticles for ratiometric and visual detection of pH value and bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120513. [PMID: 34695677 DOI: 10.1016/j.saa.2021.120513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Herein, we prepared a novel fluorescent polymer carbon nanoparticles by polymerizing dopamine (DA) and o-phenylenediamine (OPD) through oxidation of hydrogen peroxide. In a neutral environment, the synthesized fluorescent polymer carbon nanoparticles (PDA-OPD) exhibited two emission peaks at 460 nm and 540 nm with 400 nm excitation wavelength. In an acidic environment, the fluorescence emission peaks of PDA-OPD at 540 nm showed an obvious fluorescence quenching, and there existed a good linear relationship between the fluorescence ratio F540/F460 and environment pH value. In an alkaline environment, the fluorescence emission peak at 460 nm showed obvious fluorescence quenching after the addition of bilirubin, while a novel fluorescence emission peak at 560 nm emerged gradually. The PDA-OPD could be also used to detect bilirubin in the range of 0-400 μmol·L-1.
Collapse
Affiliation(s)
- Lijun Bao
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China.
| |
Collapse
|
60
|
Zhou Y, Yi Z, Song D, Wang H, Zhao S, Long F, Zhu A. Development of a two-in-one integrated bioassay for simultaneous and rapid on-site detection of Pb2+ and Hg2+ in water. Anal Chim Acta 2022; 1194:339397. [DOI: 10.1016/j.aca.2021.339397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/01/2022]
|
61
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
62
|
Double emission fluorescence probes based on unconventional fluorescent molecules and fluorescein isothiocyanate for ClO− and Cu2+ detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Watson ER, Taherian Fard A, Mar JC. Computational Methods for Single-Cell Imaging and Omics Data Integration. Front Mol Biosci 2022; 8:768106. [PMID: 35111809 PMCID: PMC8801747 DOI: 10.3389/fmolb.2021.768106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.
Collapse
Affiliation(s)
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Cara Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
64
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
65
|
AIE materials for lysosome imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34749972 DOI: 10.1016/bs.pmbts.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The aggregation-induced emission (AIE) active bioprobes are known for their high photostability and extraordinary signal to noise ratio. In view of this, research efforts to synthesize new AIE bioimaging probes are at an incredible speed. In this chapter, we have summarized the various lysosome specific AIE active "turn-on" bioprobes having applications in lysosome imaging, monitoring of lysosome bioactivity and evaluation of their therapeutic effects. By discussing their design and operational mechanisms, we hope to provide more insight into designing new AIE bioprobes for specific sensing and imaging of lysosome having flexibility for broad range of biomedical applications.
Collapse
|
66
|
Leonardi AA, Lo Faro MJ, Fazio B, Spinella C, Conoci S, Livreri P, Irrera A. Fluorescent Biosensors Based on Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2970. [PMID: 34835735 PMCID: PMC8624671 DOI: 10.3390/nano11112970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023]
Abstract
Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability, and real-time in situ analysis. In fluorescent sensors, Si NWs are employed as substrate and coupled with several fluorophores, NWs can be used as quenchers in stem-loop configuration, and have recently been used for direct fluorescent sensing. In this review, an overview on fluorescent sensors based on Si NWs is presented, analyzing the literature of the field and highlighting the advantages and drawbacks for each strategy.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Corrado Spinella
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Sabrina Conoci
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Patrizia Livreri
- Dipartimento di ingegneria, Università degli Studi di Palermo, Viale delle Scienze BLDG 9, 90128 Palermo, Italy;
| | - Alessia Irrera
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| |
Collapse
|
67
|
A Novel Imidazole Bound Schiff Base as Highly Selective "Turn-on" Fluorescence Sensor for Zn 2+ and Colorimetric Kit for Co 2. J Fluoresc 2021; 32:189-202. [PMID: 34687395 DOI: 10.1007/s10895-021-02839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
An imidazole based Schiff base (2-[(1H-imidazole-2-ylmethylene)-amino]-4-methyl-phenol) (IMP), with an imine unit, has been designed and characterized by various standard methods. The evaluation of the probe as a fluorogenic sensor for Zn2+ and a chromogenic sensor for Co2+ has been rationalized in terms of the PET mechanism. In the presence of Zn2+, a light yellow colored solution of IMP with maximum absorption of 364 nm becomes bright yellow with maximum absorption of 410 nm and a measurable fluorescent signal at 612 nm with bathochromic enhancement. The sensitivity of the fluorescent based assay (6.78 × 10-9 M) for Zn2+ is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.6 × 10-5 M) and therefore it is capable of being a practical system for the monitoring of Zn2+ concentrations in aqueous samples. Moreover, IMP showed a highly selective colorimetric response to Co2+ by displayed an obvious pink color upon addition of metal solution immediately without any interference from other ions. These results provide a new approach for selectively recognizing the two most important trace elements in the human body simultaneously, for Zn2+ by emission spectra and Co2+ by the naked eye.
Collapse
|
68
|
Stewart C, Mamori M, Arman H, Musie GT. Synthesis, Characterization and Spectroscopic Investigation of Novel Tetra‐Iron(III) Complexes and D‐Glucose under Redox Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher Stewart
- Department of Chemistry The University of Texas at San Antonio San Antonio TX 78249 United States
| | - Myles Mamori
- Department of Chemistry The University of Texas at San Antonio San Antonio TX 78249 United States
| | - Hadi Arman
- Department of Chemistry The University of Texas at San Antonio San Antonio TX 78249 United States
| | - Ghezai T. Musie
- Department of Chemistry The University of Texas at San Antonio San Antonio TX 78249 United States
| |
Collapse
|
69
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
70
|
Tirukoti ND, Avram L, Haris T, Lerner B, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. Fast Ion-Chelate Dissociation Rate for In Vivo MRI of Labile Zinc with Frequency-Specific Encodability. J Am Chem Soc 2021; 143:11751-11758. [PMID: 34297566 PMCID: PMC8397314 DOI: 10.1021/jacs.1c05376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fast ion-chelate
dissociation rates and weak ion-chelate affinities
are desired kinetic and thermodynamic features for imaging probes
to allow reversible binding and to prevent deviation from basal ionic
levels. Nevertheless, such properties often result in poor readouts
upon ion binding, frequently result in low ion specificity, and do
not allow the detection of a wide range of concentrations. Herein,
we show the design, synthesis, characterization, and implementation
of a Zn2+-probe developed for MRI that possesses reversible
Zn2+-binding properties with a rapid dissociation rate
(koff = 845 ± 35 s–1) for the detection of a wide range of biologically relevant concentrations.
Benefiting from the implementation of chemical exchange saturation
transfer (CEST), which is here applied in the 19F-MRI framework
in an approach termed ion CEST (iCEST), we demonstrate the ability
to map labile Zn2+ with spectrally resolved specificity
and with no interference from competitive cations. Relying on fast koff rates for enhanced signal amplification,
the use of iCEST allowed the designed fluorinated chelate to experience
weak Zn2+-binding affinity (Kd at the mM range), but without compromising high cationic specificity,
which is demonstrated here for mapping the distribution of labile
Zn2+ in the hippocampal tissue of a live mouse. This strategy
for accelerating ion-chelate koff rates
for the enhancement of MRI signal amplifications without affecting
ion specificity could open new avenues for the design of additional
probes for other metal ions beyond zinc.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Talia Haris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
71
|
Yan W, Zhong Z, Ma J, Rujiralai T. Highly sensitive colorimetric sensing of copper(ii) ions based on "CLICK-17" DNAzyme-catalyzed azide modified gold nanoparticles and alkyne capped dsDNA cycloaddition. RSC Adv 2021; 11:24196-24205. [PMID: 35479059 PMCID: PMC9036684 DOI: 10.1039/d1ra03813c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
A click chemistry assay based on a newly discovered DNAzyme, CLICK-17, with azide modified gold nanoparticles (azide-AuNPs) and alkyne capped dsDNA (alkyne-linker DNA) was employed for novel and selective detection of Cu2+ visually. The strategy involved using CLICK-17 to mediate a catalytic reaction for triazole formation between azide-AuNPs and alkyne-linker DNA under the help of Cu2+ (without sodium ascorbate) or Cu+, which eventually led to the aggregation of AuNPs. The obvious color change from ruby red to bluish purple was then observed by the naked eye and the absorbance peak shifted from 525 to 570 nm. Interestingly, CLICK-17 and Cu+-catalyzed click reaction had the best performance compared to either Cu+ alone or CLICK-17 and Cu2+-mediated reaction in terms of the reaction time and sensitivity. This system has been demonstrated to allow quantitative measurement of Cu2+ with a detection limit as low as 26.8 nM and also has high specificity that can distinguish Cu2+ from other metal ions. Further, the method was tested with a real mineral water sample for Cu2+ concentration determination. Satisfactory recoveries of 90.8% and 99.8% were achieved. We report selective and visual detection of Cu2+ based on aggregation of azide modified gold nanoparticles induced by CLICK-17 DNAzyme and Cu2+ or Cu+ catalyzed click reaction between azide-AuNPs and alkyne-dsDNA.![]()
Collapse
Affiliation(s)
- Weicong Yan
- School of Physics, Sun Yat-sen University Guangzhou 510275 China .,State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510275 China
| | - Zhensheng Zhong
- School of Physics, Sun Yat-sen University Guangzhou 510275 China .,State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510275 China
| | - Jie Ma
- School of Physics, Sun Yat-sen University Guangzhou 510275 China .,State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510275 China
| | - Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90112 Thailand .,Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| |
Collapse
|
72
|
Tian D, Pan H, Zhang Y, Ren XK, Chen Z. NIR absorbing dimeric aza-BODIPY dye with J-type aggregation and photothermal properties. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Abstract
Optical imaging probes allow us to detect and uncover the physiological and pathological functions of an analyte of interest at the molecular level in a non-invasive, longitudinal manner. By virtue of simplicity, low cost, high sensitivity, adaptation to automated analysis, capacity for spatially resolved imaging and diverse signal output modes, optical imaging probes have been widely applied in biology, physiology, pharmacology and medicine. To build a reliable and practically/clinically relevant probe, the design process often encompasses multidisciplinary themes, including chemistry, biology and medicine. Within the repertoire of probes, dual-locked systems are particularly interesting as a result of their ability to offer enhanced specificity and multiplex detection. In addition, chemiluminescence is a low-background, excitation-free optical modality and, thus, can be integrated into dual-locked systems, permitting crosstalk-free fluorescent and chemiluminescent detection of two distinct biomarkers. For many researchers, these dual-locked systems remain a 'black box'. Therefore, this Review aims to offer a 'beginner's guide' to such dual-locked systems, providing simple explanations on how they work, what they can do and where they have been applied, in order to help readers develop a deeper understanding of this rich area of research.
Collapse
|
74
|
Yildirim A, Kocer MB, Demir AD, Arslan E, Yilmaz M. A bi-modal, cellulose-based sensor for fluorometric detection of Fe(III) and antimicrobial studies of its silver-loaded form. Int J Biol Macromol 2021; 183:35-44. [PMID: 33901555 DOI: 10.1016/j.ijbiomac.2021.04.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
The study reports designing of a new, low-cost and environmentally friendly colorimetric and fluorometric sensor by using cellulose-based materials for detection and determination of Fe(III). To make powder cellulose (Cel) and filter paper (PCel) fluorescent, they were modified with hexamethylene diisocyanate (HMDI) and 4-sulfo-1,8-naphthalimide (Nap). Fluorescent Cel-Nap and PCel-Nap materials were used for spectroscopic detection of Fe(III). The working range of the designed sensor was determined as 1.0 × 10-5-4.5 × 10-5 M with a low limit of detection (LOD) (7.51 μM). Antimicrobial properties of cel-based compounds and Ag(I)-containing compounds were tested against five bacteria; Bacillus cereus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and two fungi; Candida albicans and Candida tropicalis. The materials exhibited antimicrobial effects and their antifungal properties were more effective than their antibacterial properties.
Collapse
Affiliation(s)
- Ayse Yildirim
- Department of Chemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Mustafa Baris Kocer
- Department of Chemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ayse Damla Demir
- Department of Chemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Emine Arslan
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Faculty of Science, Selcuk University, Konya, Turkey.
| |
Collapse
|
75
|
Xing S, Lin Y, Cai L, Basa PN, Shigemoto AK, Zheng C, Zhang F, Burdette SC, Lu Y. Detection and Quantification of Tightly Bound Zn 2+ in Blood Serum Using a Photocaged Chelator and a DNAzyme Fluorescent Sensor. Anal Chem 2021; 93:5856-5861. [PMID: 33787228 PMCID: PMC9169884 DOI: 10.1021/acs.analchem.1c00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNAzymes have emerged as a powerful class of sensors for metal ions due to their high selectivity over a wide range of metal ions, allowing for on-site and real-time detection. Despite much progress made in this area, detecting and quantifying tightly bound metal ions, such as those in the blood serum, remain a challenge because the DNAzyme sensors reported so far can detect only mobile metal ions that are accessible to bind the DNAzymes. To overcome this major limitation, we report the use of a photocaged chelator, XDPAdeCage to extract the Zn2+ from the blood serum and then release the chelated Zn2+ into a buffer using 365 nm light for quantification by an 8-17 DNAzyme sensor. Protocols to chelate, uncage, extract, and detect metal ions in the serum have been developed and optimized. Because DNAzyme sensors for other metal ions have already been reported and more DNAzyme sensors can be obtained using in vitro selection, the method reported in this work will significantly expand the applications of the DNAzyme sensors from sensing metal ions that are not only free but also bound to other biomolecules in biological and environmental samples.
Collapse
Affiliation(s)
- Shige Xing
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yao Lin
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Forensic Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liangyuan Cai
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prem N Basa
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Austin K Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Shawn C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
76
|
De Rosa C, Melchior A, Sanadar M, Tolazzi M, Duerkop A, Piccinelli F. Isoquinoline-based Eu(iii) luminescent probes for citrate sensing in complex matrix. Dalton Trans 2021; 50:4700-4712. [PMID: 33729252 DOI: 10.1039/d1dt00511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A neutral Eu(iii) complex containing the S,S enantiomer of isoQC3A3- ligand (isoQC3A3- = N-isoquinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) was synthesized and characterized. The complex was spectroscopically investigated and the results compared with those obtained for the similar bis-anionic ligand bisoQcd2- (bisoQcd2- = N,N'-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate). Both Eu(iii)-complexes show similar binding constants upon titration with the main analytes contained in interstitial extracellular fluid (i.e. hydrogen carbonate, serum albumin and citrate). However, the analyte affinity is accompanied by different enhancements of the Eu(iii) intrinsic quantum yield (QY). Structures and hydration numbers of the complexes are determined by luminescence decay measurements and DFT calculations. The QYs as well as the binding constants of the individual adducts of the complexes with hydrogen carbonate, bovine serum albumin (BSA) and citrate are determined. The study of the Eu(iii) emission upon the systematic variation of one analyte in a complex mixture has been carried out to predict the performance of the luminescent sensor in conditions close to the real extracellular environment. Both Eu(iii) complexes can detect citrate at extracellular concentrations up to 500 μM, even at millimolar concentrations of the other interfering species. In the case of the Eu(bisoQcd)OTf complex, an increase of 23% of the Eu(iii) luminescence intensity at 615 nm upon addition of 0.3 mM of citrate was recorded. This feature makes the latter complex a viable probe for luminescence analysis of citrate in a complex matrix.
Collapse
Affiliation(s)
- Chiara De Rosa
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
77
|
Zhou T, Zhang J, Liu B, Wu S, Wu P, Liu J. Nucleoside-based fluorescent carbon dots for discrimination of metal ions. J Mater Chem B 2021; 8:3640-3646. [PMID: 31967181 DOI: 10.1039/c9tb02758k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon dots (Cdots) play an important role in many biological and chemical applications. To prepare strongly fluorescent Cdots, the starting material should contain nitrogen in addition to carbon. Nucleobases are nitrogen rich with interesting metal binding properties. In this work, we prepared a series of Cdots with citrate as the carbon source, and ethylenediamine, adenosine, cytidine, thymidine or guanosine as the respective nitrogen sources. The resulting Cdots were all fluorescent with the ethylenediamine sample being the most strongly emissive. These Cdots were then tested for their metal sensitivity and all tested metal ions can quench their fluorescence. The fluorescence of the G-Cdots prepared with guanosine was quenched most efficiently by Cu2+, while the Cdots prepared with ethylenediamine were more sensitive to Hg2+. With the differential quenching by different metal ions, we prepared a sensor array to discriminate multiple metal ions, and quantified Cu2+ and Hg2+ at the same time. Our work has expanded the range of starting materials for preparing Cdots and showed that by tuning the precursor composition, Cdots with different optical and metal binding properties can be obtained, which is useful in constructing a sensing platform for a large number of metal ions.
Collapse
Affiliation(s)
- Tieli Zhou
- Food Science and Engineering, Changchun University, 8326 Satellite Road, Changchun, Jilin 130012, China
| | | | | | | | | | | |
Collapse
|
78
|
Chao X, Qi Y, Zhang Y. Highly Photostable Fluorescent Tracker with pH-Insensitivity for Long-Term Imaging of Lysosomal Dynamics in Live Cells. ACS Sens 2021; 6:786-796. [PMID: 33378157 DOI: 10.1021/acssensors.0c01588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visualizing and tracking lysosomal dynamic changes is crucially important in the fields of physiology and pathology. Most currently used pH-dependent small-molecule lysotrackers and sensors usually fail to visualize and track the changes due to (1) their leakage from lysosomes when the lysosomal pH increases and (2) their low photostability. Therefore, it is of significant interest to develop lysosomal probes for visualizing and tracking lysosomal dynamics independent of pH fluctuations and with high photostability. Herein, we found that the popular dicyanomethylene-4H-pyran (DCM) derivative DCM-NH2 can selectively target and label lysosomes with bright red fluorescence regardless of pH changes. The fluorescence enhancement in lysosomes has probably resulted from their microenvironment of polarity and viscosity. Compared with the commonly used commercial lysosomal molecular probes (LysoTracker Deep Red (LTDR) and LysoTracker Red DND-99), DCM-NH2 was demonstrated to exhibit a much stronger tolerance in lysosomes against various treatments and microenvironmental changes, and lysosomal membrane permeability could not cause DCM-NH2 to lose imaging of their targets as well. Moreover, DCM-NH2 exhibited a superior anti-photobleaching ability and low (photo-) cytotoxicity, which, along with pH-insensitivity, ensured its capability of long-term visualizing and tracking lysosomal dynamics. Lysosomal dynamic events such as the kiss-and-run process, fusion-fission, and mitophagy were successfully recorded with DCM-NH2. Our study thus confirms that DCM-NH2 is highly competitive for lysosomal imaging by overcoming the limitations of the commercial LysoTrackers and highlights the unexplored application of DCM-NH2 in bioimaging.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
79
|
Jin X, Ma X, Zhong W, Cao Y, Zhao H, Leng X, Yang J, Zhou H, She M. Fluorescent sensing film decorated with ratiometric probe for visual and recyclable monitoring of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119217. [PMID: 33257243 DOI: 10.1016/j.saa.2020.119217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Specifically, visually, and quantitatively monitor copper ion (Cu2+) is critical in the area of biological and environmental detection. Herein, a ratiometric fluorescent probe with benzoxazole appended xanthenes skeleton was constructed and further employed to monitor Cu2+ in Hela cells, real water samples, and test strips. An easily distinguishable colorimetric (colorless to red) and fluorescence (green to red) change could be observed by naked eye under the portable UV lamp (365 nm) and the changes could be recovered by adding S2-. Furthermore, electrospinning technique was employed to fabricate a probe composited fluorescent sensing film (PMMA) for realizing the visual and recyclable monitoring of Cu2+, indicating that the probe-composited fluorescent sensing film has great potential for on-site and naked-eye detection of Cu2+ in practical.
Collapse
Affiliation(s)
- Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China.
| | - Xuehao Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Wei Zhong
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Yixin Cao
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Huaqi Zhao
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Xin Leng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province 710069, China
| | - Jingjing Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China.
| | - Mengyao She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
80
|
Duan W, Huang F, Bi Y, Zhu L, Wang D, Liu Y, Wu J, Ge Y, Liu D. Design, synthesis and cell imaging of a simple peptide-based probe for the selective detection of RNA. Chem Commun (Camb) 2021; 57:2653-2656. [PMID: 33587737 DOI: 10.1039/d0cc06508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present a novel peptide-based fluorescent "turn-on" molecule P1 for detecting RNA, in a double or single strand, AU-rich or CG-rich. Both computational and experimental studies indicate that the detection efficiency depends on the binding affinity of P1 and conformational changes. P1 could be applied for cell imaging without any additional transfection vectors. Selective detection of RNA in cells was determined by RNase digestion. Successful application of P1 for RNA imaging in cell mitosis reveals that it may have broad applications in research, biotechnology and medical science.
Collapse
Affiliation(s)
- Wenxiu Duan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Badekar PS, Thakur GCN, Varma ME, Ghatpande NS, Kulkarni PP, Kumbhar AA. Rhodamine‐Based Fluorescence ‘Turn‐On’ Chemosensor: Detection of Fe
3+
Ion in Aqueous Medium and MCF‐7 Live Cells. ChemistrySelect 2021. [DOI: 10.1002/slct.202004640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pooja S. Badekar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| | - Garima C. N. Thakur
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| | - Mokshada E. Varma
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Niraj S. Ghatpande
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Prasad P. Kulkarni
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Anupa A. Kumbhar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| |
Collapse
|
82
|
Wang X, Li Z, Nie J, Wu L, Chen W, Qi S, Xu H, Du J, Shan Y, Yang Q. A novel hydrophilic fluorescent probe for Cu 2+ detection and imaging in HeLa cells. RSC Adv 2021; 11:10264-10271. [PMID: 35423512 PMCID: PMC8695708 DOI: 10.1039/d0ra09894a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
Copper is an essential element in living systems and plays an important role in human physiology; therefore, methods to detect the concentration of copper ions in living organisms are important. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe that can be used for the detection of Cu2+. The probe, BNQ, has high selectivity and sensitivity. The fluorescence intensity of the probe at 520 nm was visible to the naked eye under a UV lamp; upon the gradual addition of Cu2+, there was a colour change from green to nearly colourless. Furthermore, the detection limit of BNQ for Cu2+ was 45.5 nM. The detection mechanism was investigated using a Job's plot and density functional theory (DFT) calculations. In addition, owing to great biocompatibility, we were able to successfully use BNQ to detect Cu2+ in living HeLa cells with low toxicity. Probe BNQ was successfully used for detection of exogenous Cu2+ in cells using a rare ESDPT sensing mechanism.![]()
Collapse
Affiliation(s)
- Xinyu Wang
- China-Japan Union Hospital of Jilin University Changchun 130033 China .,College of Chemistry, Jilin University Changchun 130021 China .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province Changchun 130033 China
| | - Zhuo Li
- College of Chemistry, Jilin University Changchun 130021 China .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province Changchun 130033 China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun 130012 China
| | - Liangqiang Wu
- College of Chemistry, Jilin University Changchun 130021 China .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province Changchun 130033 China
| | - Weihong Chen
- College of Chemistry, Jilin University Changchun 130021 China
| | - Shaolong Qi
- China-Japan Union Hospital of Jilin University Changchun 130033 China .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province Changchun 130033 China
| | - Hai Xu
- College of Chemistry, Jilin University Changchun 130021 China
| | - Jianshi Du
- China-Japan Union Hospital of Jilin University Changchun 130033 China .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province Changchun 130033 China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun 130012 China
| | - Qingbiao Yang
- College of Chemistry, Jilin University Changchun 130021 China .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province Changchun 130033 China
| |
Collapse
|
83
|
Augmentation of steroidal β-formylenamide with pyrazolo and benzimidazo moieties: A tandem approach to highly fluorescent steroidal heterocycles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
84
|
Simple, rapid, and sensitive on-site detection of Hg 2+ in water samples through combining portable evanescent wave optofluidic biosensor and fluorescence resonance energy transfer principle. Anal Chim Acta 2021; 1155:338351. [PMID: 33766323 DOI: 10.1016/j.aca.2021.338351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Rapid and sensitive detection of Hg2+ in the environment and drinking water is vital because of its non-degradability, bioaccumulation, and high toxicity. Herein, we report a portable evanescent wave optofluidic biosensor (EWOB) for simple sensitive detection of Hg2+ using fluorescence labeled poly-A DNA strand (CY-A14) and quencher labeled poly-T DNA strand (BQ-T14) as signal reporter and biorecognition element, respectively. Both CY-A14 and Hg2+ can competitively bind with BQ-T14 based on DNA hybridization and the specifical binding of Hg2+ and T bases of DNA to form T-Hg2+-T mismatch structure, respectively. Higher concentration of Hg2+ lead to less CY-A14 bound to BQ-T14 and thus a higher fluorescence intensity. The influence of several key environmental factors on Hg2+ biosensor, such as pH, temperature, and ionic strength, was investigated in details because they were essential for practical applications of Hg2+ biosensor. Under optimal conditions, a detection cycle for a single sample, including the measurement and regeneration, was less than 10 min with a Hg2+ detection limit of 8.5 nM. The high selectivity of the biosensor was showed by evaluating its response to various potentially interfering metal ions. Our results clearly demonstrated that the portable EWOB could serve as a powerful tool for rapid and sensitive on-site detection of Hg2+ in real water samples. The EWOB is also potentially applicable to detect other heavy metal ions or small molecule targets for which DNA/aptamers could be applied as specific biosensing probes.
Collapse
|
85
|
Dong C, Xu Z, Wen L, He S, Wu J, Deng QH, Zhao Y. Tailoring Sensors and Solvents for Optimal Analysis of Complex Mixtures Via Discriminative 19F NMR Chemosensing. Anal Chem 2021; 93:2968-2973. [PMID: 33503366 DOI: 10.1021/acs.analchem.0c04768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Separation-free analytic techniques capable of providing precise and real-time component information are in high demand. 19F NMR-based chemosensing, where the reversible binding between analytes and a 19F-labeled sensor produces chromatogram-like output, has emerged as a valuable tool for the rapid analysis of complex mixtures. However, the potential overlap of the 19F NMR signals still limits the number of analytes that can be effectively differentiated. In this study, we systematically investigated the influence of the sensor structure and NMR solvents on the resolution of structurally similar analytes. The substituents adjacent and distal to the 19F labels are both important to the resolving ability of the 19F-labeled sensors. More pronounced separation between 19F NMR peaks was observed in nonpolar and aromatic solvents. By using a proper sensor and solvent combination, more than 20 biologically relevant analytes can be simultaneously identified.
Collapse
Affiliation(s)
- Chanjuan Dong
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Shengyuan He
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| |
Collapse
|
86
|
Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low concentration toxic ion detection in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123656. [PMID: 33264865 DOI: 10.1016/j.jhazmat.2020.123656] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 05/25/2023]
Abstract
Ions, including anions and heavy metals, are extremely toxic and easily accumulate in the human body, threatening the health of humans and even causing human death at low concentrations. It is therefore necessary to detect these toxic ions in low concentrations in water. Fluorescent sensing is a good method for detecting these ions, but some conventional dyes often exhibit an aggregation caused quench (ACQ) effect in their solid state, limiting their large-scale application. Fluorescent probes based on aggregation-induced emission (AIE) properties have received significant attention due to their high fluorescence quantum yields in their nano aggragated states, easy fabrication, use of moderate conditions, and selevtive recognization of organic/inorganic compounds in water with obvious changes in fluorescence. We surmarize the recent advances of AIE-based sensors for low concentration toxic ion detection in water. The detection probes can be divided into three categories: chemical reaction types, chemical interaction types and physical interaction types. Chemical reaction types utilize nucleophilic addition and coordination reaction, while chemical interaction types rely on hydrogen bonding and anion-π interactions. The physical interaction types are composed of electrostatic attractions. We finally comment on the challenges and outlook of AIE-active sensors.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
87
|
Choudhury N, Saha B, De P. Recent progress in polymer-based optical chemosensors for Cu2+ and Hg2+ Ions: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Ratiometric fluorescence imaging of Cu2+ based on spirolactamized benzothiazole-substituted N,N-diethylrhodol probe. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
89
|
|
90
|
|
91
|
Wang Z, Detomasi TC, Chang CJ. A dual-fluorophore sensor approach for ratiometric fluorescence imaging of potassium in living cells. Chem Sci 2020; 12:1720-1729. [PMID: 34163931 PMCID: PMC8179100 DOI: 10.1039/d0sc03844j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Potassium is the most abundant intracellular metal in the body, playing vital roles in regulating intracellular fluid volume, nutrient transport, and cell-to-cell communication through nerve and muscle contraction. On the other hand, aberrant alterations in K+ homeostasis contribute to a diverse array of diseases spanning cardiovascular and neurological disorders to diabetes to kidney disease to cancer. There is an unmet need for studies of K+ physiology and pathology owing to the large differences in intracellular versus extracellular K+ concentrations ([K+]intra = 150 mM, [K+]extra = 3-5 mM). With a relative dearth of methods to reliably measure dynamic changes in intracellular K+ in biological specimens that meet the dual challenges of low affinity and high selectivity for K+, particularly over Na+, currently available fluorescent K+ sensors are largely optimized with high-affinity receptors that are more amenable for extracellular K+ detection. We report the design, synthesis, and biological evaluation of Ratiometric Potassium Sensor 1 (RPS-1), a dual-fluorophore sensor that enables ratiometric fluorescence imaging of intracellular potassium in living systems. RPS-1 links a potassium-responsive fluorescent sensor fragment (PS525) with a low-affinity, high-selectivity crown ether receptor for K+ to a potassium-insensitive reference fluorophore (Coumarin 343) as an internal calibration standard through ester bonds. Upon intracellular delivery, esterase-directed cleavage splits these two dyes into separate fragments to enable ratiometric detection of K+. RPS-1 responds to K+ in aqueous buffer with high selectivity over competing metal ions and is sensitive to potassium ions at steady-state intracellular levels and can respond to decreases or increases from that basal set point. Moreover, RPS-1 was applied for comparative screening of K+ pools across a panel of different cancer cell lines, revealing elevations in basal intracellular K+ in metastatic breast cancer cell lines vs. normal breast cells. This work provides a unique chemical tool for the study of intracellular potassium dynamics and a starting point for the design of other ratiometric fluorescent sensors based on two-fluorophore approaches that do not rely on FRET or related energy transfer designs.
Collapse
Affiliation(s)
- Zeming Wang
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Tyler C Detomasi
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
92
|
Divya D, Thennarasu S. A novel isatin-based probe for ratiometric and selective detection of Hg 2+ and Cu 2+ ions present in aqueous and environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118796. [PMID: 32805507 DOI: 10.1016/j.saa.2020.118796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
A novel isatin derivative (1) is UV-Visible active and displays about 90 nm bathochromic shift upon interaction with only Hg2+ and Cu2+, but not with other common metal ions. Also, the colorless probe 1 turns to brick-red and yellow in the presence of Hg2+ and Cu2+, respectively. Addition of increasing amounts of Hg2+ or Cu2+ to 1 leads to the emergence of a new absorption at ~470 nm (due to LMCT), with a concomitant decrease in the intensity of absorption of 1 at ~380 nm, and thereby provides a ratiometric response. Common metal ions and anions do not interfere with the interactions of 1 with Hg2+or Cu2+ ions. Probe 1 shows very high sensitivity and selectivity towards Hg2+ and Cu2+ as revealed by their very low detection limits 0.95 × 10-9 M and 1.5 × 10-9 M, respectively. Formation of 1:1 complex with Hg2+ and 2:1 complex with Cu2+ is confirmed using NMR, ESI-MS and FT-IR techniques, Job plot and DFT calculations. Selective detection of Hg2+ from Cu2+ is established from the ratiometric response caused by β-mercaptoethanol. Advantages of the probe 1 in terms of high sensitivity, stability in the physiological pH and suitability for dual detection are presented. Probe impregnated silica plates for onsite detection of Hg2+ and Cu2+ present in environmental samples is also demonstrated.
Collapse
Affiliation(s)
- D Divya
- Organic and Bioorganic Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600020, India
| | - S Thennarasu
- Organic and Bioorganic Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600020, India.
| |
Collapse
|
93
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
94
|
Dos Santos NV, Saponi CF, Ryan TM, Primo FL, Greaves TL, Pereira JFB. Reversible and irreversible fluorescence activity of the Enhanced Green Fluorescent Protein in pH: Insights for the development of pH-biosensors. Int J Biol Macromol 2020; 164:3474-3484. [PMID: 32882278 DOI: 10.1016/j.ijbiomac.2020.08.224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
Enhanced Green Fluorescent Protein (EGFP) is a biomolecule with intense and natural fluorescence, with biological and medical applications. Although widely used as a biomarker in research, its application as a biosensor is limited by the lack of in-depth knowledge regarding its structure and behavior in adverse conditions. This study is focused on addressing this need by evaluating EGFP activity and structure at different pH using three-dimensional fluorescence, circular dichroism and small-angle X-ray scattering. The focus was on the reversibility of the process to gain insights for the development of biocompatible pH-biosensors. EGFP was highly stable at alkaline pH and quenched from neutral-to-acidic pH. Above pH 6.0, the fluorescence loss was almost completely reversible on return to neutral pH, but only partially reversible from pH 5.0 to 2.0. This work updates the knowledge regarding EGFP behavior in pH by accounting for the recent data on its structure. Hence, it is evident that EGFP presents the required properties for use as natural, biocompatible and environmentally friendly neutral to acidic pH-biosensors.
Collapse
Affiliation(s)
- Nathalia Vieira Dos Santos
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, 14800-903 Araraquara, SP, Brazil; School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Carolina Falaschi Saponi
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, 14800-903 Araraquara, SP, Brazil; School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Timothy M Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Fernando L Primo
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, 14800-903 Araraquara, SP, Brazil
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Jorge F B Pereira
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, 14800-903 Araraquara, SP, Brazil; Univ Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
95
|
Timoshenko RV, Vaneev AN, Savin NA, Klyachko NL, Parkhomenko YN, Salikhov SV, Majouga AG, Gorelkin PV, Erofeev AS. Promising Approaches for Determination of Copper Ions in Biological Systems. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1995078020020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
96
|
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity Capillary Electrophoresis: A Critical Review of the Literature from 2018 to 2020. Anal Chem 2020; 93:295-310. [DOI: 10.1021/acs.analchem.0c04526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Damilola I. Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Emmanuel O. Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - I-An Wei
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Robert T. Filla
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
97
|
Pandey V, Raza MK, Sonowal M, Gupta I. BODIPY based red emitters: Synthesis, computational and biological studies. Bioorg Chem 2020; 106:104467. [PMID: 33223201 DOI: 10.1016/j.bioorg.2020.104467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
Donor-Acceptor type BODIPYs with strong absorption and fluorescence in the red region (550-800 nm) are reported. The aromatic groups like N-butylcarbazole/ N-butylphenothiazine/ benzothiadiazole were attached to the C-8 position of the BODIPY core with furan or thiophene spacers. TD-DFT studies indicated significant charge distribution between C-8 aromatic heterocycles and BODIPY core in all the molecules. The in-vitro studies of the N-butylcarbazole substituted BODIPYs indicated significant localization in the endoplasmic reticulum and lysosomes of the cancer cells. The BODIPYs showed decent cytotoxicity after 48 h incubation period (14.9 to 31.8 μM) in HeLa and A549 cancer cells, indicating their potential application as theranostic agents.
Collapse
Affiliation(s)
- Vijayalakshmi Pandey
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mridupavan Sonowal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
98
|
Schwarze T, Sprenger T, Riemer J. 1,2,3‐Triazol‐1,4‐diyl‐Fluoroionophores for Zn 2+, Mg 2+and Ca 2+based on Fluorescence Intensity Enhancements in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas Schwarze
- Institut für Chemie, Anorganische Chemie Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Golm Germany
| | - Tobias Sprenger
- Institut für Chemie, Anorganische Chemie Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Golm Germany
| | - Janine Riemer
- Institut für Chemie, Anorganische Chemie Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Golm Germany
| |
Collapse
|
99
|
Nghiem TL, Riebe S, Maisuls I, Strassert CA, Voskuhl J, Gröschel AH. Synthesis and fluorescent properties of diblock terpolymer micelles modified with an aromatic thioether-based AIE fluorophore. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
Desai AS, Rajamannar T, Shah SR. Molecular Container and Metal Ion Sensor Chiral Cavitands. ChemistrySelect 2020. [DOI: 10.1002/slct.202002273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arpita S. Desai
- Department of Chemistry, Faculty of Science The M. S. University of Baroda Vadodara 390002 India
| | | | - Shailesh R. Shah
- Department of Chemistry, Faculty of Science The M. S. University of Baroda Vadodara 390002 India
| |
Collapse
|