51
|
Patro S, Ratna S, Yamamoto HA, Ebenezer AT, Ferguson DS, Kaur A, McIntyre BC, Snow R, Solesio ME. ATP Synthase and Mitochondrial Bioenergetics Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:11185. [PMID: 34681851 PMCID: PMC8539681 DOI: 10.3390/ijms222011185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disorder in our society, as the population ages, its incidence is expected to increase in the coming decades. The etiopathology of this disease still remains largely unclear, probably because of the highly complex and multifactorial nature of AD. However, the presence of mitochondrial dysfunction has been broadly described in AD neurons and other cellular populations within the brain, in a wide variety of models and organisms, including post-mortem humans. Mitochondria are complex organelles that play a crucial role in a wide range of cellular processes, including bioenergetics. In fact, in mammals, including humans, the main source of cellular ATP is the oxidative phosphorylation (OXPHOS), a process that occurs in the mitochondrial electron transfer chain (ETC). The last enzyme of the ETC, and therefore the ulterior generator of ATP, is the ATP synthase. Interestingly, in mammalian cells, the ATP synthase can also degrade ATP under certain conditions (ATPase), which further illustrates the crucial role of this enzyme in the regulation of cellular bioenergetics and metabolism. In this collaborative review, we aim to summarize the knowledge of the presence of dysregulated ATP synthase, and of other components of mammalian mitochondrial bioenergetics, as an early event in AD. This dysregulation can act as a trigger of the dysfunction of the organelle, which is a clear component in the etiopathology of AD. Consequently, the pharmacological modulation of the ATP synthase could be a potential strategy to prevent mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (S.P.); (S.R.); (H.A.Y.); (A.T.E.); (D.S.F.); (A.K.); (B.C.M.); (R.S.)
| |
Collapse
|
52
|
Stem cells from human exfoliated deciduous teeth affect mitochondria and reverse cognitive decline in a senescence-accelerated mouse prone 8 model. Cytotherapy 2021; 24:59-71. [PMID: 34598900 DOI: 10.1016/j.jcyt.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Stem cell therapy is a novel therapy being explored for AD. The molecular mechanism of its effect is still unclear. The authors investigated the effects and mechanism by injection of SHEDs into an AD mouse model. METHODS SHEDs were cultured in vitro and injected into AD SAMP8 mice by caudal vein, and SHEDs labeled via synthetic dye showed in vivo migration to the head. The cognitive ability of SAMP8 mice was evaluated via Barnes maze and new object recognition. The pathological indicators of AD, including Tau, amyloid plaques and inflammatory factors, were examined at the protein or RNA level. Next, macro-proteomics analysis and weighted gene co-expression network analysis (WGCNA) based on protein groups and behavioral data were applied to discover the important gene cluster involved in the improvement of AD by SHEDs, which was further confirmed in an AD model in both mouse and cell lines. RESULTS SHED treatment improved the cognitive ability and pathological symptoms of SAMP8 mice. Proteomics analysis indicated that these improvements were tightly related to the mitochondria, which was proved through examination of the shape and function of mitochondria both in vivo (SAMP8 brain) and in vitro (SH-SY5Y cells). Finally, the core targets of SHEDs in the mitochondrial pathway, Hook3, Mic13 and MIF, were screened out and confirmed in vivo. CONCLUSIONS SHED treatment significantly relieved AD symptoms, improved cognitive ability and reversed memory loss in an AD mouse model, possibly through the recovery of dysfunctional mitochondria. These results raise the possibility that SHED may ease the symptoms of AD by targeting the mitochondria.
Collapse
|
53
|
Angeli S, Foulger A, Chamoli M, Peiris TH, Gerencser A, Shahmirzadi AA, Andersen J, Lithgow G. The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging. eLife 2021; 10:63453. [PMID: 34467850 PMCID: PMC8410078 DOI: 10.7554/elife.63453] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.
Collapse
Affiliation(s)
- Suzanne Angeli
- Buck Institute for Research on Aging, Novato, United States
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, United States
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, United States
| | | | - Akos Gerencser
- Buck Institute for Research on Aging, Novato, United States
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, United States.,USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Julie Andersen
- Buck Institute for Research on Aging, Novato, United States.,USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Gordon Lithgow
- Buck Institute for Research on Aging, Novato, United States.,USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| |
Collapse
|
54
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
55
|
Rigotto G, Zentilin L, Pozzan T, Basso E. Effects of Mild Excitotoxic Stimulus on Mitochondria Ca 2+ Handling in Hippocampal Cultures of a Mouse Model of Alzheimer's Disease. Cells 2021; 10:cells10082046. [PMID: 34440815 PMCID: PMC8394681 DOI: 10.3390/cells10082046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/19/2023] Open
Abstract
In Alzheimer’s disease (AD), the molecular mechanisms involved in the neurodegeneration are still incompletely defined, though this aspect is crucial for a better understanding of the malady and for devising effective therapies. Mitochondrial dysfunctions and altered Ca2+ signaling have long been implicated in AD, though it is debated whether these events occur early in the course of the pathology, or whether they develop at late stages of the disease and represent consequences of different alterations. Mitochondria are central to many aspects of cellular metabolism providing energy, lipids, reactive oxygen species, signaling molecules for cellular quality control, and actively shaping intracellular Ca2+ signaling, modulating the intensity and duration of the signal itself. Abnormalities in the ability of mitochondria to take up and subsequently release Ca2+ could lead to changes in the metabolism of the organelle, and of the cell as a whole, that eventually result in cell death. We sought to investigate the role of mitochondria and Ca2+ signaling in a model of Familial Alzheimer’s disease and found early alterations in mitochondria physiology under stressful condition, namely, reduced maximal respiration, decreased ability to sustain membrane potential, and a slower return to basal matrix Ca2+ levels after a mild excitotoxic stimulus. Treatment with an inhibitor of the permeability transition pore attenuated some of these mitochondrial disfunctions and may represent a promising tool to ameliorate mitochondria and cellular functioning in AD and prevent or slow down cell loss in the disease.
Collapse
Affiliation(s)
- Giulia Rigotto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (G.R.); (T.P.)
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (G.R.); (T.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (G.R.); (T.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
56
|
Identification of the Hub Genes in Alzheimer's Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6329041. [PMID: 34326892 PMCID: PMC8302378 DOI: 10.1155/2021/6329041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022]
Abstract
Purpose Alzheimer's disease (AD) is considered to be the most common neurodegenerative disease and also one of the major fatal diseases affecting the elderly, thus bringing a huge burden to society. Therefore, identifying AD-related hub genes is extremely important for developing novel strategies against AD. Materials and Methods Here, we extracted the gene expression profile GSE63061 from the National Center for Biotechnology Information (NCBI) GEO database. Once the unverified gene chip was removed, we standardized the microarray data after quality control. We utilized the Limma software package to screen the differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network using the STRING database. Result We screened 2169 DEGs, comprising 1313 DEGs with upregulation and 856 DEGs with downregulation. Functional enrichment analysis showed that the response of immune, the degranulation of neutrophils, lysosome, and the differentiation of osteoclast were greatly enriched in DEGs with upregulation; peptide biosynthetic process, translation, ribosome, and oxidative phosphorylation were dramatically enriched in DEGs with downregulation. 379 nodes and 1149 PPI edges were demonstrated in the PPI network constructed by upregulated DEGs; 202 nodes and 1963 PPI edges were shown in the PPI network constructed by downregulated DEGs. Four hub genes, including GAPDH, RHOA, RPS29, and RPS27A, were identified to be the newly produced candidates involved in AD pathology. Conclusion GAPDH, RHOA, RPS29, and RPS27A are expected to be key candidates for AD progression. The results of this study can provide comprehensive insight into understanding AD's pathogenesis and potential new therapeutic targets.
Collapse
|
57
|
Li H, Zou L, Shi J, Han X. Bioinformatics analysis of differentially expressed genes and identification of an miRNA-mRNA network associated with entorhinal cortex and hippocampus in Alzheimer's disease. Hereditas 2021; 158:25. [PMID: 34243818 PMCID: PMC8272337 DOI: 10.1186/s41065-021-00190-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00190-0.
Collapse
Affiliation(s)
- Haoming Li
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center, Neuroregeneration of Nantong University, Nantong, 226001, Jiangsu, China
| | - Linqing Zou
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jinhong Shi
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center, Neuroregeneration of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
58
|
Chen C, McDonald D, Blain A, Sachdeva A, Bone L, Smith ALM, Warren C, Pickett SJ, Hudson G, Filby A, Vincent AE, Turnbull DM, Reeve AK. Imaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:39. [PMID: 33980828 PMCID: PMC8115071 DOI: 10.1038/s41531-021-00182-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Here we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson's disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson's disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson's disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson's neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna L M Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Warren
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
59
|
Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094850. [PMID: 34063708 PMCID: PMC8125007 DOI: 10.3390/ijms22094850] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of age-related neurodegeneration and cognitive impairment, and there are currently no broadly effective therapies. The underlying pathogenesis is complex, but a growing body of evidence implicates mitochondrial dysfunction as a common pathomechanism involved in many of the hallmark features of the AD brain, such as formation of amyloid-beta (Aβ) aggregates (amyloid plaques), neurofibrillary tangles, cholinergic system dysfunction, impaired synaptic transmission and plasticity, oxidative stress, and neuroinflammation, that lead to neurodegeneration and cognitive dysfunction. Indeed, mitochondrial dysfunction concomitant with progressive accumulation of mitochondrial Aβ is an early event in AD pathogenesis. Healthy mitochondria are critical for providing sufficient energy to maintain endogenous neuroprotective and reparative mechanisms, while disturbances in mitochondrial function, motility, fission, and fusion lead to neuronal malfunction and degeneration associated with excess free radical production and reduced intracellular calcium buffering. In addition, mitochondrial dysfunction can contribute to amyloid-β precursor protein (APP) expression and misprocessing to produce pathogenic fragments (e.g., Aβ1-40). Given this background, we present an overview of the importance of mitochondria for maintenance of neuronal function and how mitochondrial dysfunction acts as a driver of cognitive impairment in AD. Additionally, we provide a brief summary of possible treatments targeting mitochondrial dysfunction as therapeutic approaches for AD.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sehwan Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
60
|
Du F, Yu Q, Yan S, Zhang Z, Vangavaragu JR, Chen D, Yan SF, Yan SS. Gain of PITRM1 peptidase in cortical neurons affords protection of mitochondrial and synaptic function in an advanced age mouse model of Alzheimer's disease. Aging Cell 2021; 20:e13368. [PMID: 33951271 PMCID: PMC8135081 DOI: 10.1111/acel.13368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is one of the early pathological features of Alzheimer's disease (AD). Accumulation of cerebral and mitochondrial Aβ links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)‐mediated clearance of mitochondrial Aβ contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aβ up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19–24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aβ accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aβ‐producing AD mice, we first uncovered reduction in PITRM1 expression in AD‐affected cortex of AD mice at 19–24 months of age. Increasing neuronal PITRM1 activity/expression re‐established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19–24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aβ accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aβ and Aβ deposition. These data indicate that augmenting PITRM1 function results in persistent life‐long protection against Aβ toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aβ clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.
Collapse
Affiliation(s)
- Fang Du
- Department of Surgery Columbia University New York NY USA
| | - Qing Yu
- Department of Surgery Columbia University New York NY USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Zhihua Zhang
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Jhansi Rani Vangavaragu
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Doris Chen
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Shi Fang Yan
- Department of Surgery Columbia University New York NY USA
| | - Shirley ShiDu Yan
- Department of Surgery Columbia University New York NY USA
- Department of Molecular Pharmacology & Therapeutics Columbia University New York NY USA
| |
Collapse
|
61
|
Galber C, Carissimi S, Baracca A, Giorgio V. The ATP Synthase Deficiency in Human Diseases. Life (Basel) 2021; 11:life11040325. [PMID: 33917760 PMCID: PMC8068106 DOI: 10.3390/life11040325] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
Human diseases range from gene-associated to gene-non-associated disorders, including age-related diseases, neurodegenerative, neuromuscular, cardiovascular, diabetic diseases, neurocognitive disorders and cancer. Mitochondria participate to the cascades of pathogenic events leading to the onset and progression of these diseases independently of their association to mutations of genes encoding mitochondrial protein. Under physiological conditions, the mitochondrial ATP synthase provides the most energy of the cell via the oxidative phosphorylation. Alterations of oxidative phosphorylation mainly affect the tissues characterized by a high-energy metabolism, such as nervous, cardiac and skeletal muscle tissues. In this review, we focus on human diseases caused by altered expressions of ATP synthase genes of both mitochondrial and nuclear origin. Moreover, we describe the contribution of ATP synthase to the pathophysiological mechanisms of other human diseases such as cardiovascular, neurodegenerative diseases or neurocognitive disorders.
Collapse
Affiliation(s)
- Chiara Galber
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Stefania Carissimi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Valentina Giorgio
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| |
Collapse
|
62
|
Sokolova D, Childs T, Hong S. Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease. Fac Rev 2021; 10:19. [PMID: 33718936 PMCID: PMC7946395 DOI: 10.12703/r/10-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The innate immune system plays an integral role in the brain. Synaptic pruning, a fundamental process in developmental circuit refinement, is partially mediated by neuroimmune signalling at the synapse. In particular, microglia, the major tissue-resident macrophages of the brain, and the classical complement cascade, an innate immune pathway that aids in the clearance of unwanted material, have been implicated in mediating synapse elimination. Emerging data suggest that improper signalling of the innate immune pathway at the synapse leads to pathological synapse loss in age-related neurodegenerative diseases, including Alzheimer's disease. Now the key questions are whether synapses are targeted by complement and, if so, which synapses are vulnerable to elimination. Here, we review recent work implicating C1q, the initiator of the classical complement cascade, and surrounding glia as mediators of synapse loss. We examine how synapses could undergo apoptosis-like pathways in the Alzheimer brain, which may lead to the externalisation of phosphatidylserine on synapses. Finally, we discuss potential roles for microglia and astrocytes in this 'synaptic apoptosis'. Critical insight into neuroimmune regulatory pathways on synapses will be key to developing effective targets against pathological synapse loss in dementia.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
63
|
Jia K, Du H. Mitochondrial Permeability Transition: A Pore Intertwines Brain Aging and Alzheimer's Disease. Cells 2021; 10:649. [PMID: 33804048 PMCID: PMC8001058 DOI: 10.3390/cells10030649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Advanced age is the greatest risk factor for aging-related brain disorders including Alzheimer's disease (AD). However, the detailed mechanisms that mechanistically link aging and AD remain elusive. In recent years, a mitochondrial hypothesis of brain aging and AD has been accentuated. Mitochondrial permeability transition pore (mPTP) is a mitochondrial response to intramitochondrial and intracellular stresses. mPTP overactivation has been implicated in mitochondrial dysfunction in aging and AD brains. This review summarizes the up-to-date progress in the study of mPTP in aging and AD and attempts to establish a link between brain aging and AD from a perspective of mPTP-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kun Jia
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA;
| | - Heng Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA;
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
64
|
Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021; 216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability development and interrupts neurocognitive function. This neuropathological condition is depicted by neurodegeneration, neural loss, and development of neurofibrillary tangles and Aβ plaques. There is also a greater risk of developing AD at a later age for people with cardiovascular diseases, hypertension and diabetes. In the biomedical sciences, effective treatment for Alzheimer's disease is a severe obstacle. There is no such treatment to cure Alzheimer's disease. The drug present in the market show only symptomatic relief. The cause of Alzheimer's disease is not fully understood and the blood-brain barrier restricts drug efficacy are two main factors that hamper research. Stem cell-based therapy has been seen as an effective, secure, and creative therapeutic solution to overcoming AD because of AD's multifactorial nature and inadequate care. Current developments in nanotechnology often offer possibilities for the delivery of active drug candidates to address certain limitations. The key nanoformulations being tested against AD include polymeric nanoparticles (NP), inorganic NPs and lipid-based NPs. Nano drug delivery systems are promising vehicles for targeting several therapeutic moieties by easing drug molecules' penetration across the CNS and improving their bioavailability. In this review, we focus on the causes of the AD and their treatment by different approaches.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
65
|
Mughal A, Harraz OF, Gonzales AL, Hill-Eubanks D, Nelson MT. PIP 2 Improves Cerebral Blood Flow in a Mouse Model of Alzheimer's Disease. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab010. [PMID: 33763649 PMCID: PMC7955025 DOI: 10.1093/function/zqab010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia and a substantial healthcare burden. Despite this, few treatment options are available for controlling AD symptoms. Notably, neuronal activity-dependent increases in cortical cerebral blood flow (CBF; functional hyperemia) are attenuated in AD patients, but the associated pathological mechanisms are not fully understood at the molecular level. A fundamental mechanism underlying functional hyperemia is activation of capillary endothelial inward-rectifying K+ (Kir2.1) channels by neuronally derived potassium (K+), which evokes a retrograde capillary-to-arteriole electrical signal that dilates upstream arterioles, increasing blood delivery to downstream active regions. Here, using a mouse model of familial AD (5xFAD), we tested whether this impairment in functional hyperemia is attributable to reduced activity of capillary Kir2.1 channels. In vivo CBF measurements revealed significant reductions in whisker stimulation (WS)-induced and K+-induced hyperemic responses in 5xFAD mice compared with age-matched controls. Notably, measurements of whole-cell currents in freshly isolated 5xFAD capillary endothelial cells showed that Kir2.1 current density was profoundly reduced, suggesting a defect in Kir2.1 function. Because Kir2.1 activity absolutely depends on binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the channel, we hypothesized that capillary Kir2.1 channel impairment could be corrected by exogenously supplying PIP2. As predicted, a PIP2 analog restored Kir2.1 current density to control levels. More importantly, systemic administration of PIP2 restored K+-induced CBF increases and WS-induced functional hyperemic responses in 5xFAD mice. Collectively, these data provide evidence that PIP2-mediated restoration of capillary endothelial Kir2.1 function improves neurovascular coupling and CBF in the setting of AD.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Albert L Gonzales
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - David Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK,Address correspondence to M.T.N. (e-mail: )
| |
Collapse
|
66
|
Toledo JP, Fernández-Pérez EJ, Ferreira IL, Marinho D, Riffo-Lepe NO, Pineda-Cuevas BN, Pinochet-Pino LF, Burgos CF, Rego AC, Aguayo LG. Boldine Attenuates Synaptic Failure and Mitochondrial Deregulation in Cellular Models of Alzheimer's Disease. Front Neurosci 2021; 15:617821. [PMID: 33679301 PMCID: PMC7933475 DOI: 10.3389/fnins.2021.617821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia worldwide, characterized by both cognitive and behavioral deficits. Amyloid beta peptide (Aβ) oligomers (AβO) have been found to be responsible for several pathological mechanisms during the development of AD, including altered cellular homeostasis and synaptic function, inevitably leading to cell death. Such AβO deleterious effects provide a way for identifying new molecules with potential anti-AD properties. Available treatments minimally improve AD symptoms and do not extensively target intracellular pathways affected by AβO. Naturally-derived compounds have been proposed as potential modifiers of Aβ-induced neurodysfunction and cytotoxicity based on their availability and chemical diversity. Thus, the aim of this study was to evaluate boldine, an alkaloid derived from the bark and leaves of the Chilean tree Peumus boldus, and its capacity to block some dysfunctional processes caused by AβO. We examined the protective effect of boldine (1–10 μM) in primary hippocampal neurons and HT22 hippocampal-derived cell line treated with AβO (24–48 h). We found that boldine interacts with Aβ in silico affecting its aggregation and protecting hippocampal neurons from synaptic failure induced by AβO. Boldine also normalized changes in intracellular Ca2+ levels associated to mitochondria or endoplasmic reticulum in HT22 cells treated with AβO. In addition, boldine completely rescued the decrease in mitochondrial membrane potential (ΔΨm) and the increase in mitochondrial reactive oxygen species, and attenuated AβO-induced decrease in mitochondrial respiration in HT22 hippocampal cells. We conclude that boldine provides neuroprotection in AD models by both direct interactions with Aβ and by preventing oxidative stress and mitochondrial dysfunction. Additional studies are required to evaluate the effect of boldine on cognitive and behavioral deficits induced by Aβ in vivo.
Collapse
Affiliation(s)
- Juan P Toledo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Ildete L Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Marinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nicolas O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Benjamin N Pineda-Cuevas
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Luis F Pinochet-Pino
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| |
Collapse
|
67
|
Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci 2021; 13:617588. [PMID: 33679375 PMCID: PMC7930231 DOI: 10.3389/fnagi.2021.617588] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Afzal Misrani
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sidra Tabassum
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
68
|
Fessel J. A vaccine to prevent initial loss of cognition and eventual Alzheimer's disease in elderly persons. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12126. [PMID: 33598529 PMCID: PMC7864087 DOI: 10.1002/trc2.12126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Prevention is better than cure and prevention of Alzheimer's disease (AD) may be possible. In elderly persons who are cognitively normal, synaptic hypometabolism as shown by reduced cerebral uptake of fluorodeoxyglucose (18F-FDG), provides a premonitory signal of potential, future loss of cognition if those individuals also have present evidence of amyloid deposition seen in the Pittsburgh compound B positron emission tomography (PIB-PET) scan for amyloid. Those are the persons who should be targeted if one aims to prevent AD. The synaptic hypometabolism implies that the brain's availability of adenosine triphosphate (ATP) is inadequate for performance of all required synaptic functions. This review first describes the basis for asserting that reduced cerebral uptake of 18F-FDG accurately reflects synaptic hypometabolism; second, explains the basis for asserting that hypometabolism implies inadequate ATP; third, shows that amyloid beta (Aβ) itself, Aβ modified by pyroglutamate to become a molecule termed pE(3)Aβ, and cyclophilin-D, in concert are the main contributors to inadequate synaptic ATP and that, therefore, reducing all of their levels would neutralize their combined effect and correct the hypometabolism. pE(3)Aβ is more neurotoxic than unmodified Aβ; and cyclophilin D inhibits ATP synthase and reduces ATP formation. Finally, this review describes an mRNA self-replicating vaccine that will raise brain levels of ATP by reducing Aβ, pyroglutamate-modified Aβ, and cyclophilin-D, and thereby-in cognitively normal elderly persons who have synaptic hypometabolism-prevent initiation of the process that terminates in AD.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
69
|
Woo J, Cho H, Seol Y, Kim SH, Park C, Yousefian-Jazi A, Hyeon SJ, Lee J, Ryu H. Power Failure of Mitochondria and Oxidative Stress in Neurodegeneration and Its Computational Models. Antioxidants (Basel) 2021; 10:229. [PMID: 33546471 PMCID: PMC7913624 DOI: 10.3390/antiox10020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5'-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.
Collapse
Affiliation(s)
- JunHyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyesun Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - YunHee Seol
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Chanhyeok Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
70
|
Xue F, Tian J, Yu C, Du H, Guo L. Type I interferon response-related microglial Mef2c deregulation at the onset of Alzheimer's pathology in 5×FAD mice. Neurobiol Dis 2021; 152:105272. [PMID: 33540048 PMCID: PMC7956132 DOI: 10.1016/j.nbd.2021.105272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder with multifactorial etiology. The role of microglia in the pathogenesis of AD has been increasingly recognized in recent years; however, the detailed mechanisms shaping microglial phenotypes in AD-relevant pathological settings remain largely unresolved. Myocyte-specific enhancer factor 2C (Mef2C) is a transcription factor with versatile functions. Recent studies have attributed aging-related microglial changes to type I interferon (IFN-I)-associated Mef2C deregulation. In view of the close relationship between brain aging and AD, it is of great interest to determine microglial Mef2C changes in AD-related conditions. In this study, we have found that suppressed Mef2C nuclear translocation was an early and prominent microglial phenotype in a mouse model of brain amyloidosis (5×FAD mice), which exacerbated with age. Echoing the early Mef2C deregulation and its association with microglial activation, transcriptional data showed elicited IFN-I response in microglia from young 5×FAD mice. Amyloid beta 42 (Aβ42) in its oligomeric forms promoted Mef2C deregulation in microglia on acute organotypic brain slices with augmented microglial activation and synapse elimination via microglial phagocytosis. Importantly, these oligomeric Aβ42-mediated microglial changes were substantially attenuated by blocking IFN-I signaling. The simplest interpretation of the results is that Mef2C, concurring with activated IFN-I signaling, constitutes early microglial changes in AD-related conditions. In addition to the potential contribution of Mef2C deregulation to the development of microglial phenotypes in AD, Mef2C suppression in microglia may serve as a potential mechanistic pathway linking brain aging and AD.
Collapse
Affiliation(s)
- Feng Xue
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States
| | - Jing Tian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States
| | - Chunxiao Yu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States
| | - Heng Du
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; Higuchi Biosciences Center, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States.
| | - Lan Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; Higuchi Biosciences Center, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States.
| |
Collapse
|
71
|
Urbani A, Prosdocimi E, Carrer A, Checchetto V, Szabò I. Mitochondrial Ion Channels of the Inner Membrane and Their Regulation in Cell Death Signaling. Front Cell Dev Biol 2021; 8:620081. [PMID: 33585458 PMCID: PMC7874202 DOI: 10.3389/fcell.2020.620081] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are bioenergetic organelles with a plethora of fundamental functions ranging from metabolism and ATP production to modulation of signaling events leading to cell survival or cell death. Ion channels located in the outer and inner mitochondrial membranes critically control mitochondrial function and, as a consequence, also cell fate. Opening or closure of mitochondrial ion channels allow the fine-tuning of mitochondrial membrane potential, ROS production, and function of the respiratory chain complexes. In this review, we critically discuss the intracellular regulatory factors that affect channel activity in the inner membrane of mitochondria and, indirectly, contribute to cell death. These factors include various ligands, kinases, second messengers, and lipids. Comprehension of mitochondrial ion channels regulation in cell death pathways might reveal new therapeutic targets in mitochondria-linked pathologies like cancer, ischemia, reperfusion injury, and neurological disorders.
Collapse
Affiliation(s)
- Andrea Urbani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | | | - Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ildikò Szabò
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
72
|
Pepperberg DR. Amyloid-β-Dependent Inactivation of the Mitochondrial Electron Transport Chain at Low Transmembrane Potential: An Ameliorating Process in Hypoxia-Associated Neurodegenerative Disease? J Alzheimers Dis 2020; 72:663-675. [PMID: 31640091 DOI: 10.3233/jad-190476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral hypoperfusion-induced hypoxia, a condition that impairs oxygen utilization and thus ATP production by mitochondrial oxidative phosphorylation (oxphos), is thought to contribute to neural degeneration in Alzheimer's disease. However, hypoxia upregulates the generation of amyloid-β (Aβ), a group of peptides known to impair/inhibit the electron transport chain (ETC) of reactions that support oxphos in the inner mitochondrial membrane (IMM). This is a hypothesis paper that reconciles the hypoxia-induced upregulation of Aβ with Aβ's ETC-inhibiting action and, specifically, posits an oxphos-enhancing effect of this inhibition under conditions of newly developing or otherwise mild hypoxia. This effect is typically transient; that is, under conditions of prolonged or severe hypoxia, the oxphos-enhancing activity is overwhelmed by Aβ's well-known toxic actions on mitochondria and other cellular components. The hypothesis is motivated by evidence that the IMM transmembrane potential Ψm, an important determinant of ETC activity, exhibits heterogeneity, i.e., a range of values, among a given local population of mitochondria. It specifically proposes that during oxygen limitation, Aβ selectively inactivates ETC complexes in mitochondria that exhibit relatively low absolute values of Ψm, thereby suppressing oxygen binding and consumption by complex IV of the ETC in these mitochondria. This effect of Aβ on low-Ψm mitochondria is hypothesized to spare hypoxia-limited oxygen for oxphos-enabling utilization by the ETC of the remaining active, higher-Ψm local mitochondria, and thereby to increase overall ATP generated collectively by the local mitochondrial population, i.e., to ameliorate hypoxia-induced oxphos reduction. The protective action of Aβ hypothesized here may slow the early development of hypoxia-associated cellular deterioration/loss in Alzheimer's disease and perhaps other neurodegenerative diseases.
Collapse
Affiliation(s)
- David R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
73
|
Tian J, Wang T, Wang Q, Guo L, Du H. MK0677, a Ghrelin Mimetic, Improves Neurogenesis but Fails to Prevent Hippocampal Lesions in a Mouse Model of Alzheimer's Disease Pathology. J Alzheimers Dis 2020; 72:467-478. [PMID: 31594237 DOI: 10.3233/jad-190779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hippocampal lesions including synaptic injury, neuroinflammation, and impaired neurogenesis are featured pathology closely associated with neuronal stress and cognitive impairment in Alzheimer's disease (AD). Previous studies suggest that ghrelin and its receptor, growth hormone secretagogue receptor 1α (GHSR1α), promote hippocampal synaptic function and neurogenesis. GHSR1α activation thus holds the potential to be a therapeutic avenue for the treatment of hippocampal pathology in AD; however, a comprehensive study on the preventive effect of MK0677 on hippocampal lesions in AD-related conditions is still lacking. In this study, we treated a transgenic mouse model of AD-like amyloidosis (5xFAD mice) at the asymptomatic stage with MK0677, a potent ghrelin mimetic. We found that MK0677 fostered hippocampal neurogenesis in 5xFAD mice but observed little preventive function with regards to the development of hippocampal amyloid-β (Aβ) deposition, synaptic loss, microglial activation, or cognitive impairment. Furthermore, MK0677 at a dose of 3 mg/kg significantly increased 5xFAD mouse mortality. Despite enhanced hippocampal neurogenesis, MK0677 treatment has little beneficial effect to prevent hippocampal lesions or cognitive deficits against Aβ toxicity. This study, together with a failed large-scale clinical trial, suggests the ineffectiveness of MK0677 alone for AD prevention and treatment.
Collapse
Affiliation(s)
- Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tienju Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, China
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
74
|
Caspase inhibition rescues F1Fo ATP synthase dysfunction-mediated dendritic spine elimination. Sci Rep 2020; 10:17589. [PMID: 33067541 PMCID: PMC7568535 DOI: 10.1038/s41598-020-74613-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.
Collapse
|
75
|
Gauba E, Sui S, Tian J, Driskill C, Jia K, Yu C, Rughwani T, Wang Q, Kroener S, Guo L, Du H. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse model of Alzheimer's pathology. Neurobiol Aging 2020; 98:63-77. [PMID: 33254080 DOI: 10.1016/j.neurobiolaging.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
Abstract
Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aβ) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aβ-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Shaomei Sui
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kun Jia
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Chunxiao Yu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Tripta Rughwani
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Qi Wang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lan Guo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
76
|
Idebenone protects mitochondrial function against amyloid beta toxicity in primary cultured cortical neurons. Neuroreport 2020; 31:1104-1110. [PMID: 32925607 DOI: 10.1097/wnr.0000000000001526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction has been repeatedly identified to be hallmark brain pathology underlying neuronal stress in Alzheimer's disease. As a result, mitochondrial medicine for the treatment of Alzheimer's disease has received increasing recognition. Idebenone (IDB) is a synthetic analog of Coenzyme Q10 (CoQ10) carrying antioxidizing property. Previous clinical trials reported a conflicting disease-modifying effect of IDB on Alzheimer's disease patients. However, whether IDB is preventive against amyloid beta (Aβ)-induced mitochondrial and neuronal stress has not been comprehensively investigated. In this study, we adopted an in-vitro setting by using primary cultured cortical neurons for the test. Neurons were pretreated with IDB prior to Aβ exposure. IDB pretreatment significant prevented neurons from Aβ-induced collapse of mitochondrial bioenergetics and perturbations of the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling. Importantly, the treatment of IDB alone demonstrated an indiscernible side effect on the measured mitochondrial function, PKA/CREB signaling and neuronal viability. Therefore, our findings in together show a preventive effect of IDB against Aβ-mediated mitochondrial and neuronal injury. The use of IDB may hold potential to reduce the risk of Alzheimer's disease as a preventive strategy.
Collapse
|
77
|
Yuan X, Wang L, Tandon N, Sun H, Tian J, Du H, Pascual JM, Guo L. Triheptanoin Mitigates Brain ATP Depletion and Mitochondrial Dysfunction in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 78:425-437. [PMID: 33016909 PMCID: PMC8502101 DOI: 10.3233/jad-200594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain energy failure is an early pathological event associated with synaptic dysfunction in Alzheimer's disease (AD). Thus, mitigation or enhancement of brain energy metabolism may offer a therapeutic avenue. However, there is uncertainty as to what metabolic process(es) may be more appropriate to support or augment since metabolism is a multiform process such that each of the various metabolic precursors available is utilized via a specific metabolic pathway. In the brain, these pathways sustain not only a robust rate of energy production but also of carbon replenishment. OBJECTIVE Triheptanoin, an edible odd-chain fatty acid triglyceride, is uncommon in that it replenishes metabolites in the tricarboxylic acid cycle (TCA) cycle via anaplerosis in addition to fueling the cycle via oxidation, thus potentially leading to both carbon replenishment and enhanced mitochondrial ATP production. METHODS To test the hypothesis that triheptanoin is protective in AD, we supplied mice with severe brain amyloidosis (5×FAD mice) with dietary triheptanoin for four and a half months, followed by biological and biochemical experiments to examine mice metabolic as well as synaptic function. RESULTS Triheptanoin treatment had minimal impact on systemic metabolism and brain amyloidosis as well as tauopathy while attenuating brain ATP deficiency and mitochondrial dysfunction including respiration and redox balance in 5×FAD mice. Synaptic density, a disease hallmark, was also preserved in hippocampus and neocortex despite profound amyloid deposition. None of these effects took place in treated control mice. CONCLUSION These findings support the energy failure hypothesis of AD and justify investigating the mechanisms in greater depth with ultimate therapeutic intent.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Health Management Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha Tandon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Huili Sun
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
78
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
79
|
Natural products and other inhibitors of F 1F O ATP synthase. Eur J Med Chem 2020; 207:112779. [PMID: 32942072 DOI: 10.1016/j.ejmech.2020.112779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
F1FO ATP synthase is responsible for the production of >95% of all ATP synthesis within the cell. Dysregulation of its expression, activity or localization is linked to various human diseases including cancer, diabetes, and Alzheimer's and Parkinson's disease. In addition, ATP synthase is a novel and viable drug target for the development of antimicrobials as evidenced by bedaquiline, which was approved in 2012 for the treatment of tuberculosis. Historically, natural products have been a rich source of ATP synthase inhibitors that help unravel the role of F1FO ATP synthase in cellular bioenergetics. During the last decade, new modulators of ATP synthase have been discovered through the isolation of novel natural products as well as through a ligand-based drug design process. In addition, new data has been obtained with regards to the structure and function of ATP synthase under physiological and pathological conditions. Crystal structure studies have provided a significant insight into the rotary function of the enzyme and may provide additional opportunities to design a new generation of inhibitors. This review provides an update on recently discovered ATP synthase modulators as well as an update on existing scaffolds.
Collapse
|
80
|
Ebanks B, Ingram TL, Chakrabarti L. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging (Albany NY) 2020; 12:16647-16662. [PMID: 32853175 PMCID: PMC7485717 DOI: 10.18632/aging.103867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
It is estimated that over 44 million people across the globe have dementia, and half of these cases are believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 increases so will the number of individuals living with AD. This will result in ever-increasing demands on healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to produce the cellular energy currency ATP. This review presents the evidence accumulated so far that demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological interventions which may modulate ATP synthase.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Chesterfield, UK
| |
Collapse
|
81
|
Zhang B, Jia K, Tian J, Du H. Cyclophilin D counterbalances mitochondrial calcium uniporter-mediated brain mitochondrial calcium uptake. Biochem Biophys Res Commun 2020; 529:314-320. [PMID: 32703429 PMCID: PMC7481651 DOI: 10.1016/j.bbrc.2020.05.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Mitochondria play an essential role in maintaining intraneuronal calcium homeostasis. Mitochondrial calcium uniporter (MCU) is a determined major brain mitochondrial calcium entry pathway. Activated MCU-mediated mitochondrial calcium overloading has been linked with brain mitochondrial pathology in disease conditions. Cyclophilin D (CypD)-mediated mitochondrial permeability transition (mPT) favors mitochondrial calcium efflux. The physiological function of CypD-mediated mPT has received increasing recognition. However, the regulatory role of CypD-mediated mPT in brain mitochondrial calcium dynamics in response to mitochondrial calcium accumulation via MCU has not been comprehensively studied. Here, by adopting purified brain mitochondria, we have determined an effect of CypD and CypD-mediated mPT against mitochondrial calcium overloading. In addition, blockade of CypD pharmaceutically or genetically blunts brain mitochondrial MCU's sensitivity to its inhibitor. Therefore, our findings suggest that CypD-mediated mPT is a mitochondrial compensatory response to MCU-mediated excess mitochondrial calcium accumulation. Moreover, CypD may potentially modulate MCU function in calcium-stressed mitochondria.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Kun Jia
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
82
|
Guo Y, Zhang K, Gao X, Zhou Z, Liu Z, Yang K, Huang K, Yang Q, Long Q. Sustained Oligomycin Sensitivity Conferring Protein Expression in Cardiomyocytes Protects Against Cardiac hypertrophy Induced by Pressure Overload via Improving Mitochondrial Function. Hum Gene Ther 2020; 31:1178-1189. [PMID: 32787458 DOI: 10.1089/hum.2020.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for congestive heart failure, a leading cause of morbidity and mortality. Abrogating hypertrophic progression is a well-recognized therapeutic goal. Mitochondrial dysfunction is a hallmark of numerous human diseases, including cardiac hypertrophy and heart failure. F1Fo-ATP synthase catalyzes the final step of oxidative energy production in mitochondria. Oligomycin sensitivity conferring protein (OSCP), a key component of the F1Fo-ATP synthase, plays an essential role in mitochondrial energy metabolism. However, the effects of OSCP-targeted therapy on cardiac hypertrophy remain unknown. In the present study, we found that impaired cardiac expression of OSCP is concomitant with mitochondrial dysfunction in the hypertrophied heart. We used cardiac-specific, adeno-associated virus-mediated gene therapy of OSCP to treat mice subjected to pressure overload induced by transverse aortic constriction (TAC). OSCP gene therapy protected the TAC-mice from cardiac dysfunction, cardiomyocyte hypertrophy, and fibrosis. OSCP gene therapy also enhanced mitochondrial respiration capacities in TAC-mice. Consistently, OSCP gene therapy attenuated reactive oxygen species and opening of mitochondrial permeability transition pore in the hypertrophied heart. Together, adeno-associated virus type 9-mediated, cardiac-specific OSCP overexpression can protect the heart via improving mitochondrial function. This result may provide insights into a novel therapy for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yingying Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailiang Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Gao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiheng Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kevin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglin Yang
- Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
83
|
Salech F, Ponce DP, Paula-Lima AC, SanMartin CD, Behrens MI. Nicotinamide, a Poly [ADP-Ribose] Polymerase 1 (PARP-1) Inhibitor, as an Adjunctive Therapy for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2020; 12:255. [PMID: 32903806 PMCID: PMC7438969 DOI: 10.3389/fnagi.2020.00255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Nicotinamide (vitamin B3) is a key component in the cellular production of Nicotinamide Adenine Dinucleotide (NAD) and has long been associated with neuronal development, survival and death. Numerous data suggest that nicotinamide may offer therapeutic benefits in neurodegenerative disorders, including Alzheimer’s Disease (AD). Beyond its effect in NAD+ stores, nicotinamide is an inhibitor of Poly [ADP-ribose] polymerase 1 (PARP-1), an enzyme with multiple cellular functions, including regulation of cell death, energy/metabolism and inflammatory response. PARP-1 functions as a DNA repair enzyme but under intense DNA damage depletes the cell of NAD+ and ATP and leads to a non-apoptotic type of cell death called Parthanatos, which has been associated with the pathogenesis of neurodegenerative diseases. Moreover, NAD+ availability might potentially improve mitochondrial function, which is severely impaired in AD. PARP-1 inhibition may also exert a protective effect against neurodegeneration by its action to diminish neuroinflammation and microglial activation which are also implicated in the pathogenesis of AD. Here we discuss the evidence supporting the use of nicotinamide as adjunctive therapy for the treatment of early stages of AD based on the inhibitory effect of nicotinamide on PARP-1 activity. The data support evaluating nicotinamide as an adjunctive treatment for AD at early stages of the disease not only to increase NAD+ stores but as a PARP-1 inhibitor, raising the hypothesis that other PARP-1 inhibitors – drugs that are already approved for breast cancer treatment – might be explored for the treatment of AD.
Collapse
Affiliation(s)
- Felipe Salech
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile.,Sección de Geriatría Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela P Ponce
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Andrea C Paula-Lima
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Facultad of Medicina, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carol D SanMartin
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Departamento de Neurologiìa y Neurocirugiìa, Hospital Cliìnico Universidad de Chile, Santiago, Chile
| | - María I Behrens
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurologiìa y Neurocirugiìa, Hospital Cliìnico Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Santiago, Chile
| |
Collapse
|
84
|
Tian J, Guo L, Sui S, Driskill C, Phensy A, Wang Q, Gauba E, Zigman JM, Swerdlow RH, Kroener S, Du H. Disrupted hippocampal growth hormone secretagogue receptor 1α interaction with dopamine receptor D1 plays a role in Alzheimer's disease. Sci Transl Med 2020; 11:11/505/eaav6278. [PMID: 31413143 PMCID: PMC6776822 DOI: 10.1126/scitranslmed.aav6278] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Hippocampal lesions are a defining pathology of Alzheimer's disease (AD). However, the molecular mechanisms that underlie hippocampal synaptic injury in AD have not been fully elucidated. Current therapeutic efforts for AD treatment are not effective in correcting hippocampal synaptic deficits. Growth hormone secretagogue receptor 1α (GHSR1α) is critical for hippocampal synaptic physiology. Here, we report that GHSR1α interaction with β-amyloid (Aβ) suppresses GHSR1α activation, leading to compromised GHSR1α regulation of dopamine receptor D1 (DRD1) in the hippocampus from patients with AD. The simultaneous application of the selective GHSR1α agonist MK0677 with the selective DRD1 agonist SKF81297 rescued Ghsr1α function from Aβ inhibition, mitigating hippocampal synaptic injury and improving spatial memory in an AD mouse model. Our data reveal a mechanism of hippocampal vulnerability in AD and suggest that a combined activation of GHSR1α and DRD1 may be a promising approach for treating AD.
Collapse
Affiliation(s)
- Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Lan Guo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shaomei Sui
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.,Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, China
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qi Wang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.,Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, China
| | - Esha Gauba
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jeffrey M Zigman
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
85
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
86
|
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020; 144:109-118. [PMID: 32461058 PMCID: PMC7877492 DOI: 10.1016/j.yjmcc.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
87
|
Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Front Cell Neurosci 2020; 14:129. [PMID: 32508595 PMCID: PMC7248249 DOI: 10.3389/fncel.2020.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Due to their postmitotic status, the potential for neurons to undergo senescence has historically received little attention. This lack of attention has extended to some non-postmitotic cells as well. Recently, the study of senescence within the central nervous system (CNS) has begun to emerge as a new etiological framework for neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The presence of senescent cells is known to be deleterious to non-senescent neighboring cells via development of a senescence-associated secretory phenotype (SASP) which includes the release of inflammatory, oxidative, mitogenic, and matrix-degrading factors. Senescence and the SASP have recently been hailed as an alternative to the amyloid cascade hypothesis and the selective killing of senescence cells by senolytic drugs as a substitute for amyloid beta (Aß) targeting antibodies. Here we call for caution in rejecting the amyloid cascade hypothesis and to the dismissal of Aß antibody intervention at least in early disease stages, as Aß oligomers (AßO), and cellular senescence may be inextricably linked. We will review literature that portrays AßO as a stressor capable of inducing senescence. We will discuss research on the potential role of secondary senescence, a process by which senescent cells induce senescence in neighboring cells, in disease progression. Once this seed of senescent cells is present, the elimination of senescence-inducing stressors like Aß would likely be ineffective in abrogating the spread of senescence. This has potential implications for when and why AßO clearance may or may not be effective as a therapeutic for AD. The selective killing of senescent cells by the immune system via immune surveillance naturally curtails the SASP and secondary senescence outside the CNS. Immune privilege restricts the access of peripheral immune cells to the brain parenchyma, making the brain a safe harbor for the spread of senescence and the SASP. However, an increasingly leaky blood brain barrier (BBB) compromises immune privilege in aging AD patients, potentially enabling immune infiltration that could have detrimental consequences in later AD stages. Rather than an alternative etiology, senescence itself may constitute an essential component of the cascade in the amyloid cascade hypothesis.
Collapse
|
88
|
Kim DK, Mook-Jung I. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. BMB Rep 2020. [PMID: 31722781 PMCID: PMC6941758 DOI: 10.5483/bmbrep.2019.52.12.282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer’s disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure of mitochondria, an organelle involved in diverse biological processes as well as energy production, maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria are involved in different biological processes depending on the specific functions of each cell type in the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in each cell type to AD pathogenesis.
Collapse
Affiliation(s)
- Dong Kyu Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
89
|
Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer's disease and brain ageing. Exp Neurol 2020; 328:113248. [PMID: 32084452 DOI: 10.1016/j.expneurol.2020.113248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
As components of the Mediterranean diet (MedDiet) olive polyphenols may play a crucial role for the prevention of Alzheimer's disease (AD). Since mitochondrial dysfunction is involved in both, brain ageing and early AD, effects of 10 different purified phenolic secoiridoids (hydroxytyrosol, tyrosol, oleacein, oleuroside, oleuroside aglycon, oleuropein, oleocanthal, ligstroside, ligstroside aglycone and ligustaloside B) and two metabolites (the plant metabolite elenolic acid and the mammalian metabolite homovanillic acid) were tested in very low doses on mitochondrial function in SH-SY5Y-APP695 cells - a cellular model of early AD. All tested secoiridoids significantly increased basal adenosine triphosphate (ATP) levels in SY5Y-APP695 cells. Oleacein, oleuroside, oleocanthal and ligstroside showed the highest effect on ATP levels and were additionally tested on mitochondrial respiration. Only oleocanthal and ligstroside were able to enhance the capacity of respiratory chain complexes. To investigate their underlying molecular mechanisms, the expression of genes associated with mitochondrial biogenesis, respiration and antioxidative capacity (PGC-1α, SIRT1, CREB1, NRF1, TFAM, complex I, IV and V, GPx1, SOD2, CAT) were determined using qRT-PCR. Exclusively ligstroside increased mRNA expression of SIRT1, CREB1, complex I, and GPx1. Furthermore, oleocanthal but not ligstroside decreased Aβ 1-40 levels in SH-SY5Y-APP695 cells. To investigate the in vivo effects of purified secoiridoids, the two most promising compounds (oleocanthal and ligstroside) were tested in a mouse model of ageing. Female NMRI mice, aged 12 months, received a diet supplemented with 50 mg/kg oleocanthal or ligstroside for 6 months (equivalent to 6.25 mg/kg b.w.). Young (3 months) and aged (18 months) mice served as controls. Ligstroside fed mice showed improved spatial working memory. Furthermore, ligstroside restored brain ATP levels in aged mice and led to a significant life extension compared to aged control animals. Our findings indicate that purified ligstroside has outstanding performance on mitochondrial bioenergetics in models of early AD and brain ageing by mechanisms that may not interfere with Aβ production. Additionally, ligstroside expanded the lifespan in aged mice and enhanced cognitive function.
Collapse
|
90
|
Dong Y, Stewart T, Bai L, Li X, Xu T, Iliff J, Shi M, Zheng D, Yuan L, Wei T, Yang X, Zhang J. Coniferaldehyde attenuates Alzheimer's pathology via activation of Nrf2 and its targets. Am J Cancer Res 2020; 10:179-200. [PMID: 31903114 PMCID: PMC6929631 DOI: 10.7150/thno.36722] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023] Open
Abstract
Background: Alzheimer's disease (AD) currently lacks a cure. Because substantial neuronal damage usually occurs before AD is advanced enough for diagnosis, the best hope for disease-modifying AD therapies likely relies on early intervention or even prevention, and targeting multiple pathways implicated in early AD pathogenesis rather than focusing exclusively on excessive production of β-amyloid (Aβ) species. Methods: Coniferaldehyde (CFA), a food flavoring and agonist of NF-E2-related factor 2 (Nrf2), was selected by multimodal in vitro screening, followed by investigation of several downstream effects potentially involved. Furthermore, in the APP/PS1 AD mouse model, the therapeutic effects of CFA (0.2 mmol kg-1d-1) were tested beginning at 3 months of age. Behavioral phenotypes related to learning and memory capacity, brain pathology and biochemistry, including Aβ transport, were assessed at different time intervals. Results: CFA promoted neuron viability and showed potent neuroprotective effects, especially on mitochondrial structure and functions. In addition, CFA greatly enhanced the brain clearance of Aβ in both free and extracellular vesicle (EV)-contained Aβ forms. In the APP/PS1 mouse model, CFA effectively abolished brain Aβ deposits and reduced the level of toxic soluble Aβ peptides, thus eliminating AD-like pathological changes in the hippocampus and cerebral cortex and preserving learning and memory capacity of the mice. Conclusion: The experimental evidence overall indicated that Nrf2 activation may contribute to the potent anti-AD effects of CFA. With an excellent safety profile, further clinical investigation of coniferaldehyde might bring hope for AD prevention/therapy.
Collapse
|
91
|
Chen L, Xu S, Wu T, Shao Y, Luo L, Zhou L, Ou S, Tang H, Huang W, Guo K, Xu J. Studies on APP metabolism related to age-associated mitochondrial dysfunction in APP/PS1 transgenic mice. Aging (Albany NY) 2019; 11:10242-10251. [PMID: 31744937 PMCID: PMC6914425 DOI: 10.18632/aging.102451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
The aging brain with mitochondrial dysfunction and a reduced adenosine 5'-triphosphate (ATP) has been implicated in the onset and progression of β-Amyloid (Aβ)-induced neuronal toxicity in AD. To unravel the function of ATP and the underlying mechanisms on AD development, APP/PS1 double transgenic mice and wild-type (WT) C57 mice at 6 and 10 months of age were studied. We demonstrated a decreased ATP release in the hippocampus and platelet of APP/PS1 mice, comparing to C57 mice at a relatively early age. Levels of Aβ were raised in both hippocampus and platelet of APP/PS1 mice, accompanied by a decrease of α-secretase activity and an increase of β-secretase activity. Moreover, our results presented an age-dependent rise in mitochondrial vulnerability to oxidation in APP/PS1 mice. In addition, we found decreased pSer473-Akt levels, increased GSK3β activity by inhibiting phosphorylation at Ser9 in aged APP/PS1 mice and these dysfunctions probably due to down-regulation of Bcl-2 and up-regulation of cleaved caspase-3. Therefore, we demonstrate that PI3K/Akt/GSK3β signaling pathway could be involved in Aβ-associated mitochondrial dysfunction of APP/PS1 mice and APP abnormal metabolism in platelet might provide potential biomarkers for early diagnosis of AD.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shicheng Xu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tong Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yijia Shao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Luo
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingqi Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Ou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hai Tang
- Department of Anatomy, Guangdong Jiangmen Chinese Traditional Medicine College, Jiangmen, China
| | - Wenhua Huang
- Department of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
92
|
Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019; 176:4247-4257. [PMID: 30291799 PMCID: PMC6887684 DOI: 10.1111/bph.14513] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The permeability transition pore (PTP) is a latent, high-conductance channel of the inner mitochondrial membrane. When activated, it plays a key role in cell death and therefore in several diseases. The investigation of the PTP took an unexpected turn after the discovery that cyclophilin D (the target of the PTP inhibitory effect of cyclosporin A) binds to FO F1 (F)-ATP synthase, thus inhibiting its catalytic activity by about 30%. This observation was followed by the demonstration that binding occurs at a particular subunit of the enzyme, the oligomycin sensitivity conferral protein (OSCP), and that F-ATP synthase can form Ca2+ -activated, high-conductance channels with features matching those of the PTP, suggesting that the latter originates from a conformational change in F-ATP synthase. This review is specifically focused on the OSCP subunit of F-ATP synthase, whose unique features make it a potential pharmacological target both for modulation of F-ATP synthase and its transition to a pore. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and PhysicsUniversity of UdineUdineItaly
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
93
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
94
|
Rodinova M, Krizova J, Stufkova H, Bohuslavova B, Askeland G, Dosoudilova Z, Juhas S, Juhasova J, Ellederova Z, Zeman J, Eide L, Motlik J, Hansikova H. Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease. Dis Model Mech 2019; 12:dmm.038737. [PMID: 31278192 PMCID: PMC6679385 DOI: 10.1242/dmm.038737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marie Rodinova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Hana Stufkova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Bozena Bohuslavova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Georgina Askeland
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Zaneta Dosoudilova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Stefan Juhas
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Jana Juhasova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Jiri Zeman
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Hana Hansikova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| |
Collapse
|
95
|
Li H, Jia J, Wang W, Hou T, Tian Y, Wu Q, Xu L, Wei Y, Wang X. Honokiol Alleviates Cognitive Deficits of Alzheimer's Disease (PS1V97L) Transgenic Mice by Activating Mitochondrial SIRT3. J Alzheimers Dis 2019; 64:291-302. [PMID: 29865070 DOI: 10.3233/jad-180126] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulating evidence has demonstrated that mitochondrial dysfunction is a prominent early event in the progression of Alzheimer's disease (AD). Whether protecting mitochondrial function can reduce amyloid-β oligomer (AβO)-induced neurotoxicity in PS1V97L transgenic mice remains unknown. In this study, we examined the possible protective effects of honokiol (HKL) on mitochondrial dysfunction induced by AβOs in neurons, and cognitive function in AD PS1V97Ltransgenic mice. We determined that HKL increased mitochondrial sirtuin 3 (SIRT3) expression levels and activity, which in turn markedly improved ATP production and weakened mitochondrial reactive oxygen species production. We demonstrated that the enhanced energy metabolism and attenuated oxidative stress of HKL restores AβO-mediated mitochondrial dysfunction in vitro and in vivo. Consequently, memory deficits in the PS1V97L transgenic mice were rescued by HKL in the early stages. These results suggest that HKL has therapeutic potential for delaying the onset of AD symptoms by alleviating mitochondrial impairment and increasing hyperactivation of SIRT3 in the pathogenesis of preclinical AD.
Collapse
Affiliation(s)
- Haitao Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Wei Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Tingting Hou
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yuanruhua Tian
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Qiaoqi Wu
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Yiping Wei
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and MemoryImpairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center forGeriatric Disorders, Beijing, P.R. China
| | - Xiu Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
96
|
Chen R, Park HA, Mnatsakanyan N, Niu Y, Licznerski P, Wu J, Miranda P, Graham M, Tang J, Boon AJW, Cossu G, Mandemakers W, Bonifati V, Smith PJS, Alavian KN, Jonas EA. Parkinson's disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis 2019; 10:469. [PMID: 31197129 PMCID: PMC6565618 DOI: 10.1038/s41419-019-1679-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022]
Abstract
Familial Parkinson’s disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase β subunit. DJ-1’s interaction with the β subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (β subunit) and c-subunit protein levels. We found that ATP synthase β subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.
Collapse
Affiliation(s)
- Rongmin Chen
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Han-A Park
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA.,Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Yulong Niu
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Pawel Licznerski
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Jing Wu
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Paige Miranda
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Jack Tang
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J S Smith
- Institute of Life Sciences, University of Southampton, Southampton, England.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Kambiz N Alavian
- Marine Biological Laboratory, Woods Hole, MA, USA.,Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA. .,Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
97
|
Abstract
Decades of research indicate mitochondria from Alzheimer's disease (AD) patients differ from those of non-AD individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial changes. Some argue amyloid-β (Aβ) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction exists independent of Aβ, potentially lies upstream of Aβ deposition, and suggest a primary mitochondrial cascade hypothesis that assumes mitochondrial pathology hierarchically supersedes Aβ pathology. Mitochondria, therefore, appear at least to mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform this area of AD research.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
98
|
Chiozzi P, Sarti AC, Sanz JM, Giuliani AL, Adinolfi E, Vultaggio-Poma V, Falzoni S, Di Virgilio F. Amyloid β-dependent mitochondrial toxicity in mouse microglia requires P2X7 receptor expression and is prevented by nimodipine. Sci Rep 2019; 9:6475. [PMID: 31019207 PMCID: PMC6482182 DOI: 10.1038/s41598-019-42931-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Previous data from our laboratory show that expression of the P2X7 receptor (P2X7R) is needed for amyloid β (Aβ)-stimulated microglia activation and IL-1β release in vitro and in vivo. We also showed that Aβ-dependent stimulation is inhibited by the dihydropyridine nimodipine at an intracellular site distal to the P2X7R. In the present study, we used the N13 microglia cell line and mouse primary microglia from wt and P2rx7-deleted mice to test the effect of nimodipine on amyloid β (Aβ)-dependent NLRP3 inflammasome expression and function, and on mitochondrial energy metabolism. Our data show that in microglia Aβ causes P2X7R-dependent a) NFκB activation; b) NLRP3 inflammasome expression and function; c) mitochondria toxicity; and these changes are fully inhibited by nimodipine. Our study shows that nimodipine is a powerful blocker of cell damage caused by monomeric and oligomeric Aβ, points to the mitochondria as a crucial target, and underlines the permissive role of the P2X7R.
Collapse
Affiliation(s)
- Paola Chiozzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Juana M Sanz
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Vultaggio-Poma
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
99
|
Abstract
Microglia, the primary immune cells of the brain, play a key role in pathological and normal brain function. Growing efforts aim to reveal how these cells may be harnessed to treat both neurodegenerative diseases such as Alzheimer's and developmental disorders such as schizophrenia and autism. We recently showed that using noninvasive exposure to 40-Hz white-light (4,000 K) flicker to drive 40-Hz neural activity transforms microglia into an engulfing state and reduces amyloid beta, a peptide thought to initiate neurotoxic events in Alzheimer's disease (AD). This article describes how to construct an LED-based light-flicker apparatus, expose animals to 40-Hz flicker and control conditions, and perform downstream assays to study the effects of these stimuli. Light flicker is simple, faster to implement, and noninvasive, as compared with driving 40-Hz activity using optogenetics; however, it does not target specific cell types, as is achievable with optogenetics. This noninvasive approach to driving 40-Hz neural activity should enable further research into the interactions between neural activity, molecular pathology, and the brain's immune system. Construction of the light-flicker system requires ~1 d and some electronics experience or available guidance. The flicker manipulation and assessment can be completed in a few days, depending on the experimental design.
Collapse
|
100
|
Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8743257. [PMID: 31178976 PMCID: PMC6501240 DOI: 10.1155/2019/8743257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
Abstract
The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F1 sector and a membrane-intrinsic FO domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism. We discuss structural and functional features of mitochondrial F-ATP synthase as well as several conditions that partially or fully inhibit the coupling between the F1 catalytic activities and the FO proton translocation, thus decreasing the cellular metabolic efficiency and transforming the enzyme into an energy-dissipating structure through molecular mechanisms that still remain to be defined.
Collapse
|