51
|
Hariprakash JM, Vellarikkal SK, Verma A, Ranawat AS, Jayarajan R, Ravi R, Kumar A, Dixit V, Sivadas A, Kashyap AK, Senthivel V, Sehgal P, Mahadevan V, Scaria V, Sivasubbu S. SAGE: a comprehensive resource of genetic variants integrating South Asian whole genomes and exomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:1-10. [PMID: 30184194 PMCID: PMC6146123 DOI: 10.1093/database/bay080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022]
Abstract
South Asia is home to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}20% of the world population and characterized by distinct ethnic, linguistic, cultural and genetic lineages. Only limited representative samples from the region have found its place in large population-scale international genome projects. The recent availability of genome scale data from multiple populations and datasets from South Asian countries in public domain motivated us to integrate the data into a comprehensive resource. In the present study, we have integrated a total of six datasets encompassing 1213 human exomes and genomes to create a compendium of 154 814 557 genetic variants and adding a total of 69 059 255 novel variants. The variants were systematically annotated using public resources and along with the allele frequencies are available as a browsable-online resource South Asian genomes and exomes. As a proof of principle application of the data and resource for genetic epidemiology, we have analyzed the pathogenic genetic variants causing retinitis pigmentosa. Our analysis reveals the genetic landscape of the disease and suggests subset of genetic variants to be highly prevalent in South Asia.
Collapse
Affiliation(s)
- Judith Mary Hariprakash
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Shamsudheen Karuthedath Vellarikkal
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Ankit Verma
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Anop Singh Ranawat
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Rijith Jayarajan
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Rowmika Ravi
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Anoop Kumar
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vishal Dixit
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Atul Kumar Kashyap
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vigneshwar Senthivel
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Paras Sehgal
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vijayalakshmi Mahadevan
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu 613402, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Sridhar Sivasubbu
- Genomics & Molecular Medicine, Council of Scientific and Industrial Research (CSIR) Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| |
Collapse
|
52
|
Huang X, Tian M, Li J, Cui L, Li M, Zhang J. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease. Indian J Ophthalmol 2017; 65:1161-1165. [PMID: 29133643 PMCID: PMC5700585 DOI: 10.4103/ijo.ijo_442_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. METHODS To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. RESULTS We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. CONCLUSION c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.
Collapse
Affiliation(s)
- Xiaoyan Huang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Mao Tian
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Jiankang Li
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Ling Cui
- National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Min Li
- National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jianguo Zhang
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
53
|
Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Sci Rep 2017; 7:9064. [PMID: 28831107 PMCID: PMC5567291 DOI: 10.1038/s41598-017-09276-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
Ocular coloboma is a common eye malformation arising from incomplete closure of the human optic fissure during development. Multiple genetic mutations contribute to the disease process, showing extensive genetic heterogeneity and complexity of coloboma spectrum diseases. In this study, we aimed to unravel the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis. The subjects were recruited and underwent specialized ophthalmologic clinical examination. A combination of whole exome sequencing (WES), homozygosity mapping, and comprehensive variant analyses was performed to uncover the causative mutation. Only one homozygous mutation (c.113 T > C, p.I38T) in RAX gene survived our strict variant filtering process, consistent with an autosomal recessive inheritance pattern. This mutation segregated perfectly in the family and is located in a highly conserved functional domain. Crystal structure modeling indicated that I38T affected the protein structure. We describe a patient from a consanguineous Chinese family with unusual coloboma, proven to harbor a novel RAX mutation (c.113 T > C, p.I38T, homozygous), expanding the phenotypic variability of ocular coloboma and RAX mutations.
Collapse
|
54
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
55
|
miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proc Natl Acad Sci U S A 2017; 114:6376-6381. [PMID: 28559309 DOI: 10.1073/pnas.1618757114] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are known to be essential for retinal maturation and functionality; however, the role of the most abundant miRNAs, the miR-183/96/182 cluster (miR-183 cluster), in photoreceptor cells remains unclear. Here we demonstrate that ablation of two components of the miR-183 cluster, miR-183 and miR-96, significantly affects photoreceptor maturation and maintenance in mice. Morphologically, early-onset dislocated cone nuclei, shortened outer segments and thinned outer nuclear layers are observed in the miR-183/96 double-knockout (DKO) mice. Abnormal photoreceptor responses, including abolished photopic electroretinography (ERG) responses and compromised scotopic ERG responses, reflect the functional changes in the degenerated retina. We further identify Slc6a6 as the cotarget of miR-183 and miR-96. The expression level of Slc6a6 is significantly higher in the DKO mice than in the wild-type mice. In contrast, Slc6a6 is down-regulated by adeno-associated virus-mediated overexpression of either miR-183 or miR-96 in wild-type mice. Remarkably, both silencing and overexpression of Slc6a6 in the retina are detrimental to the electrophysiological activity of the photoreceptors in response to dim light stimuli. We demonstrate that miR-183/96-mediated fine-tuning of Slc6a6 expression is indispensable for photoreceptor maturation and maintenance, thereby providing insight into the epigenetic regulation of photoreceptors in mice.
Collapse
|
56
|
Sharma TP, Wiley LA, Whitmore SS, Anfinson KR, Cranston CM, Oppedal DJ, Daggett HT, Mullins RF, Tucker BA, Stone EM. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa. Stem Cell Res 2017; 21:58-70. [PMID: 28390992 DOI: 10.1016/j.scr.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1) gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.
Collapse
Affiliation(s)
- Tasneem P Sharma
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Luke A Wiley
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - S Scott Whitmore
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Kristin R Anfinson
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Cathryn M Cranston
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Douglas J Oppedal
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Heather T Daggett
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Robert F Mullins
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Budd A Tucker
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Edwin M Stone
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
57
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
58
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
59
|
Ullah I, Kabir F, Iqbal M, Gottsch CBS, Naeem MA, Assir MZ, Khan SN, Akram J, Riazuddin S, Ayyagari R, Hejtmancik JF, Riazuddin SA. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases. Mol Vis 2016; 22:797-815. [PMID: 27440997 PMCID: PMC4947966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. METHODS Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon-intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. RESULTS The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10(-6)) that affected individuals inherited the causal mutation from a common ancestor. CONCLUSIONS Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families.
Collapse
Affiliation(s)
- Inayat Ullah
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Muhammad Iqbal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, CA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
60
|
Kabir F, Ullah I, Ali S, Gottsch AD, Naeem MA, Assir MZ, Khan SN, Akram J, Riazuddin S, Ayyagari R, Hejtmancik JF, Riazuddin SA. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases. Mol Vis 2016; 22:610-25. [PMID: 27307693 PMCID: PMC4901054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/08/2016] [Indexed: 10/31/2022] Open
Abstract
PURPOSE This study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families. METHODS Large consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon-intron boundaries of RP1 were sequenced to identify the causal mutation. RESULTS The ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples. CONCLUSIONS These results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families.
Collapse
Affiliation(s)
- Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Inayat Ullah
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shahbaz Ali
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, CA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
61
|
Miyamichi D, Asahina M, Nakajima J, Sato M, Hosono K, Nomura T, Negishi T, Miyake N, Hotta Y, Ogata T, Matsumoto N. Novel HPS6 mutations identified by whole-exome sequencing in two Japanese sisters with suspected ocular albinism. J Hum Genet 2016; 61:839-42. [PMID: 27225848 DOI: 10.1038/jhg.2016.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism, platelet dysfunction and ceroid deposition. We report suspected ocular albinism in two Japanese sisters, caused by mutations in the HPS6 (Hermansky-Pudlak syndrome 6) gene. Trio-based whole-exome sequencing (WES) identified novel compound heterozygous mutations in HPS6 (c.1898delC: mother origin and c.2038C>T: father origin) in the two sisters. To date, 10 associated mutations have been detected in HPS6. Although we detected no general manifestations, including platelet dysfunction, in the sisters, even in long-term follow-up, we established a diagnosis of HPS type 6 based on the HPS6 mutations and absence of dense bodies in the platelets, indicating that WES can identify cases of HPS type 6. To the best of our knowledge, this is the first report of HPS6 mutations in Japanese patients.
Collapse
Affiliation(s)
- Daisuke Miyamichi
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Miki Asahina
- Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Junya Nakajima
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takahito Nomura
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takashi Negishi
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
62
|
Sugahara M, Oishi M, Oishi A, Ogino K, Morooka S, Gotoh N, Kang I, Yoshimura N. Screening for SLC7A14 gene mutations in patients with autosomal recessive or sporadic retinitis pigmentosa. Ophthalmic Genet 2016; 38:70-73. [PMID: 27028480 DOI: 10.3109/13816810.2015.1136336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In this study, we aimed to detect mutations in the SLC7A14 cationic transporter gene, which has recently been reported as a causative gene for retinitis pigmentosa (RP), in Japanese patients with autosomal recessive (AR) or sporadic RP. MATERIALS AND METHODS We included 146 unrelated Japanese patients with AR or sporadic RP who lacked mutations in genes known to be associated with RP despite next-generation sequencing-based screening. We sequenced the seven SLC7A14 coding exons along with their flanking intronic DNA using the Sanger method. The detected polymorphisms were assessed for their pathogenicity with in silico prediction tools. For those who had heterozygous, nonsynonymous variants, we performed multiplex ligation-dependent probe amplification (MLPA) to search for additional deletion/duplication. RESULTS We detected four distinct SLC7A14 polymorphisms excluding synonymous polymorphisms. Two of these polymorphisms were assessed as detrimental by in silico prediction tools. However, all of the mutations were heterozygous. Neither homozygous polymorphisms nor compound heterozygous polymorphisms, which are considered detrimental variants, were detected. Neither deletion nor duplication was found with MLPA in patients with heterozygous variants. CONCLUSIONS The four SLC7A14 mutations detected herein were unlikely to be pathogenic in this Japanese cohort. The frequency and pathogenicity of SLC7A14 mutations may vary depending on ethnicity, and these mutations may be rare in Japanese patients.
Collapse
Affiliation(s)
- Masako Sugahara
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Maho Oishi
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Akio Oishi
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Ken Ogino
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Satoshi Morooka
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Norimoto Gotoh
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan.,b Center for Genomic Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Inyeop Kang
- b Center for Genomic Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Nagahisa Yoshimura
- a Department of Ophthalmology and Visual Sciences , Kyoto University Graduate School of Medicine , Kyoto , Japan
| |
Collapse
|
63
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
64
|
Sun Y, Chen X, Sun J, Wen X, Liu X, Zhang Y, Hoffman AR, Hu JF, Gao Y. A Novel Inherited Mutation in PRKAR1A Abrogates PreRNA Splicing in a Carney Complex Family. Can J Cardiol 2015; 31:1393-401. [PMID: 26416542 DOI: 10.1016/j.cjca.2015.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Carney complex (CNC) is an autosomal dominant inherited disease, characterized by spotty skin pigmentation, cardiac and cutaneous myxomas, and endocrine overactivity. We report on a Chinese CNC family with a novel mutation in the protein kinase A regulatory subunit 1 (PRKAR1A) gene. METHODS Target-exome sequencing was performed to identify the mutation of PRKAR1A in 2 members of the CNC family. RESULTS The proband was a young man with typical CNC, including pigmentation, cutaneous myxomas, cardiac myxoma, Sertoli cell tumour of his left testis, and multiple hypoechoic thyroid nodules. His mother also had CNC with skin pigmentation, cutaneous myxomas, and a cardiac myxoma. Target-exome capture analysis revealed that the proband and the mother carried a novel heterozygous mutation in the exon 6 splicing donor site of PRKAR1A. Sequencing analysis of myxoma messenger RNA revealed that the mutation abrogated exon 6 preRNA splicing, leading to a frameshift starting at Valine 185 and premature translation termination in intron 6. The truncated enzyme lacks the functional cyclic adenosine monophosphate (cAMP) binding domain at the C-terminus, causing PRKAR1A haploinsufficiency. CONCLUSIONS In this study we report on a novel splicing mutation in the PRKAR1A gene that adds to the genetic heterogeneity of CNC.
Collapse
Affiliation(s)
- Yunpeng Sun
- Department of Pharmacology, College of Basic Medical Sciences, Changchun, Jilin, China; Department of Cardiac Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Changchun, Jilin, China.
| | - Jingnan Sun
- Cancer and Stem Cell Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Wen
- Cancer and Stem Cell Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuguang Liu
- Department of Cardiac Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanli Zhang
- Department of Ultrasonic Cardiogram, First Hospital of Jilin University, Changchun, Jilin, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ji-Fan Hu
- Cancer and Stem Cell Center, First Hospital of Jilin University, Changchun, Jilin, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Yongsheng Gao
- Department of Cardiac Surgery, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
65
|
Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family. Int J Mol Med 2015; 36:1035-41. [PMID: 26310143 PMCID: PMC4564089 DOI: 10.3892/ijmm.2015.2322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant-like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole-exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step-wise filtering. Direct Sanger sequencing and co-segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co-segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole-exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.
Collapse
|
66
|
A Novel WRN Frameshift Mutation Identified by Multiplex Genetic Testing in a Family with Multiple Cases of Cancer. PLoS One 2015; 10:e0133020. [PMID: 26241669 PMCID: PMC4524609 DOI: 10.1371/journal.pone.0133020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/23/2015] [Indexed: 11/25/2022] Open
Abstract
Next-generation sequencing technology allows simultaneous analysis of multiple susceptibility genes for clinical cancer genetics. In this study, multiplex genetic testing was conducted in a Chinese family with multiple cases of cancer to determine the variations in cancer predisposition genes. The family comprises a mother and her five daughters, of whom the mother and the eldest daughter have cancer and the secondary daughter died of cancer. We conducted multiplex genetic testing of 90 cancer susceptibility genes using the peripheral blood DNA of the mother and all five daughters. WRN frameshift mutation is considered a potential pathogenic variation according to the guidelines of the American College of Medical Genetics. A novel WRN frameshift mutation (p.N1370Tfs*23) was identified in the three cancer patients and in the youngest unaffected daughter. Other rare non-synonymous germline mutations were also detected in DICER and ELAC2. Functional mutations in WRN cause Werner syndrome, a human autosomal recessive disease characterized by premature aging and associated with genetic instability and increased cancer risk. Our results suggest that the WRN frameshift mutation is important in the surveillance of other members of this family, especially the youngest daughter, but the pathogenicity of the novel WRN frameshift mutation needs to be investigated further. Given its extensive use in clinical genetic screening, multiplex genetic testing is a promising tool in clinical cancer surveillance.
Collapse
|
67
|
Marfany G, Gonzàlez-Duarte R. Clinical applications of high-throughput genetic diagnosis in inherited retinal dystrophies: Present challenges and future directions. World J Med Genet 2015; 5:14-22. [DOI: 10.5496/wjmg.v5.i2.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.
Collapse
|
68
|
Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson RV. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr 2015; 4:139-63. [PMID: 26835369 PMCID: PMC4729094 DOI: 10.3978/j.issn.2224-4336.2015.04.03] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs.
Collapse
Affiliation(s)
- Benjamin M Nash
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Dale C Wright
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - John R Grigg
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Bruce Bennetts
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Robyn V Jamieson
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
69
|
Huang XF, Wu J, Lv JN, Zhang X, Jin ZB. Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing. Genet Med 2015; 17:307-11. [DOI: 10.1038/gim.2014.193] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 11/09/2022] Open
|
70
|
Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, Lu F, Qu J, Jin ZB. Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med 2014; 17:271-8. [DOI: 10.1038/gim.2014.138] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022] Open
|
71
|
Daiger SP, Bowne SJ, Sullivan LS. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa. Cold Spring Harb Perspect Med 2014; 5:a017129. [PMID: 25304133 PMCID: PMC4588133 DOI: 10.1101/cshperspect.a017129] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%-30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%-75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families.
Collapse
Affiliation(s)
- Stephen P Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030
| | - Sara J Bowne
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030
| | - Lori S Sullivan
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
72
|
Whole exome sequencing reveals genetic predisposition in a large family with retinitis pigmentosa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:302487. [PMID: 25101269 PMCID: PMC4102027 DOI: 10.1155/2014/302487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/22/2014] [Indexed: 12/19/2022]
Abstract
Next-generation sequencing has become more widely used to reveal genetic defect in monogenic disorders. Retinitis pigmentosa (RP), the leading cause of hereditary blindness worldwide, has been attributed to more than 67 disease-causing genes. Due to the extreme genetic heterogeneity, using general molecular screening alone is inadequate for identifying genetic predispositions in susceptible individuals. In order to identify underlying mutation rapidly, we utilized next-generation sequencing in a four-generation Chinese family with RP. Two affected patients and an unaffected sibling were subjected to whole exome sequencing. Through bioinformatics analysis and direct sequencing confirmation, we identified p.R135W transition in the rhodopsin gene. The mutation was subsequently confirmed to cosegregate with the disease in the family. In this study, our results suggest that whole exome sequencing is a robust method in diagnosing familial hereditary disease.
Collapse
|
73
|
Roosing S, Lamers IJC, de Vrieze E, van den Born LI, Lambertus S, Arts HH, Peters TA, Hoyng CB, Kremer H, Hetterschijt L, Letteboer SJF, van Wijk E, Roepman R, den Hollander AI, Cremers FPM. Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy. Am J Hum Genet 2014; 95:131-42. [PMID: 25018096 PMCID: PMC4129401 DOI: 10.1016/j.ajhg.2014.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | | | - Stanley Lambertus
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Heleen H Arts
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Theo A Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Lisette Hetterschijt
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|