51
|
Wang L, Jiang S, Deng Z, Dedon PC, Chen S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev 2019; 43:109-122. [PMID: 30289455 PMCID: PMC6435447 DOI: 10.1093/femsre/fuy036] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.
Collapse
Affiliation(s)
- Lianrong Wang
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Masschusetts Avenue, Cambridge, Massachusetts, USA
| | - Shi Chen
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
52
|
Nie P, Li Z, Wang Y, Zhang Y, Zhao M, Luo J, Du S, Deng Z, Chen J, Wang Y, Chen S, Wang L. Gut microbiome interventions in human health and diseases. Med Res Rev 2019; 39:2286-2313. [PMID: 30994937 DOI: 10.1002/med.21584] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023]
Abstract
Ongoing studies have determined that the gut microbiota is a major factor influencing both health and disease. Host genetic factors and environmental factors contribute to differences in gut microbiota composition and function. Intestinal dysbiosis is a cause or a contributory cause for diseases in multiple body systems, ranging from the digestive system to the immune, cardiovascular, respiratory, and even nervous system. Investigation of pathogenesis has identified specific species or strains, bacterial genes, and metabolites that play roles in certain diseases and represent potential drug targets. As research progresses, gut microbiome-based diagnosis and therapy are proposed and applied, which might lead to considerable progress in precision medicine. We further discuss the limitations of current studies and potential solutions.
Collapse
Affiliation(s)
- Pengqing Nie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yubing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Mengna Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiming Du
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunfu Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
53
|
Xiong L, Liu S, Chen S, Xiao Y, Zhu B, Gao Y, Zhang Y, Chen B, Luo J, Deng Z, Chen X, Wang L, Chen S. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat Commun 2019; 10:1688. [PMID: 30975999 PMCID: PMC6459918 DOI: 10.1038/s41467-019-09390-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 01/21/2023] Open
Abstract
Archaea and Bacteria have evolved different defence strategies that target virtually all steps of the viral life cycle. The diversified virion morphotypes and genome contents of archaeal viruses result in a highly complex array of archaea-virus interactions. However, our understanding of archaeal antiviral activities lags far behind our knowledges of those in bacteria. Here we report a new archaeal defence system that involves DndCDEA-specific DNA phosphorothioate (PT) modification and the PbeABCD-mediated halt of virus propagation via inhibition of DNA replication. In contrast to the breakage of invasive DNA by DndFGH in bacteria, DndCDEA-PbeABCD does not degrade or cleave viral DNA. The PbeABCD-mediated PT defence system is widespread and exhibits extensive interdomain and intradomain gene transfer events. Our results suggest that DndCDEA-PbeABCD is a new type of PT-based virus resistance system, expanding the known arsenal of defence systems as well as our understanding of host-virus interactions.
Collapse
Affiliation(s)
- Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Siyi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Si Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Bochen Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yali Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yujing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Beibei Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Xiangdong Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China.
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
54
|
Phosphorothioated DNA Is Shielded from Oxidative Damage. Appl Environ Microbiol 2019; 85:AEM.00104-19. [PMID: 30737351 DOI: 10.1128/aem.00104-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
DNA is the carrier of genetic information. DNA modifications play a central role in essential physiological processes. Phosphorothioation (PT) modification involves the replacement of an oxygen atom on the DNA backbone with a sulfur atom. PT modification can cause genomic instability in Salmonella enterica under hypochlorous acid stress. This modification restores hydrogen peroxide (H2O2) resistance in the catalase-deficient Escherichia coli Hpx- strain. Here, we report biochemical characterization results for a purified PT modification protein complex (DndCDE) from S. enterica We observed multiplex oligomeric states of DndCDE by using native PAGE. This protein complex bound avidly to PT-modified DNA. DndCDE with an intact iron-sulfur cluster (DndCDE-FeS) possessed H2O2 decomposition activity, with a V max of 10.58 ± 0.90 mM min-1 and a half-saturation constant, K 0.5S, of 31.03 mM. The Hill coefficient was 2.419 ± 0.59 for this activity. The protein's activity toward H2O2 was observed to be dependent on the intact DndCDE and on the formation of an iron-sulfur (Fe-S) cluster on the DndC subunit. In addition to cysteine residues that mediate the formation of this Fe-S cluster, other cysteine residues play a catalytic role. Finally, catalase activity was also detected in DndCDE from Pseudomonas fluorescens Pf0-1. The data and conclusions presented suggest that DndCDE-FeS is a short-lived catalase. Our experiments also indicate that the complex binds to PT sites, shielding PT DNA from H2O2 damage. This catalase shield might be able to extend from PT sites to the entire bacterial genome.IMPORTANCE DNA phosphorothioation has been reported in many bacteria. These PT-hosting bacteria live in very different environments, such as the human body, soil, or hot springs. The physiological function of DNA PT modification is still elusive. A remarkable property of PT modification is that purified genomic PT DNA is susceptible to oxidative cleavage. Among the oxidants, hypochlorous acid and H2O2 are of physiological relevance for human pathogens since they are generated during the human inflammation response to bacterial infection. However, expression of PT genes in the catalase-deficient E. coli Hpx- strain restores H2O2 resistance. Here, we seek to solve this obvious paradox. We demonstrate that DndCDE-FeS is a short-lived catalase that binds tightly to PT DNA. It is thus possible that by docking to PT sites the catalase activity protects the bacterial genome against H2O2 damage.
Collapse
|
55
|
Li J, Chen Y, Zheng T, Kong L, Zhu S, Sun Y, Deng Z, Yang L, You D. Quantitative mapping of DNA phosphorothioatome reveals phosphorothioate heterogeneity of low modification frequency. PLoS Genet 2019; 15:e1008026. [PMID: 30933976 PMCID: PMC6459556 DOI: 10.1371/journal.pgen.1008026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/11/2019] [Accepted: 02/17/2019] [Indexed: 12/31/2022] Open
Abstract
Phosphorothioate (PT) modifications of the DNA backbone, widespread in prokaryotes, are first identified in bacterial enteropathogens Escherichia coli B7A more than a decade ago. However, methods for high resolution mapping of PT modification level are still lacking. Here, we developed the PT-IC-seq technique, based on iodine-induced selective cleavage at PT sites and high-throughput next generation sequencing, as a mean to quantitatively characterizing the genomic landscape of PT modifications. Using PT-IC-seq we foud that most PT sites are partially modified at a lower PT frequency (< 5%) in E. coli B7A and Salmonella enterica serovar Cerro 87, and both show a heterogeneity pattern of PT modification similar to those of the typical methylation modification. Combining the iodine-induced cleavage and absolute quantification by droplet digital PCR, we developed the PT-IC-ddPCR technique to further measure the PT modification level. Consistent with the PT-IC-seq measurements, PT-IC-ddPCR analysis confirmed the lower PT frequency in E. coli B7A. Our study has demonstrated the heterogeneity of PT modification in the bacterial population and we also established general tools for rigorous mapping and characterization of PT modification events at whole genome level. We describe to our knowledge the first genome-wide quantitative characterization of PT landscape and provides appropriate strategies for further functional studies of PT modification.
Collapse
Affiliation(s)
- Jinli Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sucheng Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihua Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Litao Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (LY); (DY)
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (LY); (DY)
| |
Collapse
|
56
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
57
|
Xia S, Chen J, Liu L, Wei Y, Deng Z, Wang L, Chen S. Tight control of genomic phosphorothioate modification by the ATP-modulated autoregulation and reusability of DndB. Mol Microbiol 2019; 111:938-950. [PMID: 30552823 DOI: 10.1111/mmi.14186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
DNA phosphorothioate (PT) modification was recently identified to occur naturally in diverse bacteria and to be governed by DndABCDE proteins. The nuclease resistance as well as the redox and nucleophilic properties of PT sulfur make PT modification a versatile player in restriction-modification (R-M) defense, epigenetic regulation, environmental fitness and the maintenance of cellular redox homeostasis. In this study, we discovered that tight control of PT levels is mediated by the ATPase activity of DndB. The ATP-binding activity of DndB stimulates the dissociation of the DndB-DNA complex, allowing transcriptional initiation, whereas its ATP hydrolysis activity promotes the conversion of DndB-ATP to free DndB that is capable of rebinding to promoter DNA for transcriptional inhibition. Since sulfur incorporation is an ATP-consuming process, these activities provide an economical way to fine-tune PT modification in an ATP-sensing manner. To our knowledge, this ATP-mediated regulation is a rare example among DNA epigenetic modification systems; the features of autoregulation and the repeated usage of DndB allow the dedicated regulation of PT levels in response to cellular ATP concentrations, providing insight into PT function and its role in physiology.
Collapse
Affiliation(s)
- Sisi Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| |
Collapse
|
58
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
59
|
Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun 2018; 9:4689. [PMID: 30409991 PMCID: PMC6224610 DOI: 10.1038/s41467-018-07093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
Collapse
|
60
|
Zhang H, Zhu L, Huang DS. DiscMLA: An Efficient Discriminative Motif Learning Algorithm over High-Throughput Datasets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1810-1820. [PMID: 27164602 DOI: 10.1109/tcbb.2016.2561930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The transcription factors (TFs) can activate or suppress gene expression by binding to specific sites, hence are crucial regulatory elements for transcription. Recently, series of discriminative motif finders have been tailored to offering promising strategy for harnessing the power of large quantities of accumulated high-throughput experimental data. However, in order to achieve high speed, these algorithms have to sacrifice accuracy by employing simplified statistical models during the searching process. In this paper, we propose a novel approach named Discriminative Motif Learning via AUC (DiscMLA) to discover motifs on high-throughput datasets. Unlike previous approaches, DiscMLA tries to optimize with a more comprehensive criterion (AUC) during motifs searching. In addition, based on an experimental observation of motif identification on large-scale datasets, some novel procedures are designed to accelerate DiscMLA. The experimental results on 52 real-world datasets demonstrate that our approach substantially outperforms previous methods on discriminative motif learning problems. DiscMLA' stability, discriminability, and validity will help to exploit high-throughput datasets and answer many fundamental biological questions.
Collapse
|
61
|
Dai D, Pu T, Liang J, Wang Z, Tang A. Regulation of dndB Gene Expression in Streptomyces lividans. Front Microbiol 2018; 9:2387. [PMID: 30349518 PMCID: PMC6186775 DOI: 10.3389/fmicb.2018.02387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022] Open
Abstract
DNA sulfur modification is a unique modification occurring in the sugar-phosphate backbone of DNA, with a nonbridging oxygen atom substituted with sulfur in a sequence-specific and Rp stereo-specific manner. Bioinformatics, RNA-seq, and in vitro transcriptional analyses have shown that DNA sulfur modification may be involved in epigenetic regulation. However, the in vivo evidence supporting this assertion is not convincing. Here, we aimed to characterize two sulfur-modified sites near the dndB promoter region in Streptomyces lividans. Single mutation of either site had no effect on dndB transcription, whereas double mutation of both sites significantly elevated dndB expression. These findings suggested that DNA sulfur modification affected gene expression, and the role of DNA sulfur modification in epigenetic regulation depended on the number of sulfur-modified sites. We also identified an inverted repeat, the R repeat sequence, and showed that this sequence participated in the positive regulation of dndB gene expression.
Collapse
Affiliation(s)
- Daofeng Dai
- Health Science Center, The First Affiliated Hospital of Shenzhen University, and Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aifa Tang
- Health Science Center, The First Affiliated Hospital of Shenzhen University, and Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
62
|
Yan G, Chen X, Du S, Deng Z, Wang L, Chen S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 2018; 65:329-338. [PMID: 30349994 DOI: 10.1007/s00294-018-0894-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance.
Collapse
Affiliation(s)
- Ge Yan
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
63
|
Jimmy Huang PJ, Moon WJ, Liu J. Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. Biochemistry 2018; 58:422-429. [PMID: 30272443 DOI: 10.1021/acs.biochem.8b00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions play a critical role in the RNA-cleavage reaction by interacting with the scissile phosphate and stabilizing the highly negatively charged transition state. Many metal-dependent DNAzymes have been selected for RNA cleavage. Herein, we report that the Ce13d DNAzyme can use nonmetallic iodine (I2) to cleave a phosphorothioate (PS)-modified substrate. The cleavage yield exceeded 60% for both the Rp and Sp stereoisomers in 10 s, while the yield without the enzyme strand was only ∼10%. The Ce13d cleavage with I2 also required Na+, consistent with the property of Ce13d and confirming the similar role of I2 as a metal ion. Ce13d had the highest yield among eight tested DNAzymes, with the second highest DNAzyme showing only 20% cleavage. The incomplete cleavage was due to competition from desulfurization and isomerization reactions. This DNAzyme was engineered for fluorescence-based I2 detection. With EDTA for masking metal ions, I2 was selectively detected down to 4.7 nM. Oxidation of I- with Fe3+ produced I2 in situ, allowing detection of Fe3+ down to 78 nM. By harnessing nonelectrostatic interactions, such as the I2/sulfur interaction observed here, more nonmetal species might be discovered to assist DNAzyme-based RNA cleavage.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
64
|
Yu H, Liu G, Zhao G, Hu W, Wu G, Deng Z, He X. Identification of a conserved DNA sulfur recognition domain by characterizing the phosphorothioate-specific endonuclease SprMcrA from Streptomyces pristinaespiralis. Mol Microbiol 2018; 110:484-497. [PMID: 30184284 DOI: 10.1111/mmi.14118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 12/28/2022]
Abstract
Streptomyces species have been valuable models for understanding the phenomenon of DNA phosphorothioation in which sulfur replaces a non-bridging oxygen in the phosphate backbone of DNA. We previously reported that the restriction endonuclease ScoMcrA from Streptomyces coelicolor cleaves phosphorothioate DNA and Dcm-methylated DNA at sites 16-28 nucleotides away from the modification sites. However, cleavage of modified DNA by ScoMcrA is always incomplete and accompanied by severe promiscuous activity on unmodified DNA. These features complicate the studies of recognition and cleavage of phosphorothioate DNA. For these reasons, we here characterized SprMcrA from Streptomyces pristinaespiralis, a much smaller homolog of ScoMcrA with a rare HRH motif, a variant of the HNH motif that forms the catalytic center of these endonucleases. The sulfur-binding domain of SprMcrA and its phosphorothioation recognition site were determined. Compared to ScoMcrA, SprMcrA has higher specificity in discerning phosphorothioate DNA from unmodified DNA, and this enzyme generally cuts both strands at a distance of 11-14 nucleotides from the 5' side of the recognition site. The HRH/HNH motif has its own sequence specificity in DNA hydrolysis, leading to failure of cleavage at some phosphorothioated sites. An R248N mutation of the central residue in HRH resulted in 30-fold enhancement in cleavage activity of phosphorothioate DNA and altered the cleavage efficiency at some sites, whereas mutation of both His residues abolished restriction activity. This is the first report of a recognition domain for phosphorothioate DNA and phosphorothioate-dependent and sequence-specific restriction activity.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
65
|
Yang J, Stolee JA, Jiang H, Xiao L, Kiesman WF, Antia FD, Fillon YA, Ng A, Shi X. Solid-Phase Synthesis of Phosphorothioate Oligonucleotides Using Sulfurization Byproducts for in Situ Capping. J Org Chem 2018; 83:11577-11585. [PMID: 30179468 DOI: 10.1021/acs.joc.8b01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oligonucleotides containing phosphorothioate (PS) linkages have recently demonstrated significant clinical utility. PS oligonucleotides are manufactured via a solid-phase chain elongation process in which a four-reaction cycle consisting of detritylation, coupling, sulfurization, and failure sequence capping with Ac2O is repeated. In the capping step, uncoupled sequences are acetylated at the 5'-OH to stop the chain growth and control the levels of deletion, or ( n-1), impurities. Herein, we report that the byproducts of commonly used sulfurization reagents react with the 5'-OH and cap the failure sequences. The standard Ac2O capping step can therefore be eliminated, and this 3-reaction cycle process affords a higher yield and higher or comparable overall purity compared to the conventional 4-reaction synthesis. This improvement results in reducing the number of reactions from ∼80 to ∼60 for the synthesis of a typical length 20-mer oligonucleotide. For every kilogram of an oligonucleotide intermediate synthesized, > 500 L of reagents and organic solvents is saved, and the E-factor is decreased to <1500 from ∼2000.
Collapse
Affiliation(s)
- Jimin Yang
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Jessica A Stolee
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Hong Jiang
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Li Xiao
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - William F Kiesman
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Firoz D Antia
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Yannick A Fillon
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Austen Ng
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| | - Xianglin Shi
- Antisense Oligonucleotide Development and Manufacturing; Analytical Development , Biogen , 115 Broadway , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
66
|
Liu L, Zhang Y, Jiang D, Du S, Deng Z, Wang L, Chen S. Recent Advances in the Genomic Profiling of Bacterial Epigenetic Modifications. Biotechnol J 2018; 14:e1800001. [PMID: 29878585 DOI: 10.1002/biot.201800001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Yizhou Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
| | - Dongxu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| |
Collapse
|
67
|
Abstract
Since the original report that Halomonas sp. strain GFAJ-1 was capable of using arsenic instead of phosphorus to sustain growth, additional studies have been conducted, and GFAJ-1 is now considered a highly arsenic-resistant but phosphorus-dependent bacterium. However, the mechanisms supporting the extreme arsenic resistance of the GFAJ-1 strain remain unknown. In this study, we show that GFAJ-1 has multiple distinct arsenic resistance mechanisms. It lacks the genes to reduce arsenate, which is the essential step in the well-characterized resistance mechanism of arsenate reduction coupled to arsenite extrusion. Instead, GFAJ-1 has two arsenic resistance operons, arsH1-acr3-2-arsH2 and mfs1-mfs2-gapdh, enabling tolerance to high levels of arsenate. mfs2 and gapdh encode proteins homologous to Pseudomonas aeruginosa ArsJ and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively, which constitute the equivalent of an As(V) efflux system to catalyze the transformation of inorganic arsenate to pentavalent organoarsenical 1-arseno-3-phosphoglycerate and its subsequent extrusion. Surprisingly, the arsH1-acr3-2-arsH2 operon seems to consist of typical arsenite resistance genes, but this operon is sufficient to confer both arsenite and arsenate resistance on Escherichia coli AW3110 even in the absence of arsenate reductase, suggesting a novel pathway of arsenic detoxification. The simultaneous occurrence of these two unusual detoxification mechanisms enables the adaptation of strain GFAJ-1 to the particularly arsenic-rich environment of Mono Lake. Halomonas sp. strain GFAJ-1 was previously reported to use arsenic as a substitute for phosphorus to sustain life under phosphate-limited conditions. Although this claim was later undermined by several groups, how GFAJ-1 can thrive in environments with high arsenic concentrations remains unclear. Here, we determined that this ability can be attributed to the possession of two arsenic detoxification operons, arsH1-acr3-2-arsH2 and mfs1-mfs2-gapdh. mfs2 and gapdh encode proteins homologous to ArsJ and GAPDH in Pseudomonas aeruginosa; these proteins create an arsenate efflux pathway to reduce cellular arsenate accumulation. Interestingly, the combination of acr3-2 with either arsH gene was sufficient to confer resistance to both arsenite and arsenate in E. coli AW3110, even in the absence of arsenate reductase, suggesting a new strategy for bacterial arsenic detoxification. This study concludes that the survival of GFAJ-1 in high arsenic concentrations is attributable to the cooccurrence of these two unusual arsenic detoxification mechanisms.
Collapse
|
68
|
Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2018. [PMID: 29531068 DOI: 10.1073/pnas.1721916115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of dnd systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial dnd systems: 1,349 bacterial dnd systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary dndBCDE gene cluster that lacks the dndFGH restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced Pseudomonas fluorescens to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.
Collapse
|
69
|
DNA Backbone Sulfur-Modification Expands Microbial Growth Range under Multiple Stresses by its anti-oxidation function. Sci Rep 2017; 7:3516. [PMID: 28615635 PMCID: PMC5471199 DOI: 10.1038/s41598-017-02445-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/11/2017] [Indexed: 11/26/2022] Open
Abstract
DNA phosphorothioate (PT) modification is a sulfur modification on the backbone of DNA introduced by the proteins DndA-E. It has been detected within many bacteria isolates and metagenomic datasets, including human pathogens, and is considered to be widely distributed in nature. However, little is known about the physiological function of this modification, and thus its evolutionary significance and application potential remains largely a mystery. In this study, we focused on the advantages of DNA PT modification to bacterial cells coping with environmental stresses. We show that the mesophile Escherichia coli and the extremophile Shewanella piezotolerans both expanded their growth ranges following exposure to extreme temperature, salinity, pH, pressure, UV, X-ray and heavy metals as a result of DNA phophorothioation. The phophorothioated DNA reacted to both H2O2 and hydroxyl radicals in vivo, and protected genomic DNA as well as sensitive enzymes from intracellular oxidative damage. We further demonstrate that this process has evolved separate from its associated role in DNA restriction and modification. These findings provide a physiological role for a covalent modification widespread in nature and suggest possible applications in biotechnology and biomedicine.
Collapse
|
70
|
Kellner S, DeMott MS, Cheng CP, Russell BS, Cao B, You D, Dedon PC. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat Chem Biol 2017; 13:888-894. [PMID: 28604692 PMCID: PMC5577368 DOI: 10.1038/nchembio.2407] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
Abstract
Genomic modification with sulfur as phosphorothioate (PT) is widespread among prokaryotes, including human pathogens. Apart from its physiological functions, the redox and nucleophilic properties of PT sulfur suggest effects on bacterial fitness in stressful environments. Here we show that PTs are dynamic and labile DNA modifications that cause genomic instability during oxidative stress. Using coupled isotopic labeling-mass spectrometry, we observed sulfur replacement in PTs at a rate of ~2%/h in unstressed Escherichia coli and Salmonella enterica. While PT levels were unaffected by exposure to hydrogen peroxide (H2O2) or hypochlorous acid (HOCl), PT turnover increased to 3.8–10%/h for HOCl and was unchanged for H2O2, consistent with repair of HOCl-induced sulfur damage. PT-dependent HOCl sensitivity extended to cytotoxicity and DNA strand-breaks, which occurred at orders-of-magnitude lower doses of HOCl than H2O2. The genotoxicity of HOCl in PT-containing bacteria suggests reduced fitness in competition with HOCl-producing organisms and during human infections.
Collapse
Affiliation(s)
- Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ching Pin Cheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon S Russell
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Delin You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
71
|
Ahlgren NA, Chen Y, Needham DM, Parada AE, Sachdeva R, Trinh V, Chen T, Fuhrman JA. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environ Microbiol 2017; 19:2434-2452. [PMID: 28418097 DOI: 10.1111/1462-2920.13768] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Marine Thaumarchaeota are abundant ammonia-oxidizers but have few representative laboratory-cultured strains. We report the cultivation of Candidatus Nitrosomarinus catalina SPOT01, a novel strain that is less warm-temperature tolerant than other cultivated Thaumarchaeota. Using metagenomic recruitment, strain SPOT01 comprises a major portion of Thaumarchaeota (4-54%) in temperate Pacific waters. Its complete 1.36 Mbp genome possesses several distinguishing features: putative phosphorothioation (PT) DNA modification genes; a region containing probable viral genes; and putative urea utilization genes. The PT modification genes and an adjacent putative restriction enzyme (RE) operon likely form a restriction modification (RM) system for defence from foreign DNA. PacBio sequencing showed >98% methylation at two motifs, and inferred PT guanine modification of 19% of possible TGCA sites. Metagenomic recruitment also reveals the putative virus region and PT modification and RE genes are present in 18-26%, 9-14% and <1.5% of natural populations at 150 m with ≥85% identity to strain SPOT01. The presence of multiple probable RM systems in a highly streamlined genome suggests a surprising importance for defence from foreign DNA for dilute populations that infrequently encounter viruses or other cells. This new strain provides new insights into the ecology, including viral interactions, of this important group of marine microbes.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yangyang Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alma E Parada
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rohan Sachdeva
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vickie Trinh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ting Chen
- Bioinformatics Division, TNLIST, Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
72
|
Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc Natl Acad Sci U S A 2017; 114:4501-4506. [PMID: 28400512 DOI: 10.1073/pnas.1702450114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, 6mA methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(GPS6mA) dinucleotides in the GPS6mAAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(GPSA) motifs per genome, with 6mA arising from a yet-to-be-identified methyltransferase. To further explore PT and 6mA in another consensus sequence, GPS6mATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in GPSATC) and Dam methyltransferase from E. coli DH10B (6mA in G6mATC). Based on this model, in vitro studies revealed reduced Dam activity in GPSATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed 6mA in all 2,058 GPSATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that 6mA can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.
Collapse
|
73
|
Zou X, Wang L, Li Z, Luo J, Wang Y, Deng Z, Du S, Chen S. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Med Res Rev 2017; 38:229-260. [PMID: 28295439 DOI: 10.1002/med.21439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Xuan Zou
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Lianrong Wang
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Zhiqiang Li
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Jie Luo
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Yunfu Wang
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Zixin Deng
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Shi Chen
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| |
Collapse
|
74
|
Mechanistic Investigation on ROS Resistance of Phosphorothioated DNA. Sci Rep 2017; 7:42823. [PMID: 28216673 PMCID: PMC5316992 DOI: 10.1038/srep42823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 11/23/2022] Open
Abstract
Phosphorothioated DNA (PT-DNA) exhibits a mild anti-oxidant property both in vivo and in vitro. It was found that 8-OHdG and ROS levels were significantly lower in dnd+ (i.e. S+) E. coli., compared to a dnd− (i.e. S−) strain. Furthermore, different from traditional antioxidants, phosphorothioate compound presents an unexpectedly high capacity to quench hydroxyl radical. Oxidative product analysis by liquid chromatography-mass spectrometry and quantum mechanistic computation supported its unique anti-oxidant characteristic of the hydroxyl selectivity: phosphorothioate donates an electron to either hydroxyl radical or guanine radical derived from hydroxyl radical, leading to a PS• radical; a complex of PS• radical and OH− (i.e. the reductive product of hydroxyl radical) releases a highly reductive HS• radical, which scavenges more equivalents of oxidants in the way to high-covalent sulphur compounds such as sulphur, sulphite and sulphate. The PS-PO conversion (PS and PO denote phosphorus-sulphur and phosphorus-oxygen compounds, respectively) made a switch of extremely oxidative OH• to highly reductive HS• species, endowing PT-DNA with the observed high capacity in hydroxyl-radical neutralization. This plausible mechanism provides partial rationale as to why bacteria develop the resource-demanding PT modification on guanine-neighboring phosphates in genome.
Collapse
|
75
|
Dai D, Du A, Xiong K, Pu T, Zhou X, Deng Z, Liang J, He X, Wang Z. DNA Phosphorothioate Modification Plays a Role in Peroxides Resistance in Streptomyces lividans. Front Microbiol 2016; 7:1380. [PMID: 27630631 PMCID: PMC5005934 DOI: 10.3389/fmicb.2016.01380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd− mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd− mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.
Collapse
Affiliation(s)
- Daofeng Dai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Kangli Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
76
|
Xiao L, Xiang Y. Quantification of total phosphorothioate in bacterial DNA by a bromoimane-based fluorescent method. Biotechnol J 2016; 11:824-30. [PMID: 27168171 DOI: 10.1002/biot.201500432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/16/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023]
Abstract
The discovery of phosphorothioate (PT) modifications in bacterial DNA has challenged our understanding of conserved phosphodiester backbone structure of cellular DNA. This exclusive DNA modification in bacteria is not found in animal cells yet, and its biological function in bacteria is still poorly understood. Quantitative information about the bacterial PT modifications is thus important for the investigation of their possible biological functions. In this study, we have developed a simple fluorescence method for selective quantification of total PTs in bacterial DNA, based on fluorescent labeling of PTs and subsequent release of the labeled fluorophores for absolute quantification. The method was highly selective to PTs and not interfered by the presence of reactive small molecules or proteins. The quantification of PTs in an E. coli DNA sample was successfully achieved using our method and gave a result of about 455 PTs per million DNA nucleotides, while almost no detectable PTs were found in a mammalian calf thymus DNA. With this new method, the content of phosphorothioate in bacterial DNA could be successfully quantified, serving as a simple method suitable for routine use in biological phosphorothioate related studies.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
77
|
DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates. PLoS One 2015; 10:e0144612. [PMID: 26656597 PMCID: PMC4676702 DOI: 10.1371/journal.pone.0144612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.
Collapse
|
78
|
Zheng T, Jiang P, Cao B, Cheng Q, Kong L, Zheng X, Hu Q, You D. DndEi Exhibits Helicase Activity Essential for DNA Phosphorothioate Modification and ATPase Activity Strongly Stimulated by DNA Substrate with a GAAC/GTTC Motif. J Biol Chem 2015; 291:1492-500. [PMID: 26631733 DOI: 10.1074/jbc.m115.694018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphorothioate (PT) modification of DNA, in which the non-bridging oxygen of the backbone phosphate group is replaced by sulfur, is governed by the DndA-E proteins in prokaryotes. To better understand the biochemical mechanism of PT modification, functional analysis of the recently found PT-modifying enzyme DndEi, which has an additional domain compared with canonical DndE, from Riemerella anatipestifer is performed in this study. The additional domain is identified as a DNA helicase, and functional deletion of this domain in vivo leads to PT modification deficiency, indicating an essential role of helicase activity in PT modification. Subsequent analysis reveals that the additional domain has an ATPase activity. Intriguingly, the ATPase activity is strongly stimulated by DNA substrate containing a GAAC/GTTC motif (i.e. the motif at which PT modifications occur in R. anatipestifer) when the additional domain and the other domain (homologous to canonical DndE) are co-expressed as a full-length DndEi. These results reveal that PT modification is a biochemical process with DNA strand separation and intense ATP hydrolysis.
Collapse
Affiliation(s)
- Tao Zheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Pan Jiang
- the Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Shanghai 200240, and
| | - Bo Cao
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Qiuxiang Cheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Lingxin Kong
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Xiaoqing Zheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Qinghai Hu
- the Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Shanghai 200240, and
| | - Delin You
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, the Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
79
|
In vitro analysis of phosphorothioate modification of DNA reveals substrate recognition by a multiprotein complex. Sci Rep 2015. [PMID: 26213215 PMCID: PMC4515589 DOI: 10.1038/srep12513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A wide variety of prokaryotes possess DNA modifications consisting of sequence-specific phosphorothioates (PT) inserted by members of a five-gene cluster. Recent genome mapping studies revealed two unusual features of PT modifications: short consensus sequences and partial modification of a specific genomic site in a population of bacteria. To better understand the mechanism of target selection of PT modifications that underlies these features, we characterized the substrate recognition of the PT-modifying enzymes termed DptC, D and E in a cell extract system from Salmonella. The results revealed that double-stranded oligodeoxynucleotides underwent de novo PT modification in vitro, with the same modification pattern as in vivo, i. e., GpsAAC/GpsTTC motif. Unexpectedly, in these in vitro analyses we observed no significant effect on PT modification by sequences flanking GAAC/GTTC motif, while PT also occurred in the GAAC/GTTC motif that could not be modified in vivo. Hemi-PT DNA also served as substrate of the PT-modifying enzymes, but not single-stranded DNA. The PT-modifying enzymes were then found to function as a large protein complex, with all of three subunits in tetrameric conformations. This study provided the first demonstration of in vitro DNA PT modification by PT-modifying enzymes that function as a large protein complex.
Collapse
|
80
|
He W, Huang T, Tang Y, Liu Y, Wu X, Chen S, Chan W, Wang Y, Liu X, Chen S, Wang L. Regulation of DNA phosphorothioate modification in Salmonella enterica by DndB. Sci Rep 2015; 5:12368. [PMID: 26190504 PMCID: PMC4507180 DOI: 10.1038/srep12368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/24/2015] [Indexed: 01/30/2023] Open
Abstract
DNA phosphorothioate (PT) modification, in which the non-bridging oxygen of the sugar-phosphate backbone is substituted by sulfur, occurs naturally in diverse bacteria and archaea and is regulated by the DndABCDE proteins. DndABCDE and the restriction cognate DndFGHI constitute a new type of defense system that prevents the invasion of foreign DNA in Salmonella enterica serovar Cerro 87. GAAC/GTTC consensus contexts across genomes were found to possess partial PT modifications even in the presence of restriction activity, indicating the regulation of PT. The abundance of PT in cells must be controlled to suit cellular activities. However, the regulatory mechanism of PT modification has not been characterized. The result here indicated that genomic PT modification in S. enterica is controlled by the transcriptional regulator DndB, which binds to two regions in the promoter, each possessing a 5'-TACGN(10)CGTA-3' palindromic motif, to regulate the transcription of dndCDE and its own gene. Site-directed mutagenesis showed that the Cys29 residue of DndB plays a key role in its DNA-binding activity or conformation. Proteomic analysis identified changes to a number of cellular proteins upon up-regulation and loss of PT. Considering the genetic conservation of dnd operons, regulation of PT by DndB might be widespread in diverse organisms.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Teng Huang
- 1] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China [2] Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - You Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaolin Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Si Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yajie Wang
- 1] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China [2] Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
81
|
Cheng Q, Cao B, Yao F, Li J, Deng Z, You D. Regulation of DNA phosphorothioate modifications by the transcriptional regulator DptB in Salmonella. Mol Microbiol 2015; 97:1186-94. [PMID: 26096787 DOI: 10.1111/mmi.13096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 11/26/2022]
Abstract
DNA phosphorothioate (PT) modifications, with one non-bridging phosphate oxygen replaced with sulfur, are widely but sporadically distributed in prokaryotic genomes. Short consensus sequences surround the modified linkage in each strain, although each site is only partially modified. The mechanism that maintains this low-frequency modification status is still unknown. In Salmonella enterica serovar Cerro 87, PT modification is mediated by a four-gene cluster called dptBCDE. Here, we found that deletion of dptB led to a significant increase in intracellular PT modification level. In this deletion, transcription of downstream genes was elevated during rapid cell growth. Restoration of dptB on a plasmid restored wild-type levels of expression of downstream genes and PT modification. In vitro, DptB directly protected two separate sequences within the dpt promoter region from DNase I cleavage. Each protected sequence contained a direct repeat (DR). Mutagenesis assays of the DRs demonstrated that each DR was essential for DptB binding. The observation of two shifted species by gel-shift analysis suggests dimer conformation of DptB protein. These DRs are conserved among the promoter regions of dptB homologs, suggesting that this regulatory mechanism is widespread. These findings demonstrate that PT modification is regulated at least in part at the transcriptional level.
Collapse
Affiliation(s)
- Qiuxiang Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Bo Cao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fen Yao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinli Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
82
|
Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, Deikus G, Shen N, Munera D, Waldor MK, Chess A, Blaser MJ, Schadt EE, Fang G. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun 2015; 6:7438. [PMID: 26074426 PMCID: PMC4490391 DOI: 10.1038/ncomms8438] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/08/2015] [Indexed: 12/22/2022] Open
Abstract
Beyond its role in host defense, bacterial DNA methylation also plays important roles in the regulation of gene expression, virulence and antibiotic resistance. Bacterial cells in a clonal population can generate epigenetic heterogeneity to increase population-level phenotypic plasticity. Single molecule, real-time (SMRT) sequencing enables the detection of N6-methyladenine and N4-methylcytosine, two major types of DNA modifications comprising the bacterial methylome. However, existing SMRT sequencing-based methods for studying bacterial methylomes rely on a population-level consensus that lacks the single-cell resolution required to observe epigenetic heterogeneity. Here, we present SMALR (single-molecule modification analysis of long reads), a novel framework for single molecule-level detection and phasing of DNA methylation. Using seven bacterial strains, we show that SMALR yields significantly improved resolution and reveals distinct types of epigenetic heterogeneity. SMALR is a powerful new tool that enables de novo detection of epigenetic heterogeneity and empowers investigation of its functions in bacterial populations. Bacterial DNA methylation is involved in many processes, from host defense to antibiotic resistance, however current methods for examining methylated genomes lack single-cell resolution. Here Beaulaurier et al. present Single Molecule Modification Analysis of Long Reads, a new tool for de novo detection of epigenetic heterogeneity.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Xue-Song Zhang
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | - Shijia Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Chaggai Rosenbluh
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Nan Shen
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Diana Munera
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Andrew Chess
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Martin J Blaser
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
83
|
The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands. BMC Genomics 2015; 16:199. [PMID: 25879448 PMCID: PMC4373003 DOI: 10.1186/s12864-015-1421-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/28/2015] [Indexed: 11/29/2022] Open
Abstract
Background Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd+) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd+E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands. Results The dndBCDE genes (dnd operon) were detected in all Dnd+E. coli strains by PCR. The addition of thiourea improved the typeability of Dnd+E. coli strains to 100% using PFGE and the Dnd+ phenotype can be observed in both clonal and genetically diverse E. coli strains. Genomic analysis of 101 dnd operons from genome sequences of Enterobacteriaceae revealed that the dnd operons of the same bacterial species were generally clustered together in the phylogenetic tree. Further analysis of dnd operons of 52 E. coli genomes together with their respective immediate genetic environments revealed a total of 7 types of genetic organizations, all of which were found to be associated with genomic islands designated dnd-encoding GIs. The dnd-encoding GIs displayed mosaic structure and the genomic context of the 7 islands (with 1 representative genome from each type of genetic organization) were also highly variable, suggesting multiple recombination events. This is also the first report where two dnd operons were found within a strain although the biological implication is unknown. Surprisingly, dnd operons were frequently found in pathogenic E. coli although their link with virulence has not been explored. Conclusion Genomic islands likely play an important role in facilitating the horizontal gene transfer of the dnd operons in E. coli with 7 different types of islands discovered so far. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1421-8) contains supplementary material, which is available to authorized users.
Collapse
|
84
|
Liu G, Zhang Z, Zhao G, Deng Z, Wu G, He X. Crystallization and preliminary X-ray analysis of the type IV restriction endonuclease ScoMcrA from Streptomyces coelicolor, which cleaves both Dcm-methylated DNA and phosphorothioated DNA. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:57-60. [PMID: 25615970 DOI: 10.1107/s2053230x14025801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
ScoMcrA is a type IV modification-dependent restriction endonuclease found in the model strain Streptomyces coelicolor. Unlike type I, II and III restriction endonucleases, which cleave unmodified DNA, type IV restriction endonucleases cleave modified DNA, including methylated, hydroxymethylated, glucosyl-hydroxymethylated and phosphorothioated DNA. ScoMcrA targets both Dcm-methylated DNA and phosphorothioated DNA, and makes double-strand breaks 16-28 nt away from the modified nucleotides or the phosphorothioate links. However, the mechanism by which ScoMcrA recognizes these two entirely different types of modification remains unclear. In this study, the ScoMcrA protein was overexpressed, purified and crystallized. The crystals diffracted to 3.35 Å resolution and belonged to space group P2(1)2(1)2(1). The unit-cell parameters were determined to be a=130.19, b=139.36, c=281.01 Å, α=β=γ=90°. These results will facilitate the detailed structural analysis of ScoMcrA and further elucidation of its biochemical mechanism.
Collapse
Affiliation(s)
- Guang Liu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
85
|
Chen L, Wang XL, Shi T, Wu T, Deng Z, Zhao YL. Theoretical study on the relationship between Rp-phosphorothioation and base-step in S-DNA: based on energetic and structural analysis. J Phys Chem B 2014; 119:474-81. [PMID: 25519472 DOI: 10.1021/jp511359e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorothioation (PT), previously used in synthetic antisense drugs to arrest the transcription or translation process, is also a novel physiological modification in bacteria DNAs. In the previous study, we reported that Rp-phosphorothioation (Rp-PT) destabilizes B-type helix significantly, using a quantum-mechanics-based energy scoring function developed with a dinucleotide model ( Zhang et al. J. Phys. Chem. B , 2012 , 116 , 10639 - 10648 ). A consequent question surfaces in the field of the phosphorothioated DNA (S-DNA) research: does the endogenous chemical modification interact with the base sequence in the bacterial genomes, e.g., in terms of the most common structure of the B-type helix? In this work, we carried out further energetic analysis on the backbone relative energies calculated with the scoring function according to 16 groups of base-step classifications. Moreover, we conducted molecular dynamics simulations of the B-helical structure with the different base-pair steps, to investigate the detailed structural changes upon the O-/S-substitution. As a result, the Rp-PT modification definitively enhances the stiffness of the backbone and differentiates backbone stability as an interaction with base-steps. Furthermore, certain exceptional sequences such as GT and CC were highlighted in the structural analysis of the sulfur local contacts and relative orientation of double strands, indicating that Rp-PT can cross-talk with particular base-steps. The special effects between the phosphorothioation and base-step may be related to the conservative consensus observed highly frequently in bacterial genomes.
Collapse
Affiliation(s)
- Limeng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
86
|
Eckstein F. Phosphorothioates, Essential Components of Therapeutic Oligonucleotides. Nucleic Acid Ther 2014; 24:374-87. [DOI: 10.1089/nat.2014.0506] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Fritz Eckstein
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| |
Collapse
|
87
|
DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks. Sci Rep 2014; 4:6642. [PMID: 25319634 PMCID: PMC4198939 DOI: 10.1038/srep06642] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
The modification of DNA by phosphorothioate (PT) occurs when the non-bridging oxygen in the sugar-phosphate backbone of DNA is replaced with sulfur. This DNA backbone modification was recently discovered and is governed by the dndABCDE genes in a diverse group of bacteria and archaea. However, the biological function of DNA PT modifications is poorly understood. In this study, we employed the RNA-seq analysis to characterize the global transcriptional changes in response to PT modifications. Our results show that DNA without PT protection is susceptible to DNA damage caused by the dndFGHI gene products. The DNA double-stranded breaks then trigger the SOS response, cell filamentation and prophage induction. Heterologous expression of dndBCDE conferring DNA PT modifications at GPSA and GPST prevented the damage in Salmonella enterica. Our data provide insights into the physiological role of the DNA PT system.
Collapse
|
88
|
Lai C, Wu X, Chen C, Huang T, Xiong X, Wu S, Gu M, Deng Z, Chen X, Chen S, Wang L. In vivo mutational characterization of DndE involved in DNA phosphorothioate modification. PLoS One 2014; 9:e107981. [PMID: 25269084 PMCID: PMC4182426 DOI: 10.1371/journal.pone.0107981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/22/2014] [Indexed: 12/05/2022] Open
Abstract
DNA phosphorothioate (PT) modification is a recently identified epigenetic modification that occurs in the sugar-phosphate backbone of prokaryotic DNA. Previous studies have demonstrated that DNA PT modification is governed by the five DndABCDE proteins in a sequence-selective and RP stereo-specific manner. Bacteria may have acquired this physiological modification along with dndFGH as a restriction-modification system. However, little is known about the biological function of Dnd proteins, especially the smallest protein, DndE, in the PT modification pathway. DndE was reported to be a DNA-binding protein with a preference for nicked dsDNA in vitro; the binding of DndE to DNA occurs via six positively charged lysine residues on its surface. The substitution of these key lysine residues significantly decreased the DNA binding affinities of DndE proteins to undetectable levels. In this study, we conducted site-directed mutagenesis of dndE on a plasmid and measured DNA PT modifications under physiological conditions by mass spectrometry. We observed distinctive differences from the in vitro binding assays. Several mutants with lysine residues mutated to alanine decreased the total frequency of PT modifications, but none of the mutants completely eliminated PT modification. Our results suggest that the nicked dsDNA-binding capacity of DndE may not be crucial for PT modification and/or that DndE may have other biological functions in addition to binding to dsDNA.
Collapse
Affiliation(s)
- Chongde Lai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaolin Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Teng Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaolin Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shuangju Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- * E-mail: (SC); (LW)
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- * E-mail: (SC); (LW)
| |
Collapse
|
89
|
Cao B, Cheng Q, Gu C, Yao F, DeMott MS, Zheng X, Deng Z, Dedon PC, You D. Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella. Mol Microbiol 2014; 93:776-85. [PMID: 25040300 DOI: 10.1111/mmi.12692] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/25/2022]
Abstract
Prokaryotes protect their genomes from foreign DNA with a diversity of defence mechanisms, including a widespread restriction-modification (R-M) system involving phosphorothioate (PT) modification of the DNA backbone. Unlike classical R-M systems, highly partial PT modification of consensus motifs in bacterial genomes suggests an unusual mechanism of PT-dependent restriction. In Salmonella enterica, PT modification is mediated by four genes dptB-E, while restriction involves additional three genes dptF-H. Here, we performed a series of studies to characterize the PT-dependent restriction, and found that it presented several features distinct with traditional R-M systems. The presence of restriction genes in a PT-deficient mutant was not lethal, but instead resulted in several pathological phenotypes. Subsequent transcriptional profiling revealed the expression of > 600 genes was affected by restriction enzymes in cells lacking PT, including induction of bacteriophage, SOS response and DNA repair-related genes. These transcriptional responses are consistent with the observation that restriction enzymes caused extensive DNA cleavage in the absence of PT modifications in vivo. However, overexpression of restriction genes was lethal to the host in spite of the presence PT modifications. These results point to an unusual mechanism of PT-dependent DNA cleavage by restriction enzymes in the face of partial PT modification.
Collapse
Affiliation(s)
- Bo Cao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|