51
|
Molecular Biology of Basal and Squamous Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:171-191. [PMID: 32918219 DOI: 10.1007/978-3-030-46227-7_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalent keratinocyte-derived neoplasms of the skin are basal cell carcinoma and squamous cell carcinoma. Both so-called non-melanoma skin cancers comprise the most common cancers in humans by far. Common risk factors for both tumor entities include sun exposure, DNA repair deficiencies leading to chromosomal instability, or immunosuppression. Yet, fundamental differences in the development of the two different entities have been and are currently unveiled. The constitutive activation of the sonic hedgehog signaling pathway by acquired mutations in the PTCH and SMO genes appears to represent the early basal cell carcinoma developmental determinant. Although other signaling pathways are also affected, small hedgehog inhibitory molecules evolve as the most promising basal cell carcinoma treatment options systemically as well as topically in current clinical trials. For squamous cell carcinoma development, mutations in the p53 gene, especially UV-induced mutations, have been identified as early events. Yet, other signaling pathways including epidermal growth factor receptor, RAS, Fyn, or p16INK4a signaling may play significant roles in squamous cell carcinoma development. The improved understanding of the molecular events leading to different tumor entities by de-differentiation of the same cell type has begun to pave the way for modulating new molecular targets therapeutically with small molecules.
Collapse
|
52
|
Disease-specific alteration of karyopherin-α subtype establishes feed-forward oncogenic signaling in head and neck squamous cell carcinoma. Oncogene 2019; 39:2212-2223. [PMID: 31822798 PMCID: PMC7056645 DOI: 10.1038/s41388-019-1137-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Nuclear import, mediated in part by karyopherin-α (KPNA)/importin-α subtypes, regulates transcription factor access to the genome and determines cell fate. However, the cancer-specific changes of KPNA subtypes and the relevancy in cancer biology remain largely unknown. Here, we report that KPNA4, encoding karyopherin-α4 (KPNA4), is exclusively amplified and overexpressed in head and neck of squamous cell carcinoma (HNSCC). Depletion of KPNA4 attenuated nuclear localization signal-dependent transport activity and suppressed malignant phenotypes and induced epidermal differentiation. Mechanistically, KPNA4-mediated nuclear transport of Ras-responsive element-binding protein (RREB1), which sustains Ras/ERK pathway signaling through repressing miR-143/145 expression. Notably, MAPK signaling enhanced trafficking activity of KPNA4 via phosphorylation of KPNA4 at Ser60. These data reveal that KPNA4 establishes a feed-forward cascade that potentiates Ras/ERK signaling in HNSCC.
Collapse
|
53
|
Lu X, Qian X, Li X, Miao Q, Peng S. DMCM: a Data-adaptive Mutation Clustering Method to identify cancer-related mutation clusters. Bioinformatics 2019; 35:389-397. [PMID: 30010784 DOI: 10.1093/bioinformatics/bty624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Motivation Functional somatic mutations within coding amino acid sequences confer growth advantage in pathogenic process. Most existing methods for identifying cancer-related mutations focus on the single amino acid or the entire gene level. However, gain-of-function mutations often cluster in specific protein regions instead of existing independently in the amino acid sequences. Some approaches for identifying mutation clusters with mutation density on amino acid chain have been proposed recently. But their performance in identification of mutation clusters remains to be improved. Results Here we present a Data-adaptive Mutation Clustering Method (DMCM), in which kernel density estimate (KDE) with a data-adaptive bandwidth is applied to estimate the mutation density, to find variable clusters with different lengths on amino acid sequences. We apply this approach in the mutation data of 571 genes in over twenty cancer types from The Cancer Genome Atlas (TCGA). We compare the DMCM with M2C, OncodriveCLUST and Pfam Domain and find that DMCM tends to identify more significant clusters. The cross-validation analysis shows DMCM is robust and cluster cancer type enrichment analysis shows that specific cancer types are enriched for specific mutation clusters. Availability and implementation DMCM is written in Python and analysis methods of DMCM are written in R. They are all released online, available through https://github.com/XinguoLu/DMCM. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Qiumai Miao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.,School of Computer Science, National University of Defense Technology, Changsha, China
| |
Collapse
|
54
|
HOXA9 Transcriptionally Promotes Apoptosis and Represses Autophagy by Targeting NF-κB in Cutaneous Squamous Cell Carcinoma. Cells 2019; 8:cells8111360. [PMID: 31683603 PMCID: PMC6912505 DOI: 10.3390/cells8111360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023] Open
Abstract
Tumor suppressor HOXA9 has been identified to promote apoptosis in cutaneous squamous cell carcinoma (cSCC). However, the mechanism of such pro-apoptotic role of HOXA9 remains obscure. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA-seq data showed that NF-κB, apoptosis and autophagy pathways are significantly regulated after HOXA9 knockdown. HOXA9 transcriptionally regulates RELA, the p65 subunit of NF-κB. Loss of HOXA9 in cSCC significantly upregulates RELA expression and thus enhances NF-κB pathway. Interestingly, RELA transcriptionally promotes not only anti-apoptotic factor BCL-XL but also autophagic genes including ATG1, ATG3, and ATG12. Our results reveal an enhanced NF-κB signaling network regulated by HOXA9, which contributes to repressed apoptosis and activated autophagy in cSCC development and may represent an intervention target for cSCC therapy.
Collapse
|
55
|
Zhang Y, Gao L, Ma S, Ma J, Wang Y, Li S, Hu X, Han S, Zhou M, Zhou L, Ding Z. MALAT1-KTN1-EGFR regulatory axis promotes the development of cutaneous squamous cell carcinoma. Cell Death Differ 2019; 26:2061-2073. [PMID: 30683916 PMCID: PMC6748142 DOI: 10.1038/s41418-019-0288-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023] Open
Abstract
Long noncoding RNAs (LncRNAs), including MALAT1, are critical regulators of tumor development. However, the roles and molecular mechanisms of LncRNAs in cutaneous squamous cell carcinoma (cSCC) remain underexplored. In this study, functional studies using in vitro cellular and in vivo xenograft models confirmed the pro-carcinogenic roles of MALAT1 in cSCC. Further, MALAT1 was identified to regulate epidermal growth factor receptor (EGFR) protein expression but did not affect EGFR mRNA expression. Transcriptomic sequencing identified kinectin 1 (KTN1) as the key mediator for MALAT1 regulation of EGFR. Mechanistic study revealed that MALAT1 interacts with c-MYC to form a complex and directly binds to the promoter region of KTN1 gene and enhances its transactivation to positively regulate EGFR protein expression. Our findings, therefore, establish a novel c-MYC-assisted MALAT1-KTN1-EGFR axis, which contributes to cSCC development and may serve as novel target for therapeutic intervention.
Collapse
Grants
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 81573076 National Natural Science Foundation of China (National Science Foundation of China)
- 81172634 National Natural Science Foundation of China (National Science Foundation of China)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- 2016A030313738 Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
- Grants from the School of Public Health of Southern Medical University, China (Grant No.GW201612)
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lin Gao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ji Ma
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xia Hu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shuo Han
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
56
|
Schmitz L, Oster-Schmidt C, Stockfleth E. Nonmelanoma skin cancer - from actinic keratosis to cutaneous squamous cell carcinoma. J Dtsch Dermatol Ges 2019; 16:1002-1013. [PMID: 30117703 DOI: 10.1111/ddg.13614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
Abstract
Actinic keratoses (AKs) are defined as intraepithelial proliferation of atypical keratinocytes. Given their potential for progression to invasive squamous cell carcinoma, they may eventually evolve into a life-threatening disease. In recent decades, there has been a significant increase in the incidence of AKs, primarily due to changes in recreational activities and demographic trends in industrialized countries. As it is currently impossible to predict if and when a given AK might progress to invasive carcinoma, rigorous treatment of field cancerization is a key component in preventing potential progression. In addition to a broad armamentarium of procedures as well as pharmaceutical treatment options, primary prevention through diligent UV protection likewise plays a crucial role. New clinical, histomorphological, or molecular classifications are needed to be able to reliably stratify patients based on their individual risk. Especially in light of socio-economic aspects, such a step might prevent over- and undertreatment of an ever-growing patient population and help develop treatment concepts based on individual patient needs.
Collapse
Affiliation(s)
- Lutz Schmitz
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum, Bochum, Germany
| | | | - Eggert Stockfleth
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
57
|
Huang A, Nguyen JK, Austin E, Mamalis A, Jagdeo J. Updates on Treatment Approaches for Cutaneous Field Cancerization. CURRENT DERMATOLOGY REPORTS 2019; 8:122-132. [PMID: 31475077 DOI: 10.1007/s13671-019-00265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose of Review Field cancerization describes the phenomenon that multiple heterogenous mutations may arise in an area exposed to chronic carcinogenic stimuli. Advances in the understanding of cutaneous field cancerization have led to novel therapeutic approaches to the management of actinic keratoses (AKs). Herein, we review the literature on the pathophysiology and emerging research of field cancerization in dermatology. Recent Findings The classification systems for grading AK lesions are being refined with investigations focusing on their clinical utility. There is a growing shift towards field-directed treatment for AKs as the importance of field cancerization becomes clearer. Current field-directed therapies are being optimized and novel therapeutic modalities are being studied. Summary Field cancerization underlies the transformation of photodamaged skin into AKs and potentially cutaneous SCC (cSCC). Clinically meaningful classification systems for AKs are needed to better inform decisions regarding treatment. As we learn more about the role of field characterization in photodamage, AKs and cSCCs, therapeutic strategies are becoming more field-directed rather than lesion-directed.
Collapse
Affiliation(s)
- Alisen Huang
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Julie K Nguyen
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Evan Austin
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Andrew Mamalis
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
58
|
Schmitz L, Grinblat B, Novak B, Hoeh AK, Händschke K, von Dobbeler C, Bierhoff E, Szeimies RM, Gambichler T, Torezan L, Festa-Neto C, Stockfleth E, Dirschka T. Somatic mutations in kinetochore gene KNSTRN are associated with basal proliferating actinic keratoses and cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol 2019; 33:1535-1540. [PMID: 30972880 DOI: 10.1111/jdv.15615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mutations in kinetochore gene KNSTRN accelerate the development of cutaneous squamous cell carcinoma (SCC) and may correlate with different histological classifications of actinic keratosis (AKs). OBJECTIVE To determine KNSTRN gene mutation frequency in healthy skin (HS), actinically damaged skin (ADS), in AKs with different histomorphological gradings and invasive SCCs. METHODS All samples were histologically evaluated. AK lesions were additionally classified according to their upwards (AK I-III) and downwards (PRO I-III) directed growth pattern. Mutation analyses of all samples were performed using the Sanger method. RESULTS With one exception, all detected mutations in KNSTRN gene showed an alanine-to-glutamate substitution at codon 40 (p.Ala40Glu). p.Ala40Glu mutation was found in 6.9% (2/29) of HS, in 16.1% (5/31) of ADS, in 18.3% (20/109) of AKs and in 30.0% (9/30) of invasive SCCs. Further stratification of AKs using the common AK classification of Röwert-Huber revealed the p.Ala40Glu mutation in 14.7% (5/43), 13.3% (4/30) and 24.4% (11/45) (AK I, II and III). In contrast, the new PRO classification showed a distribution of 3.6% (1/28) in PRO I, 21.7% (13/60) in PRO II and 28.6% (6/21) in PRO III. Mutation frequency in HS showed significant differences compared to AKs classified as PRO III and invasive SCCs (P < 0.05). In contrast, there were no statistically significant differences between HS and AKs when classified according to Röwert-Huber. CONCLUSIONS Recurrent somatic mutation p.Ala40Glu in KNSTRN gene is associated with basal proliferating AKs in accordance with invasive SCCs. This supports the impact of basal proliferative pattern in terms of progression.
Collapse
Affiliation(s)
- L Schmitz
- Department of Dermatology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - B Grinblat
- Department of Dermatology, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - B Novak
- Department of Animal Physiology, Ruhr-University, Bochum, Germany
| | - A-K Hoeh
- CentroDerm GmbH, Wuppertal, Germany
| | | | | | - E Bierhoff
- Heinz-Werner-Seifert-Institute of Dermatopathology, Bonn, Germany
| | - R-M Szeimies
- Department of Dermatology and Allergology, Vest Hospital, Academic Teaching Hospital University of Bochum, Recklinghausen, Germany
| | - T Gambichler
- Department of Dermatology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - L Torezan
- Department of Dermatology, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - C Festa-Neto
- Department of Dermatology, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - E Stockfleth
- Department of Dermatology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - T Dirschka
- CentroDerm GmbH, Wuppertal, Germany.,Faculty of Health, University Witten-Herdecke, Witten, Germany
| |
Collapse
|
59
|
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
Affiliation(s)
- Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Socratis N Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Margaritis Avgeris
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vicky Filippa
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Antonis D Lampidonis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vassiliki Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, 12462 Athens, Greece.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Andreas Scorilas
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
60
|
Sand J, Fenini G, Grossi S, Hennig P, Di Filippo M, Levesque M, Werner S, French LE, Beer HD. The NLRP1 Inflammasome Pathway Is Silenced in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:1788-1797.e6. [PMID: 30738816 DOI: 10.1016/j.jid.2019.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 01/27/2023]
Abstract
The inflammasome protein NLRP1 is an important innate immune sensor in human keratinocytes, and, together with ASC and caspase-1, it mediates the activation and secretion of the proinflammatory cytokines IL-1β and IL-18. These cytokines and inflammasomes can have partly opposing roles during tumorigenesis in mice. In contrast, ASC expression is impaired in different types of cancer in humans. In this study, we analyzed inflammasome activation and expression of inflammasome proteins, including their downstream cytokines, in squamous cell carcinomas, a type of nonmelanoma skin cancer derived from keratinocytes. We assessed mRNA and protein levels in human primary keratinocytes and skin carcinoma-derived SCC cell lines and detected a strong down-regulation of expression of NLRP1 inflammasome components, as well as reduced expression of the proinflammatory cytokines proIL-1β and proIL-1α. Protein levels of NLRP1, ASC, caspase-1, and proIL-1β were reduced in patient-derived SCC biopsy samples compared with healthy skin. Furthermore, the results suggest that expression of PYCARD (ASC), CASP1, IL1B, and NLRP1 is silenced by methylation in SCC cell lines. In conclusion, the down-regulation of the inflammasome pathway in SCCs might favor late tumor development in human skin.
Collapse
Affiliation(s)
- Jennifer Sand
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Sabine Werner
- Institute for Molecular Health Sciences, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland; Department of Dermatology and Allergology, Klinikum der Universität München, Munich, Germany
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland.
| |
Collapse
|
61
|
Kuonen F, Huskey NE, Shankar G, Jaju P, Whitson RJ, Rieger KE, Atwood SX, Sarin KY, Oro AE. Loss of Primary Cilia Drives Switching from Hedgehog to Ras/MAPK Pathway in Resistant Basal Cell Carcinoma. J Invest Dermatol 2019; 139:1439-1448. [PMID: 30707899 DOI: 10.1016/j.jid.2018.11.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Basal cell carcinomas (BCCs) rely on Hedgehog (HH) pathway growth signal amplification by the microtubule-based organelle, the primary cilium. Despite naive tumor responsiveness to Smoothened inhibitors (Smoi), resistance in advanced tumors remains common. Although the resistant BCCs usually maintain HH pathway activation, squamous cell carcinomas with Ras/MAPK pathway activation also arise, and the molecular basis of tumor type and pathway selection are still obscure. Here, we identify the primary cilium as a critical determinant controlling tumor pathway switching. Strikingly, Smoothened inhibitor-resistant BCCs have an increased mutational load in ciliome genes, resulting in reduced primary cilia and HH pathway activation compared with naive or Gorlin syndrome patient BCCs. Gene set enrichment analysis of resistant BCCs with a low HH pathway signature showed increased Ras/MAPK pathway activation. Tissue analysis confirmed an inverse relationship between primary cilia presence and Ras/MAPK activation, and primary cilia removal in BCCs potentiated Ras/MAPK pathway activation. Moreover, activating Ras in HH-responsive cell lines conferred resistance to both canonical (vismodegib) and noncanonical (atypical protein kinase C and MRTF inhibitors) HH pathway inhibitors and conferred sensitivity to MAPK inhibitors. Our results provide insights into BCC treatment and identify the primary cilium as an important lineage gatekeeper, preventing HH-to-Ras/MAPK pathway switching.
Collapse
Affiliation(s)
- François Kuonen
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Noelle E Huskey
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gautam Shankar
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Prajakta Jaju
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Ramon J Whitson
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kerri E Rieger
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Scott X Atwood
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kavita Y Sarin
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony E Oro
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
62
|
Leccia MT, Lebbe C, Claudel JP, Narda M, Basset-Seguin N. New Vision in Photoprotection and Photorepair. Dermatol Ther (Heidelb) 2019; 9:103-115. [PMID: 30674003 PMCID: PMC6380982 DOI: 10.1007/s13555-019-0282-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic exposure to solar radiation is associated with an increased incidence of skin cancer worldwide and more specifically with non-melanoma skin cancers and actinic keratosis. At the cellular level DNA damage is the main event following ultraviolet (UV) exposure. The kind of lesions produced depends on the wavelength and the energy profile of the radiation, with different photoproducts being formed as a result. Although endogenous DNA repair mechanisms are somewhat effective in repairing DNA, some DNA damage persists and can accumulate with chronic exposure. UV protection strategies, such as sunscreen use, are important in limiting further DNA damage. Several published studies have demonstrated the protective effect that regular use of sunscreen can have against the development of skin cancers. Newer options that aim to help repair damaged DNA may have an important role in reducing the incidence of chronic sun exposure-related photoaging and non-melanoma skin cancers. Photolyase, which is capable of repairing cyclobutane dimers formed as a result of DNA irradiation, is one such novel ingredient. In the first part of this paper we review the rationale for a combined treatment approach of photoprotection and photorepair with photolyase. In the second part we evaluate several published clinical studies, which suggest a beneficial effect in preventing new skin lesions in photodamaged skin. A strategy of photoprotection plus photorepair appears to be relevant for all persons with a high level of solar exposure and those at a higher risk for developing skin cancers.
Collapse
Affiliation(s)
- Marie-Therese Leccia
- Service de Dermatologie, Centre Hospitalier Universitaire (CHU) de Grenoble, La Tronche, France
| | - Celeste Lebbe
- Policlinique de Dermatologie, Hôpital Saint Louis, Paris, France
| | | | | | | |
Collapse
|
63
|
Wong K, van der Weyden L, Schott CR, Foote A, Constantino-Casas F, Smith S, Dobson JM, Murchison EP, Wu H, Yeh I, Fullen DR, Joseph N, Bastian BC, Patel RM, Martincorena I, Robles-Espinoza CD, Iyer V, Kuijjer ML, Arends MJ, Brenn T, Harms PW, Wood GA, Adams DJ. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun 2019; 10:353. [PMID: 30664638 PMCID: PMC6341101 DOI: 10.1038/s41467-018-08081-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023] Open
Abstract
Mucosal melanoma is a rare and poorly characterized subtype of human melanoma. Here we perform a cross-species analysis by sequencing tumor-germline pairs from 46 primary human muscosal, 65 primary canine oral and 28 primary equine melanoma cases from mucosal sites. Analysis of these data reveals recurrently mutated driver genes shared between species such as NRAS, FAT4, PTPRJ, TP53 and PTEN, and pathogenic germline alleles of BRCA1, BRCA2 and TP53. We identify a UV mutation signature in a small number of samples, including human cases from the lip and nasal mucosa. A cross-species comparative analysis of recurrent copy number alterations identifies several candidate drivers including MDM2, B2M, KNSTRN and BUB1B. Comparison of somatic mutations in recurrences and metastases to those in the primary tumor suggests pervasive intra-tumor heterogeneity. Collectively, these studies suggest a convergence of some genetic changes in mucosal melanomas between species but also distinctly different paths to tumorigenesis.
Collapse
Affiliation(s)
- Kim Wong
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Courtney R Schott
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Alastair Foote
- Rossdales Equine Hospital and Diagnostic Centre, High Street, Newmarket, Suffolk, CB8 8JS, UK
| | - Fernando Constantino-Casas
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Sionagh Smith
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Jane M Dobson
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Hong Wu
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Douglas R Fullen
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Nancy Joseph
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd Juriquilla 3001, Santiago de Querétaro, 76230, Mexico
| | - Vivek Iyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marieke L Kuijjer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, 0349, Oslo, Norway
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Thomas Brenn
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2L 2K8, Canada
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
64
|
Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ, Taylor RG, Sherwood V, Thomson J, Hogan S, Spender LC, South AP, Stratton M, Chelala C, Harwood CA, Proby CM, Leigh IM. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat Commun 2018; 9:3667. [PMID: 30202019 PMCID: PMC6131170 DOI: 10.1038/s41467-018-06027-1] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets.
Collapse
Affiliation(s)
- Gareth J Inman
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard G Taylor
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Victoria Sherwood
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sarah Hogan
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Lindsay C Spender
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
65
|
Schmitz L, Oster-Schmidt C, Stockfleth E. Nichtmelanozytäre Hauttumoren - von der aktinischen Keratose bis zum Plattenepithelkarzinom. J Dtsch Dermatol Ges 2018; 16:1002-1014. [PMID: 30117708 DOI: 10.1111/ddg.13614_g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Lutz Schmitz
- Klinik für Dermatologie, Venerologie und Allergologie, Ruhr-Universität Bochum
| | | | - Eggert Stockfleth
- Klinik für Dermatologie, Venerologie und Allergologie, Ruhr-Universität Bochum
| |
Collapse
|
66
|
Dual loss of p110δ PI3-kinase and SKAP (KNSTRN) expression leads to combined immunodeficiency and multisystem syndromic features. J Allergy Clin Immunol 2018; 142:618-629. [DOI: 10.1016/j.jaci.2017.10.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 11/17/2022]
|
67
|
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Carcinoma, Basal Cell/etiology
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/prevention & control
- Carcinoma, Basal Cell/therapy
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/prevention & control
- Carcinoma, Squamous Cell/therapy
- Female
- Humans
- Incidence
- Life Expectancy
- Male
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Quality of Life
- Radiotherapy, Adjuvant
- Risk Factors
- Skin Neoplasms/etiology
- Skin Neoplasms/pathology
- Skin Neoplasms/prevention & control
- Skin Neoplasms/therapy
Collapse
Affiliation(s)
- Kishwer S Nehal
- From Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York (K.S.N.); and Michigan Medicine, University of Michigan, Ann Arbor (C.K.B.)
| | - Christopher K Bichakjian
- From Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York (K.S.N.); and Michigan Medicine, University of Michigan, Ann Arbor (C.K.B.)
| |
Collapse
|
68
|
HOXA9 inhibits HIF-1α-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development. Nat Commun 2018; 9:1480. [PMID: 29662084 PMCID: PMC5902613 DOI: 10.1038/s41467-018-03914-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
Glycolytic reprogramming is a typical feature of many cancers; however, key regulators of glucose metabolism reengineering are poorly understood, especially in cutaneous squamous cell carcinoma (cSCC). Here, Homeobox A9 (HOXA9), a direct target of onco-miR-365, is identified to be significantly downregulated in cSCC tumors and cell lines. HOXA9 acts as a tumor suppressor and inhibits glycolysis in cSCC in vitro and in vivo by negatively regulating HIF-1α and its downstream glycolytic regulators, HK2, GLUT1 and PDK1. Mechanistic studies show that HOXA9-CRIP2 interaction at glycolytic gene promoters impeds HIF-1α binding, repressing gene expression in trans. Our results reveal a miR-365-HOXA9-HIF-1α regulatory axis that contributes to the enhanced glycolysis in cSCC development and may represent an intervention target for cSCC therapy. Hypoxia-inducible transcription factor HIF-1α promotes glycolysis allowing cell survival under stress. Here the authors show, using both cell lines and animal models, that in cutaneous squamous cell carcinoma HOXA9 acts as a tumor suppressor and inhibits glycolysis by associating with CRIP2 to repress HIF-1α binding to target genes.
Collapse
|
69
|
Griewank KG, Wiesner T, Murali R, Pischler C, Müller H, Koelsche C, Möller I, Franklin C, Cosgarea I, Sucker A, Schadendorf D, Schaller J, Horn S, Brenn T, Mentzel T. Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles. Mod Pathol 2018; 31:418-428. [PMID: 29099504 PMCID: PMC7463132 DOI: 10.1038/modpathol.2017.146] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/02/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023]
Abstract
Atypical fibroxanthomas and pleomorphic dermal sarcomas are tumors arising in sun-damaged skin of elderly patients. They have differing prognoses and are currently distinguished using histological criteria, such as invasion of deeper tissue structures, necrosis and lymphovascular or perineural invasion. To investigate the as-yet poorly understood genetics of these tumors, 41 atypical fibroxanthomas and 40 pleomorphic dermal sarcomas were subjected to targeted next-generation sequencing approaches as well as DNA copy number analysis by comparative genomic hybridization. In an analysis of the entire coding region of 341 oncogenes and tumor suppressor genes in 13 atypical fibroxanthomas using an established hybridization-based next-generation sequencing approach, we found that these tumors harbor a large number of mutations. Gene alterations were identified in more than half of the analyzed samples in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter. The presence of these alterations was verified in 26 atypical fibroxanthoma and 35 pleomorphic dermal sarcoma samples by targeted amplicon-based next-generation sequencing. Similar mutation profiles in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter were identified in both atypical fibroxanthoma and pleomorphic dermal sarcoma. Activating RAS mutations (G12 and G13) identified in 3 pleomorphic dermal sarcoma were not found in atypical fibroxanthoma. Comprehensive DNA copy number analysis demonstrated a wide array of different copy number gains and losses, with similar profiles in atypical fibroxanthoma and pleomorphic dermal sarcoma. In summary, atypical fibroxanthoma and pleomorphic dermal sarcoma are highly mutated tumors with recurrent mutations in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter, and a range of DNA copy number alterations. These findings suggest that atypical fibroxanthomas and pleomorphic dermal sarcomas are genetically related, potentially representing two ends of a common tumor spectrum and distinguishing these entities is at present still best performed using histological criteria.
Collapse
Affiliation(s)
- Klaus G Griewank
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany,Dermatopathologie bei Mainz, Nieder-Olm, Germany
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carina Pischler
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | | | - Christian Koelsche
- Department of Neuropathology, Ruprecht-Karls-University Heidelberg, and Clinical Cooperation Unit Neuropathology, and DKTK, DKFZ, Heidelberg, Germany
| | - Inga Möller
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Cindy Franklin
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Ioana Cosgarea
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | - Susanne Horn
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Thomas Brenn
- Department of Pathology, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Thomas Mentzel
- Dermatopathology Friedrichshafen, Friedrichshafen, Germany
| |
Collapse
|
70
|
Albibas AA, Rose-Zerilli MJ, Lai C, Pengelly RJ, Lockett GA, Theaker J, Ennis S, Holloway JW, Healy E. Subclonal Evolution of Cancer-Related Gene Mutations in p53 Immunopositive Patches in Human Skin. J Invest Dermatol 2018; 138:189-198. [DOI: 10.1016/j.jid.2017.07.844] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022]
|
71
|
Hazawa M, Lin DC, Kobayashi A, Jiang YY, Xu L, Dewi FRP, Mohamed MS, Hartono, Nakada M, Meguro-Horike M, Horike SI, Koeffler HP, Wong RW. ROCK-dependent phosphorylation of NUP62 regulates p63 nuclear transport and squamous cell carcinoma proliferation. EMBO Rep 2017; 19:73-88. [PMID: 29217659 DOI: 10.15252/embr.201744523] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
p63, more specifically its ΔNp63α isoform, plays essential roles in squamous cell carcinomas (SCCs), yet the mechanisms controlling its nuclear transport remain unknown. Nucleoporins (NUPs) are a family of proteins building nuclear pore complexes (NPC) and mediating nuclear transport across the nuclear envelope. Recent evidence suggests a cell type-specific function for certain NUPs; however, the significance of NUPs in SCC biology remains unknown. In this study, we show that nucleoporin 62 (NUP62) is highly expressed in stratified squamous epithelia and is further elevated in SCCs. Depletion of NUP62 inhibits proliferation and augments differentiation of SCC cells. The impaired ability to maintain the undifferentiated status is associated with defects in ΔNp63α nuclear transport. We further find that differentiation-inducible Rho kinase reduces the interaction between NUP62 and ΔNp63α by phosphorylation of phenylalanine-glycine regions of NUP62, attenuating ΔNp63α nuclear import. Our results characterize NUP62 as a gatekeeper for ΔNp63α and uncover its role in the control of cell fate through regulation of ΔNp63α nuclear transport in SCC.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan .,Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, Japan
| | - De-Chen Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Akiko Kobayashi
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Firli Rahmah Primula Dewi
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mahmoud Shaaban Mohamed
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hartono
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shin-Ichi Horike
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan .,Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
72
|
Helbig D, Ihle MA, Pütz K, Tantcheva-Poor I, Mauch C, Büttner R, Quaas A. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas. Oncotarget 2017; 7:21763-74. [PMID: 26943575 PMCID: PMC5008321 DOI: 10.18632/oncotarget.7845] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Until now, almost nothing is known about the tumorigenesis of atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS). Our hypothesis is that AFX is the non-infiltrating precursor lesion of PDS. MATERIALS AND METHODS We performed the world-wide most comprehensive immunohistochemical and mutational analysis in well-defined AFX (n=5) and PDS (n=5). RESULTS In NGS-based mutation analyses of selected regions by a 17 hotspot gene panel of 102 amplicons we could detect TP53 mutations in all PDS as well as in the only analyzed AFX and PDS of the same patient. Besides, we detected mutations in the CDKN2A, HRAS, KNSTRN and PIK3CA genes.Performing immunohistochemistry for CTNNB1, KIT, CDK4, c-MYC, CTLA-4, CCND1, EGFR, EPCAM, ERBB2, IMP3, INI-1, MKI67, MDM2, MET, p40, TP53, PD-L1 and SOX2 overexpression of TP53, CCND1 and CDK4 was seen in AFX as well as in PDS. IMP3 was upregulated in 2 AFX (weak staining) and 4 PDS (strong staining).FISH analyses for the genes FGFR1, FGFR2 and FGFR3 revealed negative results in all tumors. CONCLUSIONS UV-induced TP53 mutations as well as CCND1/CDK4 changes seem to play essential roles in tumorigenesis of PDS. Furthermore, we found some more interesting mutated genes in other oncogene pathways (activating mutations of HRAS and PIK3CA). All AFX and PDS investigated immunohistochemically presented with similar oncogene expression profiles (TP53, CCND1, CDK4 overexpression) and the single case with an AFX and PDS showed complete identical TP53 and PIK3CA mutation profiles in both tumors. This reinforces our hypothesis that AFX is the non-infiltrating precursor lesion of PDS.
Collapse
Affiliation(s)
- Doris Helbig
- Department of Dermatology, University Hospital Cologne, Cologne, Germany
| | | | - Katharina Pütz
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Cornelia Mauch
- Department of Dermatology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
73
|
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a malignant neoplasm of the skin characterized by an aberrant proliferation of keratinocytes. Cutaneous SCC is the second most common malignancy globally, and usually arises in the chronically sun-damaged skin of elderly white individuals. From a pathologist's perspective, it is important to differentiate cSCC from the benign and reactive squamoproliferative lesions and identify the high-risk features associated with aggressive tumor behavior. In this article, we provide an up-to-date overview of cSCC along with its precursor lesions and important histologic variants, with a particular emphasis on the histopathologic features and molecular pathogenesis.
Collapse
|
74
|
Ng SB, Chung TH, Kato S, Nakamura S, Takahashi E, Ko YH, Khoury JD, Yin CC, Soong R, Jeyasekharan AD, Hoppe MM, Selvarajan V, Tan SY, Lim ST, Ong CK, Nairismägi ML, Maheshwari P, Choo SN, Fan S, Lee CK, Chuang SS, Chng WJ. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica 2017; 103:278-287. [PMID: 29097495 PMCID: PMC5792272 DOI: 10.3324/haematol.2017.180430] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022] Open
Abstract
The molecular biology of primary nodal T- and NK-cell lymphoma and its relationship with extranodal NK/T-cell lymphoma, nasal type is poorly understood. In this study, we assessed the relationship between nodal and extranodal Epstein-Barr virus-positive T/NK-cell lymphomas using gene expression profiling and copy number aberration analyses. We performed gene expression profiling and copy number aberration analysis on 66 cases of Epstein-Barr virus-associated T/NK-cell lymphoma from nodal and extranodal sites, and correlated the molecular signatures with clinicopathological features. Three distinct molecular clusters were identified with one enriched for nodal presentation and loss of 14q11.2 (TCRA loci). T/NK-cell lymphomas with a nodal presentation (nodal-group) were significantly associated with older age, lack of nasal involvement, and T-cell lineage compared to those with an extranodal presentation (extranodal-group). On multivariate analysis, nodal presentation was an independent factor associated with short survival. Comparing the molecular signatures of the nodal and extranodal groups it was seen that the former was characterized by upregulation of PD-L1 and T-cell-related genes, including CD2 and CD8, and downregulation of CD56, consistent with the CD8+/CD56-immunophenotype. PD-L1 and CD2 protein expression levels were validated using multiplexed immunofluorescence. Interestingly, nodal group lymphomas were associated with 14q11.2 loss which correlated with loss of TCR loci and T-cell origin. Overall, our results suggest that T/NK-cell lymphoma with nodal presentation is distinct and deserves to be classified separately from T/NK-cell lymphoma with extranodal presentation. Upregulation of PD-L1 indicates that it may be possible to use anti-PD1 immunotherapy in this distinctive entity. In addition, loss of 14q11.2 may be a potentially useful diagnostic marker of T-cell lineage.
Collapse
Affiliation(s)
- Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore .,Department of Pathology, National University Hospital, National University Health System, Singapore.,Cancer Science Institute of Singapore, National University of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore
| | - Seiichi Kato
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Emiko Takahashi
- Department of Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richie Soong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore.,Cancer Science Institute of Singapore, National University of Singapore
| | | | | | - Viknesvaran Selvarajan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore.,Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Soon-Thye Lim
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Division of Medical Oncology, National Cancer Center Singapore
| | - Choon-Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore
| | - Maarja-Liisa Nairismägi
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore
| | - Priyanka Maheshwari
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Shoa-Nian Choo
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Chi-Kuen Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System
| |
Collapse
|
75
|
Lynch MD, Lynch CNS, Craythorne E, Liakath-Ali K, Mallipeddi R, Barker JN, Watt FM. Spatial constraints govern competition of mutant clones in human epidermis. Nat Commun 2017; 8:1119. [PMID: 29066762 PMCID: PMC5654977 DOI: 10.1038/s41467-017-00993-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Deep sequencing can detect somatic DNA mutations in tissues permitting inference of clonal relationships. This has been applied to human epidermis, where sun exposure leads to the accumulation of mutations and an increased risk of skin cancer. However, previous studies have yielded conflicting conclusions about the relative importance of positive selection and neutral drift in clonal evolution. Here, we sequenced larger areas of skin than previously, focusing on cancer-prone skin spanning five decades of life. The mutant clones identified were too large to be accounted for solely by neutral drift. Rather, using mathematical modelling and computational lattice-based simulations, we show that observed clone size distributions can be explained by a combination of neutral drift and stochastic nucleation of mutations at the boundary of expanding mutant clones that have a competitive advantage. These findings demonstrate that spatial context and cell competition cooperate to determine the fate of a mutant stem cell. Deep sequencing technologies allow for the investigation of clonal evolution in human cancers. Here the authors, combining sequencing data from human skin with mathematical modelling and simulations, suggest that the spatial context of a mutation with respect to other mutant clones may lead to differential clonal evolution.
Collapse
Affiliation(s)
- M D Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK.,St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - C N S Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - E Craythorne
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - K Liakath-Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - R Mallipeddi
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - J N Barker
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - F M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
76
|
Abstract
Epidermal cancers include keratinocyte cancer, melanocyte cancer, and Merkel cell carcinoma. These cancers account for the vast majority of new cancers diagnosed in Australia, North America, and Europe. Keratinocyte cancer is the most common epidermal cancer and accounts for 7 out of 8 new cancers diagnosed in Australia. Melanoma and Merkel cell carcinoma are less common than keratinocyte carcinoma but are more important causes of mortality in Australia. Keratinocyte cancer has also been demonstrated to be a marker of cancer-prone phenotype. Risk factors for epidermal cancer include intrinsic and environmental factors, in particular exposure to ultraviolet radiation and advanced age. Actinic keratosis has an approximate prevalence of 79% of men and 68% of women between 60 and 69 years of age, and has a low risk of malignant transformation into squamous cell carcinoma. Basal cell carcinoma is the most common malignancy in Caucasians worldwide, with the incidence increasing by 2% per year in Australia. Squamous cell carcinoma is the second most common epidermal cancer, with an incidence of approximately 1035 or 472 per 100,000 person-years in men and women, respectively. Primary risk factors for both basal cell carcinoma and squamous cell carcinoma include light skin color, UV radiation exposure, and chronic immunosuppression. Although the rate of melanoma is increasing, the mortality in Australia is reducing and is currently 9%. The overall incidence of melanoma in Australia is approximately 50 cases per 100,000 persons (62 for men and 40 for women). Keratinocyte carcinoma and melanoma are risk factors for developing further skin cancer and primary malignancy. This contribution reviews the incidence, prevalence, and risk factors associated with the development of epidermal cancer and premalignant epidermal neoplasia.
Collapse
|
77
|
Abstract
OPINION STATEMENT Non-melanoma skin cancer (NMSC) is the most common malignancy in the USA, with cutaneous squamous cell carcinomas (cSCCs) constituting approximately 20 % of all NMSC. While cSCCs typically behave in an indolent fashion and can be cured with local destructive or surgical methods, a small subset metastasizes and induces significant morbidity and mortality. Identifying and aggressively treating these "high-risk" cSCCs (HRcSCCs) is thus paramount. Recent improvements in staging cSCCs appear to offer better risk stratification than earlier staging criteria. Radiologic imaging and sentinel lymph node biopsy may be beneficial in certain cases of HRcSCC, although more studies are needed before these techniques should be uniformly incorporated into management. Surgery with complete margin control, such as that offered by the Mohs micrographic technique, represents the first-line treatment for these tumors. Radiation therapy is likely most beneficial in the adjuvant setting. Chemotherapy is typically best reserved for patients with metastatic or locally advance disease that is not controllable with surgical and/or radiation therapies. Newer targeted treatments, such as EGFR inhibitors and immunotherapies may offer greater efficacy in these settings, although further evaluation is needed.
Collapse
|
78
|
Zhou L, Gao R, Wang Y, Zhou M, Ding Z. Loss of BAX by miR-365 Promotes Cutaneous Squamous Cell Carcinoma Progression by Suppressing Apoptosis. Int J Mol Sci 2017; 18:ijms18061157. [PMID: 28556798 PMCID: PMC5485981 DOI: 10.3390/ijms18061157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Pro-apoptotic BCL2 associated X (BAX) is traditionally thought to be regulated by anti-apoptotic BCL-2 family members, like BCL2-like 1 (BCL-XL), at the protein level. However, the posttranscriptional regulation of BAX is under explored. In this study, we identified BAX as the novel downstream target of miR-365, which is supported by gain- and loss-of-function studies of onco-miR-365. Loss of BAX by either RNA interference or highly-expressed miR-365 in cells of cutaneous squamous cell carcinoma (CSCC) enhanced the tumor resistance against apoptosis, while repressing cell proliferation, migration, and invasiveness. In vivo experiment confirmed that BAX knockdown promotes the growth of CSCC xenografts. Collectively, our results find a miR-365-BAX axis for alleviating the pro-apoptotic effects of BAX, which promotes CSCC development and may facilitate the generation of novel therapeutic regimens to the clinical treatment of CSCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Ruirui Gao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
79
|
Abstract
BACKGROUND Basosquamous carcinoma is a rare cutaneous neoplasm that has caused considerable controversy as to its classification, pathogenesis, and management. OBJECTIVE To review and summarize current literature on the definition, pathogenesis, incidence, and management of basosquamous carcinoma. MATERIALS AND METHODS Through December 2015, an electronic search of the Pubmed database was performed using combinations of basosquamous carcinoma and metatypical basal cell carcinoma as search terms. RESULTS A selection of 39 publications including case reports and series, retrospective studies, and systematic reviews of the literature were included. Descriptions of the definition of basosquamous carcinoma, clinical behavior, histopathological characteristics, current treatment therapies, and future advances are summarized. CONCLUSION This systematic review provides a comprehensive overview of the current understanding of basosquamous carcinoma. Further study is required to elucidate the mechanisms driving the formation of this aggressive tumor.
Collapse
|
80
|
Yesantharao P, Wang W, Ioannidis NM, Demehri S, Whittemore AS, Asgari MM. Cutaneous squamous cell cancer (cSCC) risk and the human leukocyte antigen (HLA) system. Hum Immunol 2017; 78:327-335. [PMID: 28185865 DOI: 10.1016/j.humimm.2017.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 01/20/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer among Caucasians in the United States, with rising incidence over the past decade. Treatment for non-melanoma skin cancer, including cSCC, in the United States was estimated to cost $4.8 billion in 2014. Thus, an understanding of cSCC pathogenesis could have important public health implications. Immune function impacts cSCC risk, given that cSCC incidence rates are substantially higher in patients with compromised immune systems. We report a systematic review of published associations between cSCC risk and the human leukocyte antigen (HLA) system. This review includes studies that analyze germline class I and class II HLA allelic variation as well as HLA cell-surface protein expression levels associated with cSCC risk. We propose biological mechanisms for these HLA-cSCC associations based on known mechanisms of HLA involvement in other diseases. The review suggests that immunity regulates the development of cSCC and that HLA-cSCC associations differ between immunocompetent and immunosuppressed patients. This difference may reflect the presence of viral co-factors that affect tumorigenesis in immunosuppressed patients. Finally, we highlight limitations in the literature on HLA-cSCC associations, and suggest directions for future research aimed at understanding, preventing and treating cSCC.
Collapse
Affiliation(s)
- Pooja Yesantharao
- Epidemiology Division, Department of Health Research & Policy, Stanford University, Stanford, CA 94305, USA
| | - Wei Wang
- Epidemiology Division, Department of Health Research & Policy, Stanford University, Stanford, CA 94305, USA
| | - Nilah M Ioannidis
- Epidemiology Division, Department of Health Research & Policy, Stanford University, Stanford, CA 94305, USA
| | - Shadmehr Demehri
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alice S Whittemore
- Epidemiology Division, Department of Health Research & Policy, Stanford University, Stanford, CA 94305, USA.
| | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
81
|
Myant KB, Cammareri P, Hodder MC, Wills J, Von Kriegsheim A, Győrffy B, Rashid M, Polo S, Maspero E, Vaughan L, Gurung B, Barry E, Malliri A, Camargo F, Adams DJ, Iavarone A, Lasorella A, Sansom OJ. HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Mol Med 2017; 9:181-197. [PMID: 28003334 PMCID: PMC5286368 DOI: 10.15252/emmm.201606684] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/12/2023] Open
Abstract
Cancer genome sequencing projects have identified hundreds of genetic alterations, often at low frequencies, raising questions as to their functional relevance. One exemplar gene is HUWE1, which has been found to be mutated in numerous studies. However, due to the large size of this gene and a lack of functional analysis of identified mutations, their significance to carcinogenesis is unclear. To determine the importance of HUWE1, we chose to examine its function in colorectal cancer, where it is mutated in up to 15 per cent of tumours. Modelling of identified mutations showed that they inactivate the E3 ubiquitin ligase activity of HUWE1. Genetic deletion of Huwe1 rapidly accelerated tumourigenic in mice carrying loss of the intestinal tumour suppressor gene Apc, with a dramatic increase in tumour initiation. Mechanistically, this phenotype was driven by increased MYC and rapid DNA damage accumulation leading to loss of the second copy of Apc The increased levels of DNA damage sensitised Huwe1-deficient tumours to DNA-damaging agents and to deletion of the anti-apoptotic protein MCL1. Taken together, these data identify HUWE1 as a bona fide tumour suppressor gene in the intestinal epithelium and suggest a potential vulnerability of HUWE1-mutated tumours to DNA-damaging agents and inhibitors of anti-apoptotic proteins.
Collapse
Affiliation(s)
- Kevin B Myant
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
- Cancer Research UK Edinburgh Centre, The Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Patrizia Cammareri
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
| | - Jimi Wills
- Cancer Research UK Edinburgh Centre, The Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Alex Von Kriegsheim
- Cancer Research UK Edinburgh Centre, The Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Mamun Rashid
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Simona Polo
- IFOM, The FIRC Institute for Molecular Oncology, Milano, Italy
| | - Elena Maspero
- IFOM, The FIRC Institute for Molecular Oncology, Milano, Italy
| | - Lynsey Vaughan
- Cancer Research UK Manchester Institute, The University of Manchester, Withington, Manchester, UK
| | | | - Evan Barry
- Boston Children's Hospital, Boston, MA, USA
| | - Angeliki Malliri
- Cancer Research UK Manchester Institute, The University of Manchester, Withington, Manchester, UK
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Antonio Iavarone
- Departments of Neurology and Pathology, Institute for Cancer Genetics, Irving Comprehensive Research Center, New York, NY, USA
| | - Anna Lasorella
- Departments of Pediatrics and Pathology, Institute for Cancer Genetics, Irving Comprehensive Research Center, New York, NY, USA
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
| |
Collapse
|
82
|
Yilmaz AS, Ozer HG, Gillespie JL, Allain DC, Bernhardt MN, Furlan KC, Castro LTF, Peters SB, Nagarajan P, Kang SY, Iwenofu OH, Olencki T, Teknos TN, Toland AE. Differential mutation frequencies in metastatic cutaneous squamous cell carcinomas versus primary tumors. Cancer 2016; 123:1184-1193. [PMID: 27906449 DOI: 10.1002/cncr.30459] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/10/2016] [Accepted: 10/31/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Exome and targeted sequencing studies have identified potential driver mutations for a variety of tumor types. Cutaneous squamous cell carcinoma (cSCC) is one of the most highly mutated cancers but typically is associated with low rates of metastasis and high survival rates. Nevertheless, metastatic cSCC is a significant health threat; up to 8800 individuals die each year of this disease. METHODS Because it is difficult to predict which cSCCs are more likely to metastasize, and because to the best of the authors' knowledge there are no targeted therapies specifically designated for patients with metastatic cSCC, exome and/or targeted sequencing of 18 metastatic and 10 primary cSCCs was performed to identify mutations that were more frequent in metastatic tumors and might be targeted for therapeutic benefit. The authors compared their results with published sequencing results of an additional 223 primary tumors and 68 metastatic cSCCs. RESULTS The authors identified genes demonstrating higher mutation frequencies in metastatic cSCC compared with primary tumors, including the chromatin remodeling gene lysine methyltransferase 2D (KMT2D) and the classic skin tumor suppressor tumor protein p53 (TP53), which was found to be mutated in 54% of primary tumors compared with 85% of metastatic tumors (P<.0001). CONCLUSIONS These studies appear to uncover potential pathways that are important in metastatic cSCC and that broaden understanding of the biology contributing to aggressive tumor behavior. These results may lead to new therapeutic strategies. Cancer 2017;123:1184-1193. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Ayse Selen Yilmaz
- Department of Biomedical Informatics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Jessica L Gillespie
- Department of Cancer Biology and Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Dawn C Allain
- Department of Internal Medicine, Division of Human Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, Division of Dermatopathology, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Madison N Bernhardt
- Department of Internal Medicine, Division of Human Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Karina Colossi Furlan
- Department of Cancer Biology and Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Leticia T F Castro
- Department of Cancer Biology and Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Sara B Peters
- Department of Pathology, Division of Dermatopathology, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | | | - Stephen Y Kang
- Department of Otolaryngology-Head and Neck Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - O Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, and Arthur G. James Cancer Hospital and Richard J. Solove Research Institute,The Ohio State University, Columbus, Ohio
| | - Thomas Olencki
- Comprehensive Cancer Center, and Arthur G. James Cancer Hospital and Richard J. Solove Research Institute,The Ohio State University, Columbus, Ohio.,Division of Medical Oncology, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, and Arthur G. James Cancer Hospital and Richard J. Solove Research Institute,The Ohio State University, Columbus, Ohio
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Internal Medicine, Division of Human Genetics, The Ohio State Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, and Arthur G. James Cancer Hospital and Richard J. Solove Research Institute,The Ohio State University, Columbus, Ohio
| |
Collapse
|
83
|
Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process. Sci Rep 2016; 6:34081. [PMID: 27665737 PMCID: PMC5035993 DOI: 10.1038/srep34081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.
Collapse
|
84
|
|
85
|
Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A, Chilukuri S, Charpiot E, Adelmann CH, Ching G, Nguyen TN, Nicholas C, Thomas VD, Migden M, MacFarlane D, Thompson E, Shen J, Takata Y, McNiece K, Polansky MA, Abbas HA, Rajapakshe K, Gower A, Spira A, Covington KR, Xiao W, Gunaratne P, Pickering C, Frederick M, Myers JN, Shen L, Yao H, Su X, Rapini RP, Wheeler DA, Hawk ET, Flores ER, Tsai KY. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun 2016; 7:12601. [PMID: 27574101 PMCID: PMC5013636 DOI: 10.1038/ncomms12601] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/18/2016] [Indexed: 01/21/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cuSCC) comprises 15-20% of all skin cancers, accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for molecularly targeted chemoprevention, here we perform integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major transcriptional drivers of this progression sequence, showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible.
Collapse
Affiliation(s)
- Vida Chitsazzadeh
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer A Drummond
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tri Nguyen
- Northwest Diagnostic Clinic, Houston, Texas 77090, USA
| | - Aaron Joseph
- Skin and Laser Surgery Associates, Pasadena, Texas 77505, USA
| | | | | | - Charles H Adelmann
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Grace Ching
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Tran N Nguyen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Courtney Nicholas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Valencia D Thomas
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Michael Migden
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Deborah MacFarlane
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Erika Thompson
- Sequencing and Microarray Facility, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Jianjun Shen
- Next Generation Sequencing Facility, Smithville, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Yoko Takata
- Next Generation Sequencing Facility, Smithville, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Kayla McNiece
- Department of Dermatology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Maxim A Polansky
- Department of Dermatology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Hussein A Abbas
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Gower
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02215, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02215, USA
| | - Kyle R Covington
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Weimin Xiao
- Department of Biology and Biochemistry University of Houston, Houston, Texas 77204, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry University of Houston, Houston, Texas 77204, USA
| | - Curtis Pickering
- Department of Head &Neck Surgery, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Mitchell Frederick
- Department of Head &Neck Surgery, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Jeffrey N Myers
- Department of Head &Neck Surgery, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Li Shen
- Department of Bioinformatics &Computational Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Hui Yao
- Department of Bioinformatics &Computational Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics &Computational Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Ronald P Rapini
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - David A Wheeler
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Elsa R Flores
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Kenneth Y Tsai
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| |
Collapse
|
86
|
Cammareri P, Rose AM, Vincent DF, Wang J, Nagano A, Libertini S, Ridgway RA, Athineos D, Coates PJ, McHugh A, Pourreyron C, Dayal JHS, Larsson J, Weidlich S, Spender LC, Sapkota GP, Purdie KJ, Proby CM, Harwood CA, Leigh IM, Clevers H, Barker N, Karlsson S, Pritchard C, Marais R, Chelala C, South AP, Sansom OJ, Inman GJ. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun 2016; 7:12493. [PMID: 27558455 PMCID: PMC5007296 DOI: 10.1038/ncomms12493] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023] Open
Abstract
Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin. MAPK pathway hyperactivation (through Braf(V600E) or Kras(G12D) knockin) and TGFβ signalling ablation (through Tgfbr1 deletion) in LGR5(+ve) stem cells enables rapid cSCC development in the mouse. Mutation of Tp53 (which is commonly mutated in sporadic cSCC) coupled with Tgfbr1 deletion in LGR5(+ve) cells also results in cSCC development. These findings indicate that LGR5(+ve) stem cells may act as cells of origin for cSCC, and that RAS/RAF/MAPK pathway hyperactivation or Tp53 mutation, coupled with loss of TGFβ signalling, are driving events of skin tumorigenesis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/adverse effects
- Biopsy
- Carcinogenesis/genetics
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- DNA Mutational Analysis/methods
- Female
- Humans
- Indoles/adverse effects
- Male
- Melanoma/drug therapy
- Mice
- Mice, Inbred Strains
- Mutation
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins B-raf/antagonists & inhibitors
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction/drug effects
- Skin Neoplasms/chemically induced
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Stem Cells
- Sulfonamides/adverse effects
- Transforming Growth Factor beta/metabolism
- Tumor Suppressor Protein p53/genetics
- Vemurafenib
- Exome Sequencing
Collapse
Affiliation(s)
- Patrizia Cammareri
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Garscube Estate, Switichback Road, Glasgow G61 1BD, UK
| | - Aidan M. Rose
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - David F. Vincent
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Garscube Estate, Switichback Road, Glasgow G61 1BD, UK
| | - Jun Wang
- Bioinformatics Unit, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ai Nagano
- Bioinformatics Unit, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Silvana Libertini
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Garscube Estate, Switichback Road, Glasgow G61 1BD, UK
| | - Rachel A. Ridgway
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Garscube Estate, Switichback Road, Glasgow G61 1BD, UK
| | - Dimitris Athineos
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Garscube Estate, Switichback Road, Glasgow G61 1BD, UK
| | - Philip J. Coates
- Tayside Tissue Bank, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Celine Pourreyron
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jasbani H. S. Dayal
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 221 00, Sweden
| | - Simone Weidlich
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Lindsay C. Spender
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Gopal P. Sapkota
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karin J. Purdie
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Charlotte M. Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Catherine A. Harwood
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Irene M. Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Hans Clevers
- Hubrecht Institute, Utrecht 3584 CT, The Netherlands
| | - Nick Barker
- Institute of Medical Biology, Immunos 138648, Singapore
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 221 00, Sweden
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Richard Marais
- The Paterson Institute for Cancer Research, Manchester M20 4BX, UK
| | - Claude Chelala
- Bioinformatics Unit, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew P. South
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Owen J. Sansom
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Garscube Estate, Switichback Road, Glasgow G61 1BD, UK
| | - Gareth J. Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
87
|
Martin MT, Vulin A, Hendry JH. Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:349-368. [PMID: 27919341 DOI: 10.1016/j.mrrev.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
In human skin, keratinopoiesis is based on a functional hierarchy among keratinocytes, with rare slow-cycling stem cells responsible for the long-term maintenance of the tissue through their self-renewal potential, and more differentiated daughter progenitor cells actively cycling to permit epidermal renewal and turn-over every month. Skin is a radio-responsive tissue, developing all types of radiation damage and pathologies, including early tissue reactions such as dysplasia and denudation in epidermis, and later fibrosis in the dermis and acanthosis in epidermis, with the TGF-beta 1 pathway as a known master switch. Also there is a risk of basal cell carcinoma, which arises from epidermal keratinocytes, notably after oncogenic events in PTCH1 or TP53 genes. This review will cover the mechanisms of adverse human skin reactions and carcinogenesis after various types of exposures to ionizing radiation, with comparison with animal data when necessary, and will discuss the possible role of stem cells and their progeny in the development of these disorders. The main endpoints presented are basal cell intrinsic radiosensitivity, genomic stability, individual factors of risk, dose specific responses, major molecular pathways involved and the cellular origin of skin reactions and cancer. Although major advances have been obtained in recent years, the precise implications of epidermal stem cells and their progeny in these processes are not yet fully characterized.
Collapse
Affiliation(s)
- Michèle T Martin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France.
| | - Adeline Vulin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France
| | - Jolyon H Hendry
- Christie Medical Physics and Engineering, Christie Hospital and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
88
|
Cindric Vranesic A, Reiche J, Hoischen C, Wohlmann A, Bratsch J, Friedrich K, Günes B, Cappallo-Obermann H, Kirchhoff C, Diekmann S, Günes C, Huber O. Characterization of SKAP/kinastrin isoforms: the N-terminus defines tissue specificity and Pontin binding. Hum Mol Genet 2016; 25:2838-2852. [PMID: 27170314 DOI: 10.1093/hmg/ddw140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/14/2022] Open
Abstract
Small Kinetochore-Associated Protein (SKAP)/Kinastrin is a multifunctional protein with proposed roles in mitosis, apoptosis and cell migration. Exact mechanisms underlying its activities in these cellular processes are not completely understood. SKAP is predicted to have different isoforms, however, previous studies did not differentiate between them. Since distinct molecular architectures of protein isoforms often influence their localization and functions, this study aimed to examine the expression profile and functional differences between SKAP isoforms in human and mouse. Analyses of various human tissues and cells of different origin by RT-PCR, and by Western blotting and immunocytochemistry applying newly generated anti-SKAP monoclonal antibodies revealed that human SKAP exists in two protein isoforms: ubiquitously expressed SKAP16 and testis/sperm-specific SKAP1. In mouse, SKAP1 expression is detectable in testis at 4 weeks postnatally, when the first wave of spermatogenesis in mice is complete and the elongated spermatids are present in the testes. Furthermore, we identified Pontin as a new SKAP1 interaction partner. SKAP1 and Pontin co-localized in the flagellar region of human sperm suggesting a functional relevance for SKAP1-Pontin interaction in sperm motility. Since most previous studies on SKAP were performed with the testis-specific isoform SKAP1, our findings provide a new basis for future studies on the role of SKAP in both human somatic cells and male germ cells, including studies on male fertility.
Collapse
Affiliation(s)
| | - Juliane Reiche
- Department of Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Christian Hoischen
- Leibniz Institute on Aging - Fritz Lipmann Institute e.V. Jena, 07745 Jena, Germany
| | - Andreas Wohlmann
- Department of Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Jens Bratsch
- Department of Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Karlheinz Friedrich
- Department of Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Berkay Günes
- Leibniz Institute on Aging - Fritz Lipmann Institute e.V. Jena, 07745 Jena, Germany
| | | | - Christiane Kirchhoff
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Diekmann
- Leibniz Institute on Aging - Fritz Lipmann Institute e.V. Jena, 07745 Jena, Germany
| | - Cagatay Günes
- Department of Urology, University Hospital Ulm, 89075 Ulm, Germany
| | - Otmar Huber
- Department of Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
89
|
Dotto GP, Rustgi AK. Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 2016; 29:622-637. [PMID: 27165741 PMCID: PMC4870309 DOI: 10.1016/j.ccell.2016.04.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinomas (SCCs) represent the most frequent human solid tumors and are a major cause of cancer mortality. These highly heterogeneous tumors arise from closely interconnected epithelial cell populations with intrinsic self-renewal potential inversely related to the stratified differentiation program. SCCs can also originate from simple or pseudo-stratified epithelia through activation of quiescent cells and/or a switch in cell-fate determination. Here, we focus on specific determinants implicated in the development of SCCs by recent large-scale genomic, genetic, and epigenetic studies, and complementary functional analysis. The evidence indicates that SCCs from various body sites, while clinically treated as separate entities, have common determinants, pointing to a unified perspective of the disease and potential new avenues for prevention and treatment.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
90
|
Kern DM, Nicholls PK, Page DC, Cheeseman IM. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. J Cell Biol 2016; 213:315-28. [PMID: 27138257 PMCID: PMC4862331 DOI: 10.1083/jcb.201510117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
The Astrin/SKAP complex regulates mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, Kern et al. demonstrate that a previously unappreciated short SKAP isoform mediates mitotic spindle positioning at astral microtubule plus ends. The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter K Nicholls
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David C Page
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
91
|
Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ, McKee T, Letourneau A, Ribaux PG, Popadin K, Basset-Seguin N, Ben Chaabene R, Santoni FA, Andrianova MA, Guipponi M, Garieri M, Verdan C, Grosdemange K, Sumara O, Eilers M, Aifantis I, Michielin O, de Sauvage FJ, Antonarakis SE, Nikolaev SI. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet 2016; 48:398-406. [PMID: 26950094 DOI: 10.1038/ng.3525] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.
Collapse
Affiliation(s)
- Ximena Bonilla
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | - Bryan King
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Fedor Bezrukov
- Department of Physics, University of Connecticut, Storrs, Connecticut, USA
- RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York, USA
| | - Gürkan Kaya
- Department of Dermatology, University Hospitals of Geneva, Geneva, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vladimir B Seplyarskiy
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Hayley J Sharpe
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Thomas McKee
- Service of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pascale G Ribaux
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Nicole Basset-Seguin
- Department of Dermatology, Saint Louis Hospital, Paris 7 University, Paris, France
| | - Rouaa Ben Chaabene
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Maria A Andrianova
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Michel Guipponi
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Carole Verdan
- Service of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Kerstin Grosdemange
- Department of Dermatology, University Hospitals of Geneva, Geneva, Switzerland
| | - Olga Sumara
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Frederic J de Sauvage
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
92
|
Bao X, Rubin AJ, Qu K, Zhang J, Giresi PG, Chang HY, Khavari PA. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol 2015; 16:284. [PMID: 26683334 PMCID: PMC4699366 DOI: 10.1186/s13059-015-0840-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/19/2015] [Indexed: 01/04/2023] Open
Abstract
Background Open chromatin regions are correlated with active regulatory elements in development and are dysregulated in diseases. The BAF (SWI/SNF) complex is essential for development, and has been demonstrated to remodel reconstituted chromatin in vitro and to control the accessibility of a few individual regions in vivo. However, it remains unclear where and how BAF controls the open chromatin landscape to regulate developmental processes, such as human epidermal differentiation. Results Using a novel “on-plate” ATAC-sequencing approach for profiling open chromatin landscapes with a low number of adherent cells, we demonstrate that the BAF complex is essential for maintaining 11.6 % of open chromatin regions in epidermal differentiation. These BAF-dependent open chromatin regions are highly cell-type-specific and are strongly enriched for binding sites for p63, a master epidermal transcription factor. The DNA sequences of p63 binding sites intrinsically favor nucleosome formation and are inaccessible in other cell types without p63 to prevent ectopic activation. In epidermal cells, BAF and p63 mutually recruit each other to maintain 14,853 open chromatin regions. We further demonstrate that BAF and p63 cooperatively position nucleosomes away from p63 binding sites and recruit transcriptional machinery to control tissue differentiation. Conclusions BAF displays high specificity in controlling the open chromatin landscape during epidermal differentiation by cooperating with the master transcription factor p63 to maintain lineage-specific open chromatin regions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0840-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaomin Bao
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA.
| | - Adam J Rubin
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Kun Qu
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Jiajing Zhang
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Paul G Giresi
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA. .,Veterans Affairs Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.
| |
Collapse
|
93
|
Jaju PD, Nguyen CB, Mah AM, Atwood SX, Li J, Zia A, Chang ALS, Oro AE, Tang JY, Lee CS, Sarin KY. Mutations in the Kinetochore Gene KNSTRN in Basal Cell Carcinoma. J Invest Dermatol 2015; 135:3197-3200. [PMID: 26348826 PMCID: PMC4747638 DOI: 10.1038/jid.2015.339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prajakta D Jaju
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Christine B Nguyen
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Angela M Mah
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Scott X Atwood
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jiang Li
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Amin Zia
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony E Oro
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Carolyn S Lee
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
94
|
Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2015; 34:155-63. [PMID: 26619011 PMCID: PMC4744099 DOI: 10.1038/nbt.3391] [Citation(s) in RCA: 590] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
Mutational hotspots indicate selective pressure across a population of tumor samples, but their prevalence within and across cancer types is incompletely characterized. An approach to detect significantly mutated residues, rather than methods that identify recurrently mutated genes, may uncover new biologically and therapeutically relevant driver mutations. Here we developed a statistical algorithm to identify recurrently mutated residues in tumour samples. We applied the algorithm to 11,119 human tumors, spanning 41 cancer types, and identified 470 hotspot somatic substitutions in 275 genes. We find that half of all human tumors possess one or more mutational hotspots with widespread lineage-, position-, and mutant allele-specific differences, many of which are likely functional. In total, 243 hotspots were novel and appeared to affect a broad spectrum of molecular function, including hotspots at paralogous residues of Ras-related small GTPases RAC1 and RRAS2. Redefining hotspots at mutant amino acid resolution will help elucidate the allele-specific differences in their function and could have important therapeutic implications.
Collapse
|
95
|
Absence of KNSTRN Mutation, a Cutaneous Squamous Carcinoma-Specific Mutation, in Other Solid Tumors and Leukemias. Pathol Oncol Res 2015; 22:227-8. [PMID: 26433880 DOI: 10.1007/s12253-015-9993-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
|
96
|
Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu YM, Dhanasekaran SM, Palanisamy N, Siddiqui J, Cao X, Su F, Wang R, Xiao H, Kunju LP, Mehra R, Tomlins SA, Fullen DR, Bichakjian CK, Johnson TM, Dlugosz AA, Chinnaiyan AM. The Distinctive Mutational Spectra of Polyomavirus-Negative Merkel Cell Carcinoma. Cancer Res 2015. [PMID: 26238782 DOI: 10.1158/0008‐5472.can‐15‐0702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine tumor. Merkel cell polyomavirus (MCPyV) may contribute to tumorigenesis in a subset of tumors via inhibition of tumor suppressors such as retinoblastoma (RB1) by mutated viral T antigens, but the molecular pathogenesis of MCPyV-negative MCC is largely unexplored. Through our MI-ONCOSEQ precision oncology study, we performed integrative sequencing on two cases of MCPyV-negative MCC, as well as a validation cohort of 14 additional MCC cases (n = 16). In addition to previously identified mutations in TP53, RB1, and PIK3CA, we discovered activating mutations of oncogenes, including HRAS and loss-of-function mutations in PRUNE2 and NOTCH family genes in MCPyV-negative MCC. MCPyV-negative tumors also displayed high overall mutation burden (10.09 ± 2.32 mutations/Mb) and were characterized by a prominent UV-signature pattern with C > T transitions comprising 85% of mutations. In contrast, mutation burden was low in MCPyV-positive tumors (0.40 ± 0.09 mutations/Mb) and lacked a UV signature. These findings suggest a potential ontologic dichotomy in MCC, characterized by either viral-dependent or UV-dependent tumorigenic pathways.
Collapse
Affiliation(s)
- Paul William Harms
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Dermatology, University of Michigan Medical School
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | | | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | | | - Nallasivam Palanisamy
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Urology, Henry Ford Health System, Detroit, MI
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109,USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan Medical School
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | - Hong Xiao
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Urology, Henry Ford Health System, Detroit, MI
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Urology, Henry Ford Health System, Detroit, MI
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Douglas Randall Fullen
- Department of Pathology, University of Michigan Medical School.,Department of Dermatology, University of Michigan Medical School
| | | | | | - Andrzej Antoni Dlugosz
- Department of Dermatology, University of Michigan Medical School.,Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109,USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| |
Collapse
|
97
|
|
98
|
Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu YM, Dhanasekaran SM, Palanisamy N, Siddiqui J, Cao X, Su F, Wang R, Xiao H, Kunju LP, Mehra R, Tomlins SA, Fullen DR, Bichakjian CK, Johnson TM, Dlugosz AA, Chinnaiyan AM. The Distinctive Mutational Spectra of Polyomavirus-Negative Merkel Cell Carcinoma. Cancer Res 2015; 75:3720-3727. [PMID: 26238782 DOI: 10.1158/0008-5472.can-15-0702] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/01/2015] [Indexed: 01/10/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine tumor. Merkel cell polyomavirus (MCPyV) may contribute to tumorigenesis in a subset of tumors via inhibition of tumor suppressors such as retinoblastoma (RB1) by mutated viral T antigens, but the molecular pathogenesis of MCPyV-negative MCC is largely unexplored. Through our MI-ONCOSEQ precision oncology study, we performed integrative sequencing on two cases of MCPyV-negative MCC, as well as a validation cohort of 14 additional MCC cases (n = 16). In addition to previously identified mutations in TP53, RB1, and PIK3CA, we discovered activating mutations of oncogenes, including HRAS and loss-of-function mutations in PRUNE2 and NOTCH family genes in MCPyV-negative MCC. MCPyV-negative tumors also displayed high overall mutation burden (10.09 ± 2.32 mutations/Mb) and were characterized by a prominent UV-signature pattern with C > T transitions comprising 85% of mutations. In contrast, mutation burden was low in MCPyV-positive tumors (0.40 ± 0.09 mutations/Mb) and lacked a UV signature. These findings suggest a potential ontologic dichotomy in MCC, characterized by either viral-dependent or UV-dependent tumorigenic pathways.
Collapse
Affiliation(s)
- Paul William Harms
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Dermatology, University of Michigan Medical School
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | | | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | | | - Nallasivam Palanisamy
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Urology, Henry Ford Health System, Detroit, MI
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109,USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan Medical School
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | - Hong Xiao
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Urology, Henry Ford Health System, Detroit, MI
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Department of Urology, Henry Ford Health System, Detroit, MI
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Douglas Randall Fullen
- Department of Pathology, University of Michigan Medical School.,Department of Dermatology, University of Michigan Medical School
| | | | | | - Andrzej Antoni Dlugosz
- Department of Dermatology, University of Michigan Medical School.,Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School.,Department of Pathology, University of Michigan Medical School.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109,USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| |
Collapse
|
99
|
Nassar D, Latil M, Boeckx B, Lambrechts D, Blanpain C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat Med 2015; 21:946-54. [PMID: 26168291 DOI: 10.1038/nm.3878] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Mouse models of cancers are routinely used to study cancer biology. However, it remains unclear whether carcinogenesis in mice is driven by the same spectrum of genomic alterations found in humans. Here we conducted a comprehensive genomic analysis of 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced skin cancer, the most commonly used skin cancer model, which appears as benign papillomas that progress into squamous cell carcinomas (SCCs). We also studied genetically induced SCCs that expressed G12D mutant Kras (Kras G12D) but were deficient for p53. Using whole-exome sequencing, we uncovered a characteristic mutational signature of DMBA-induced SCCs. We found that the vast majority of DMBA-induced SCCs presented recurrent mutations in Hras, Kras or Rras2 and mutations in several additional putative oncogenes and tumor-suppressor genes. Similar genes were recurrently mutated in mouse and human SCCs that were from different organs or had been exposed to different carcinogens. Invasive SCCs, but not papillomas, presented substantial chromosomal aberrations, especially in DMBA-induced and genetically induced Trp53-mutated SCCs. Metastasis occurred through sequential spreading, with relatively few additional genetic events. This study provides a framework for future functional cancer genomic studies in mice.
Collapse
Affiliation(s)
- Dany Nassar
- Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), Université libre de Buxelles (ULB), Brussels, Belgium
| | - Mathilde Latil
- Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), Université libre de Buxelles (ULB), Brussels, Belgium
| | - Bram Boeckx
- 1] Vesalius Research Center, Vlaams Instituut voor Biotechnologie VIB, Leuven, Belgium. [2] Laboratory for Translational Genetics, Department of Oncology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| | - Diether Lambrechts
- 1] Vesalius Research Center, Vlaams Instituut voor Biotechnologie VIB, Leuven, Belgium. [2] Laboratory for Translational Genetics, Department of Oncology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| | - Cédric Blanpain
- 1] Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), Université libre de Buxelles (ULB), Brussels, Belgium. [2] WELBIO, Brussels, Belgium
| |
Collapse
|
100
|
Zhou L, Wang Y, Ou C, Lin Z, Wang J, Liu H, Zhou M, Ding Z. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma. Int J Biochem Cell Biol 2015; 65:182-91. [PMID: 26072217 DOI: 10.1016/j.biocel.2015.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/19/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Chengshan Ou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Zhixiang Lin
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Jianyu Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Hongxia Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China.
| |
Collapse
|