51
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
52
|
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biol Int 2020; 45:708-719. [PMID: 33325125 DOI: 10.1002/cbin.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/13/2020] [Indexed: 11/08/2022]
Abstract
Processing bodies (PBs) are 100-300 nm cytoplasmic messenger ribonucleoprotein particle (mRNP) granules that regulate eukaryotic gene expression. These cytoplasmic compartments harbor messenger RNAs (mRNAs) and several proteins involved in mRNA decay, microRNA silencing, nonsense-mediated mRNA decay, and splicing. Though membrane-less, PB structures are maintained by RNA-protein and protein-protein interactions. PB proteins have intrinsically disordered regions and low complexity domains, which account for its liquid to liquid phase separation. In addition to being dynamic and actively involved in the exchange of materials with other mRNPs and organelles, they undergo changes on various cellular cues and environmental stresses, including viral infections. Interestingly, several PB proteins are individually implicated in cancer development, and no study has addressed the effects on PB dynamics after epigenetic modifications of cancer-associated PB genes. In the current review, we summarize modulations undergone by P bodies or P body components upon viral infections. Furthermore, we discuss the selective and widely investigated PB proteins that undergo methylation changes in cancer and their potential as biomarkers.
Collapse
Affiliation(s)
- Sunmathy Kanakamani
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Padmanaban S Suresh
- Department of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
53
|
Vasianovich Y, Bajon E, Wellinger RJ. Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm 7 complex. eLife 2020; 9:60000. [PMID: 33095156 PMCID: PMC7644208 DOI: 10.7554/elife.60000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
The templating RNA is the core of the telomerase reverse transcriptase. In Saccharomyces cerevisiae, the complex life cycle and maturation of telomerase includes a cytoplasmic stage. However, timing and reason for this cytoplasmic passage are poorly understood. Here, we use inducible RNA tagging experiments to show that immediately after transcription, newly synthesized telomerase RNAs undergo one round of nucleo-cytoplasmic shuttling. Their export depends entirely on Crm1/Xpo1, whereas re-import is mediated by Kap122 plus redundant, kinetically less efficient import pathways. Strikingly, Mex67 is essential to stabilize newly transcribed RNA before Xpo1-mediated nuclear export. The results further show that the Sm7 complex associates with and stabilizes the telomerase RNA in the cytoplasm and promotes its nuclear re-import. Remarkably, after this cytoplasmic passage, the nuclear stability of telomerase RNA no longer depends on Mex67. These results underscore the utility of inducible RNA tagging and challenge current models of telomerase maturation.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Emmanuel Bajon
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
54
|
End Products of Telomere Research. Cell Stem Cell 2020; 26:804-805. [PMID: 32502401 DOI: 10.1016/j.stem.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most rare inherited telomere biology disorders and some common aging-related diseases are associated with shortened telomeres. In this issue of Cell Stem Cell, insights into one of the rarest genetic causes of these disorders led to the discovery (Nagpal et al., 2020) of small molecules that lengthen telomeres.
Collapse
|
55
|
Kroustallaki P, Lirussi L, Carracedo S, You P, Esbensen QY, Götz A, Jobert L, Alsøe L, Sætrom P, Gagos S, Nilsen H. SMUG1 Promotes Telomere Maintenance through Telomerase RNA Processing. Cell Rep 2020; 28:1690-1702.e10. [PMID: 31412240 DOI: 10.1016/j.celrep.2019.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 05/28/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Telomerase biogenesis is a complex process where several steps remain poorly understood. Single-strand-selective uracil-DNA glycosylase (SMUG1) associates with the DKC1-containing H/ACA ribonucleoprotein complex, which is essential for telomerase biogenesis. Herein, we show that SMUG1 interacts with the telomeric RNA component (hTERC) and is required for co-transcriptional processing of the nascent transcript into mature hTERC. We demonstrate that SMUG1 regulates the presence of base modifications in hTERC, in a region between the CR4/CR5 domain and the H box. Increased levels of hTERC base modifications are accompanied by reduced DKC1 binding. Loss of SMUG1 leads to an imbalance between mature hTERC and its processing intermediates, leading to the accumulation of 3'-polyadenylated and 3'-extended intermediates that are degraded in an EXOSC10-independent RNA degradation pathway. Consequently, SMUG1-deprived cells exhibit telomerase deficiency, leading to impaired bone marrow proliferation in Smug1-knockout mice.
Collapse
Affiliation(s)
- Penelope Kroustallaki
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Lisa Lirussi
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Panpan You
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Q Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Alexandra Götz
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Laure Jobert
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway; Department of Computer Science, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway; Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway; K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway
| | - Sarantis Gagos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318 Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway.
| |
Collapse
|
56
|
Nagpal N, Agarwal S. Telomerase RNA processing: Implications for human health and disease. Stem Cells 2020; 38:10.1002/stem.3270. [PMID: 32875693 PMCID: PMC7917152 DOI: 10.1002/stem.3270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
Telomeres are composed of repetitive DNA sequences that are replenished by the enzyme telomerase to maintain the self-renewal capacity of stem cells. The RNA component of human telomerase (TERC) is the essential template for repeat addition by the telomerase reverse transcriptase (TERT), and also serves as a scaffold for several factors comprising the telomerase ribonucleoprotein (RNP). Unique features of TERC regulation and function have been informed not only through biochemical studies but also through human genetics. Disease-causing mutations impact TERC biogenesis at several levels including RNA transcription, post-transcriptional processing, folding, RNP assembly, and trafficking. Defects in TERC reduce telomerase activity and impair telomere maintenance, thereby causing a spectrum of degenerative diseases called telomere biology disorders (TBDs). Deciphering mechanisms of TERC dysregulation have led to a broader understanding of noncoding RNA biology, and more recently points to new therapeutic strategies for TBDs. In this review, we summarize over two decades of work revealing mechanisms of human telomerase RNA biogenesis, and how its disruption causes human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
57
|
RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc Natl Acad Sci U S A 2020; 117:22068-22079. [PMID: 32839320 DOI: 10.1073/pnas.2006617117] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA-protein interactions underlie a wide range of cellular processes. Improved methods are needed to systematically map RNA-protein interactions in living cells in an unbiased manner. We used two approaches to target the engineered peroxidase APEX2 to specific cellular RNAs for RNA-centered proximity biotinylation of protein interaction partners. Both an MS2-MCP system and an engineered CRISPR-Cas13 system were used to deliver APEX2 to the human telomerase RNA hTR with high specificity. One-minute proximity biotinylation captured candidate binding partners for hTR, including more than a dozen proteins not previously linked to hTR. We validated the interaction between hTR and the N 6-methyladenosine (m6A) demethylase ALKBH5 and showed that ALKBH5 is able to erase the m6A modification on endogenous hTR. ALKBH5 also modulates telomerase complex assembly and activity. MS2- and Cas13-targeted APEX2 may facilitate the discovery of novel RNA-protein interactions in living cells.
Collapse
|
58
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
59
|
Gaysinskaya V, Stanley SE, Adam S, Armanios M. Synonymous Mutation in DKC1 Causes Telomerase RNA Insufficiency Manifesting as Familial Pulmonary Fibrosis. Chest 2020; 158:2449-2457. [PMID: 32710892 DOI: 10.1016/j.chest.2020.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common of short telomere phenotypes. Familial clustering of IPF is common, but the genetic basis remains unknown in more than one-half of cases. We identified a 65-year-old man with familial IPF, short telomere length, and low telomerase RNA levels. He was diagnosed with a short telomere syndrome after developing hematologic complications post-lung transplantation, but no mutations were identified in a clinical testing pipeline. RESEARCH QUESTION What is the molecular basis underlying the familial IPF and low telomerase RNA levels in this patient? STUDY DESIGN AND METHODS We analyzed whole-genome sequence data and performed functional molecular studies on cells derived from the patient and his family. RESULTS We identified a previously unreported synonymous variant c.942G>A p.K314K in DKC1, the gene encoding the dyskerin ribonucleoprotein, which is required for telomerase RNA biogenesis. The mutation created a competing de novo exonic splicing enhancer, and the misspliced product was degraded by nonsense-mediated decay causing an overall dyskerin deficiency in mutation carriers. In silico tools identified other rare silent DKC1 variants that warrant functional evaluation if found in patients with short telomere-mediated disease. INTERPRETATION Our data point to silent mutation in telomere maintenance genes as a mechanism of familial pulmonary fibrosis. In contrast to DKC1 missense mutations, which primarily manifest in children as dyskeratosis congenita, hypomorphic mutations affecting dyskerin levels likely have a predilection to presenting in adults as pulmonary fibrosis.
Collapse
Affiliation(s)
- Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Telomere Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susan E Stanley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Telomere Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Soheir Adam
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
60
|
Lardelli RM, Lykke-Andersen J. Competition between maturation and degradation drives human snRNA 3' end quality control. Genes Dev 2020; 34:989-1001. [PMID: 32499401 PMCID: PMC7328512 DOI: 10.1101/gad.336891.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Polymerases and exonucleases act on 3' ends of nascent RNAs to promote their maturation or degradation but how the balance between these activities is controlled to dictate the fates of cellular RNAs remains poorly understood. Here, we identify a central role for the human DEDD deadenylase TOE1 in distinguishing the fates of small nuclear (sn)RNAs of the spliceosome from unstable genome-encoded snRNA variants. We found that TOE1 promotes maturation of all regular RNA polymerase II transcribed snRNAs of the major and minor spliceosomes by removing posttranscriptional oligo(A) tails, trimming 3' ends, and preventing nuclear exosome targeting. In contrast, TOE1 promotes little to no maturation of tested U1 variant snRNAs, which are instead targeted by the nuclear exosome. These observations suggest that TOE1 is positioned at the center of a 3' end quality control pathway that selectively promotes maturation and stability of regular snRNAs while leaving snRNA variants unprocessed and exposed to degradation in what could be a widespread mechanism of RNA quality control given the large number of noncoding RNAs processed by DEDD deadenylases.
Collapse
Affiliation(s)
- Rea M Lardelli
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
61
|
Brenner KA, Nandakumar J. Small Molecules Restore Telomeres in Patient Stem Cells. Trends Pharmacol Sci 2020; 41:506-508. [PMID: 32482456 DOI: 10.1016/j.tips.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
Genetic defects in telomere maintenance result in stem cell exhaustion and a spectrum of telomere biology diseases. Systemic treatments beyond organ transplantation are lacking for these diseases. Nagpal and colleagues identified small molecules that restore telomere maintenance in patient-derived stem cells, offering a promising therapy for telomere biology diseases.
Collapse
Affiliation(s)
- Kirsten Ann Brenner
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
62
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
63
|
Nousch M, Yeroslaviz A, Eckmann CR. Stage-specific combinations of opposing poly(A) modifying enzymes guide gene expression during early oogenesis. Nucleic Acids Res 2020; 47:10881-10893. [PMID: 31511882 PMCID: PMC6845980 DOI: 10.1093/nar/gkz787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 11/14/2022] Open
Abstract
RNA-modifying enzymes targeting mRNA poly(A) tails are universal regulators of post-transcriptional gene expression programs. Current data suggest that an RNA-binding protein (RBP) directed tug-of-war between tail shortening and re-elongating enzymes operates in the cytoplasm to repress or activate specific mRNA targets. While this concept is widely accepted, it was primarily described in the final meiotic stages of frog oogenesis and relies molecularly on a single class of RBPs, i.e. CPEBs, the deadenylase PARN and cytoplasmic poly(A) polymerase GLD-2. Using the spatial and temporal resolution of female gametogenesis in the nematode C. elegans, we determined the distinct roles of known deadenylases throughout germ cell development and discovered that the Ccr4-Not complex is the main antagonist to GLD-2-mediated mRNA regulation. We find that the Ccr4-Not/GLD-2 balance is critical for essentially all steps of oocyte production and reiteratively employed by various classes of RBPs. Interestingly, its two deadenylase subunits appear to affect mRNAs stage specifically: while a Caf1/GLD-2 antagonism regulates mRNA abundance during all stages of oocyte production, a Ccr4/GLD-2 antagonism regulates oogenesis in an mRNA abundance independent manner. Our combined data suggests that the Ccr4-Not complex represents the evolutionarily conserved molecular opponent to GLD-2 providing an antagonistic framework of gene-specific poly(A)-tail regulation.
Collapse
Affiliation(s)
- Marco Nousch
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Assa Yeroslaviz
- Max Planck Institute of Biochemistry (MPIB), Am Klopferspitz 18, Martinsried 82152, Germany
| | - Christian R Eckmann
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg 10, Halle (Saale) 06120, Germany
| |
Collapse
|
64
|
Garcia PD, Leach RW, Wadsworth GM, Choudhary K, Li H, Aviran S, Kim HD, Zakian VA. Stability and nuclear localization of yeast telomerase depend on protein components of RNase P/MRP. Nat Commun 2020; 11:2173. [PMID: 32358529 PMCID: PMC7195438 DOI: 10.1038/s41467-020-15875-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
RNase P and MRP are highly conserved, multi-protein/RNA complexes with essential roles in processing ribosomal and tRNAs. Three proteins found in both complexes, Pop1, Pop6, and Pop7 are also telomerase-associated. Here, we determine how temperature sensitive POP1 and POP6 alleles affect yeast telomerase. At permissive temperatures, mutant Pop1/6 have little or no effect on cell growth, global protein levels, the abundance of Est1 and Est2 (telomerase proteins), and the processing of TLC1 (telomerase RNA). However, in pop mutants, TLC1 is more abundant, telomeres are short, and TLC1 accumulates in the cytoplasm. Although Est1/2 binding to TLC1 occurs at normal levels, Est1 (and hence Est3) binding is highly unstable. We propose that Pop-mediated stabilization of Est1 binding to TLC1 is a pre-requisite for formation and nuclear localization of the telomerase holoenzyme. Furthermore, Pop proteins affect TLC1 and the RNA subunits of RNase P/MRP in very different ways.
Collapse
Affiliation(s)
- P Daniela Garcia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert W Leach
- Bioinformatics Group, Genomics Core Facility, Carl Icahn Laboratory, Princeton University, Princeton, New Jersey, 08544, USA
| | - Gable M Wadsworth
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Krishna Choudhary
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Hua Li
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
65
|
Small-Molecule PAPD5 Inhibitors Restore Telomerase Activity in Patient Stem Cells. Cell Stem Cell 2020; 26:896-909.e8. [PMID: 32320679 DOI: 10.1016/j.stem.2020.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Genetic lesions that reduce telomerase activity inhibit stem cell replication and cause a range of incurable diseases, including dyskeratosis congenita (DC) and pulmonary fibrosis (PF). Modalities to restore telomerase in stem cells throughout the body remain unclear. Here, we describe small-molecule PAPD5 inhibitors that demonstrate telomere restoration in vitro, in stem cell models, and in vivo. PAPD5 is a non-canonical polymerase that oligoadenylates and destabilizes telomerase RNA component (TERC). We identified BCH001, a specific PAPD5 inhibitor that restored telomerase activity and telomere length in DC patient induced pluripotent stem cells. When human blood stem cells engineered to carry DC-causing PARN mutations were xenotransplanted into immunodeficient mice, oral treatment with a repurposed PAPD5 inhibitor, the dihydroquinolizinone RG7834, rescued TERC 3' end maturation and telomere length. These findings pave the way for developing systemic telomere therapeutics to counteract stem cell exhaustion in DC, PF, and possibly other aging-related diseases.
Collapse
|
66
|
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 2020; 21:384-397. [PMID: 32242127 DOI: 10.1038/s41580-020-0234-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
67
|
Toufektchan E, Lejour V, Durand R, Giri N, Draskovic I, Bardot B, Laplante P, Jaber S, Alter BP, Londono-Vallejo JA, Savage SA, Toledo F. Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance. SCIENCE ADVANCES 2020; 6:eaay3511. [PMID: 32300648 PMCID: PMC7148086 DOI: 10.1126/sciadv.aay3511] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Romane Durand
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irena Draskovic
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Pierre Laplante
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - José-Arturo Londono-Vallejo
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Corresponding author.
| |
Collapse
|
68
|
Kanazawa M, Ikeda Y, Nishihama R, Yamaoka S, Lee NH, Yamato KT, Kohchi T, Hirayama T. Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. PLANT & CELL PHYSIOLOGY 2020; 61:470-480. [PMID: 31722408 DOI: 10.1093/pcp/pcz212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.
Collapse
Affiliation(s)
- Mai Kanazawa
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Yoko Ikeda
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nam-Hee Lee
- Department of Life Sciences, Faculty of Science and Engineering, Sorbonne University, 4 Place Jussieu, Paris 75005, France
| | - Katsuyuki T Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Takashi Hirayama
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
69
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
70
|
Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN). Cells 2020; 9:cells9010162. [PMID: 31936572 PMCID: PMC7017053 DOI: 10.3390/cells9010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Translation is spatiotemporally regulated and endoplasmic reticulum (ER)-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, which suggests that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, which suggests that PARN might play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. The ER-anchored PARN modulated DNA damage response and thereby cell viability by promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy. These findings revealed that highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and PARN might contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Collapse
|
71
|
Nieto B, Gaspar SG, Moriggi G, Pestov DG, Bustelo XR, Dosil M. Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis. Nat Commun 2020; 11:156. [PMID: 31919354 PMCID: PMC6952385 DOI: 10.1038/s41467-019-13990-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process in human disease. Here we report a preribosome purification and tagging strategy that overcomes some of the existing technical difficulties. Using these tools, we find that the pre-40S precursors go through two distinct maturation phases inside the nucleolus and follow a regulatory step that precedes late maturation in the cytoplasm. This regulatory step entails the intertwined actions of both PARN (a metazoan-specific ribonuclease) and RRP12 (a phylogenetically conserved 40S biogenesis factor that has acquired additional functional features in higher eukaryotes). Together, these results demonstrate the usefulness of this purification method for the dissection of ribosome biogenesis in human cells. They also identify distinct maturation stages and metazoan-specific regulatory mechanisms involved in the generation of the human 40S ribosomal subunit. Ribosome synthesis is a complex multi-step process. Here the authors present a method that allows the efficient isolation and characterization of the preribosomal complexes formed along the entire ribosome synthesis pathway in human cells.
Collapse
Affiliation(s)
- Blanca Nieto
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Giulia Moriggi
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain. .,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain. .,Departamento de Bioquímica y Biología Molecular, University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
72
|
Planté-Bordeneuve T, Haouas H, Vanderheyde K, Froidure A. Telomerase-related monogenic lung fibrosis presenting with subacute onset: a case report and review of literature. Acta Clin Belg 2019; 74:445-450. [PMID: 30451599 DOI: 10.1080/17843286.2018.1545375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Monogenic pulmonary fibrosis related to telomerase mutations is characterized by a large spectrum of clinical presentations. The disease may affect several organs including bone marrow, liver and skin. This case illustrates some of the most salient features of telomere-related Interstitial Lung Disease(ILD). Methods: Single case study and review of the litterature. Results: We report the case of a 44-year-old man admitted to our unit for subacute pulmonary fibrosis. No underlying cause could be identified. Personal and familial history was highly suggestive of monogenic telomere related lung fibrosis. Genetic investigation confirmed a mutation in the TERT gene, coding for one of the components of telomerase. Given the severe hypoxemia unresponsive to supportive treatment, he was referred for urgent lung transplantation, with a favourable outcome. Genetic counselling was proposed to his family. Conclusions: Telomerase-related monogenic lung fibrosis may present with a subacute onset, requiring urgent lung transplantation. Extra-thoracic clinical manifestations and familial history are key elements pointing towards the diagnosis.
Collapse
Affiliation(s)
| | - Hanae Haouas
- Service de pneumologie, Hopital Notre-Dame de Grâce, Gosselies, Belgium
| | - Kim Vanderheyde
- Service de pneumologie, Hopital Notre-Dame de Grâce, Gosselies, Belgium
| | - Antoine Froidure
- Service de pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
73
|
A-Tail of Telomerase RNA Maturation. Mol Cell 2019; 74:635-636. [PMID: 31100243 DOI: 10.1016/j.molcel.2019.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Molecular Cell, Roake et al. (2019) define a feedforward kinetic pathway consisting of a cycle of oligoadenylation and deadenylation that regulates the production of mature human telomerase RNA.
Collapse
|
74
|
Borie R, Le Guen P, Ghanem M, Taillé C, Dupin C, Dieudé P, Kannengiesser C, Crestani B. The genetics of interstitial lung diseases. Eur Respir Rev 2019; 28:28/153/190053. [PMID: 31554702 PMCID: PMC9488931 DOI: 10.1183/16000617.0053-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a set of heterogeneous lung diseases characterised by inflammation and, in some cases, fibrosis. These lung conditions lead to dyspnoea, cough, abnormalities in gas exchange, restrictive physiology (characterised by decreased lung volumes), hypoxaemia and, if progressive, respiratory failure. In some cases, ILDs can be caused by systemic diseases or environmental exposures. The ability to treat or cure these ILDs varies based on the subtype and in many cases lung transplantation remains the only curative therapy. There is a growing body of evidence that both common and rare genetic variants contribute to the development and clinical manifestation of many of the ILDs. Here, we review the current understanding of genetic risk and ILD. Common and rare genetic variants contribute to the development and clinical manifestation of many interstitial lung diseaseshttp://bit.ly/31loHLh
Collapse
Affiliation(s)
- Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Pierre Le Guen
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Mada Ghanem
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Camille Taillé
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Clairelyne Dupin
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Philippe Dieudé
- INSERM U1152, Paris, France.,Département de Génétique, Hôpital Bichat, AP-HP, Paris, France
| | - Caroline Kannengiesser
- INSERM U1152, Paris, France.,Service de Rhumatologie, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France .,INSERM U1152, Paris, France
| |
Collapse
|
75
|
Son A, Park JE, Kim VN. PARN and TOE1 Constitute a 3' End Maturation Module for Nuclear Non-coding RNAs. Cell Rep 2019; 23:888-898. [PMID: 29669292 DOI: 10.1016/j.celrep.2018.03.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/27/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) and target of EGR1 protein 1 (TOE1) are nuclear granule-associated deadenylases, whose mutations are linked to multiple human diseases. Here, we applied mTAIL-seq and RNA sequencing (RNA-seq) to systematically identify the substrates of PARN and TOE1 and elucidate their molecular functions. We found that PARN and TOE1 do not modulate the length of mRNA poly(A) tails. Rather, they promote the maturation of nuclear small non-coding RNAs (ncRNAs). PARN and TOE1 act redundantly on some ncRNAs, most prominently small Cajal body-specific RNAs (scaRNAs). scaRNAs are strongly downregulated when PARN and TOE1 are compromised together, leading to defects in small nuclear RNA (snRNA) pseudouridylation. They also function redundantly in the biogenesis of telomerase RNA component (TERC), which shares sequence motifs found in H/ACA box scaRNAs. Our findings extend the knowledge of nuclear ncRNA biogenesis, and they provide insights into the pathology of PARN/TOE1-associated genetic disorders whose therapeutic treatments are currently unavailable.
Collapse
Affiliation(s)
- Ahyeon Son
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
76
|
Dodson LM, Baldan A, Nissbeck M, Gunja SMR, Bonnen PE, Aubert G, Birchansky S, Virtanen A, Bertuch AA. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum Mutat 2019; 40:2414-2429. [PMID: 31448843 DOI: 10.1002/humu.23898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.
Collapse
Affiliation(s)
- Lois M Dodson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alessandro Baldan
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Mikael Nissbeck
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sethu M R Gunja
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Geraldine Aubert
- Repeat Diagnostics Inc., North Vancouver, British Columbia, Canada
| | - Sherri Birchansky
- Department of Radiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Anders Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
77
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
78
|
Gable DL, Gaysinskaya V, Atik CC, Talbot CC, Kang B, Stanley SE, Pugh EW, Amat-Codina N, Schenk KM, Arcasoy MO, Brayton C, Florea L, Armanios M. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev 2019; 33:1381-1396. [PMID: 31488579 PMCID: PMC6771387 DOI: 10.1101/gad.326785.119] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
In this study, Gable et al. follow a family with early onset pulmonary fibrosis and report the discovery of a new genetic cause of pulmonary fibrosis. They use multidimensional analysis methods, involving molecular studies, mouse model, and transcriptome-wide studies to show that heterozygous loss-of-function of the exosomal targeting protein ZCCHC8 to identify a novel cause of telomerase insufficiency in human disease. Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3′ end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8−/− mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8−/− brain transcriptome was highly dysregulated, showing accumulation and 3′ end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3′ end maturation mechanism that vertebrate TR shares with replication-dependent histones.
Collapse
Affiliation(s)
- Dustin L Gable
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Christine C Atik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Byunghak Kang
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Susan E Stanley
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Elizabeth W Pugh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Nuria Amat-Codina
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Kara M Schenk
- Osler Medical Housestaff Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Murat O Arcasoy
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Cory Brayton
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Liliana Florea
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
79
|
Deng T, Huang Y, Weng K, Lin S, Li Y, Shi G, Chen Y, Huang J, Liu D, Ma W, Songyang Z. TOE1 acts as a 3' exonuclease for telomerase RNA and regulates telomere maintenance. Nucleic Acids Res 2019; 47:391-405. [PMID: 30371886 PMCID: PMC6326811 DOI: 10.1093/nar/gky1019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022] Open
Abstract
In human cells, telomeres are elongated by the telomerase complex that contains the reverse transcriptase hTERT and RNA template TERC/hTR. Poly(A)-specific ribonuclease (PARN) is known to trim hTR precursors by removing poly(A) tails. However, the precise mechanism of hTR 3′ maturation remains largely unknown. Target of Egr1 (TOE1) is an Asp-Glu-Asp-Asp (DEDD) domain containing deadenylase that is mutated in the human disease Pontocerebella Hypoplasia Type 7 (PCH7) and implicated in snRNA and hTR processing. We have previously found TOE1 to localize specifically in Cajal bodies, where telomerase RNP complex assembly takes place. In this study, we showed that TOE1 could interact with hTR and the telomerase complex. TOE1-deficient cells accumulated hTR precursors, including oligoadenylated and 3′-extended forms, which was accompanied by impaired telomerase activity and shortened telomeres. Telomerase activity in TOE1-deficient cells could be rescued by wild-type TOE1 but not the catalytically inactive mutant. Our results suggest that hTR 3′ end processing likely involves multiple exonucleases that work in parallel and/or sequentially, where TOE1 may function non-redundantly as a 3′-to-5′ exonuclease in conjunction with PARN. Our study highlights a mechanistic link between TOE1 mutation, improper hTR processing and telomere dysfunction in diseases such as PCH7.
Collapse
Affiliation(s)
- Tingting Deng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Kai Weng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Song Lin
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujing Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Guang Shi
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yali Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjiu Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wenbin Ma
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhou Songyang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
80
|
Duan TL, He GJ, Hu LD, Yan YB. The Intrinsically Disordered C-Terminal Domain Triggers Nucleolar Localization and Function Switch of PARN in Response to DNA Damage. Cells 2019; 8:cells8080836. [PMID: 31387300 PMCID: PMC6721724 DOI: 10.3390/cells8080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN), a multifunctional multi-domain deadenylase, is crucial to the regulation of mRNA turnover and the maturation of various non-coding RNAs. Despite extensive studies of the well-folding domains responsible for PARN catalysis, the structure and function of the C-terminal domain (CTD) remains elusive. PARN is a cytoplasm-nucleus shuttle protein with concentrated nucleolar distribution. Here, we identify the nuclear and nucleolar localization signals in the CTD of PARN. Spectroscopic studies indicated that PARN-CTD is intrinsically disordered with loosely packed local structures/tertiary structure. Phosphorylation-mimic mutation S557D disrupted the local structure and facilitated the binding of the CTD with the well-folded domains, with no impact on PARN deadenylase activity. Under normal conditions, the nucleolus-residing PARN recruited CBP80 into the nucleoli to repress its deadenylase activity, while DNA damage-induced phosphorylation of PARN-S557 expelled CBP80 from the nucleoli to discharge activity inhibition and attracted nucleoplasm-located CstF-50 into the nucleoli to activate deadenylation. The structure switch-induced function switch of PARN reshaped the profile of small nuclear non-coding RNAs to respond to DNA damage. Our findings highlight that the structure switch of the CTD induced by posttranslational modifications redefines the subset of binding partners, and thereby the RNA targets in the nucleoli.
Collapse
Affiliation(s)
- Tian-Li Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
81
|
Benyelles M, Episkopou H, O'Donohue M, Kermasson L, Frange P, Poulain F, Burcu Belen F, Polat M, Bole‐Feysot C, Langa‐Vives F, Gleizes P, de Villartay J, Callebaut I, Decottignies A, Revy P. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol Med 2019; 11:e10201. [PMID: 31273937 PMCID: PMC6609912 DOI: 10.15252/emmm.201810201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | | | - Marie‐Françoise O'Donohue
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Pierre Frange
- EA 7327, Université Paris Descartes, Sorbonne Paris‐CitéParisFrance
- Laboratoire de Microbiologie clinique & Unité d'ImmunologieHématologie et Rhumatologie PédiatriquesAP‐HP, Hôpital Necker, Enfants MaladesParisFrance
| | - Florian Poulain
- de Duve InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Fatma Burcu Belen
- Pediatric HematologyFaculty of MedicineBaskent UniversityAnkaraTurkey
| | - Meltem Polat
- Pediatric Infectious DiseasesDepartment of Pediatric Infectious DiseasesPamukkale University Medical FacultyDenizliTurkey
| | - Christine Bole‐Feysot
- INSERM, UMR 1163Genomics platform, Imagine InstituteParis Descartes–Sorbonne Paris Cité UniversityParisFrance
- Genomic Core FacilityImagine Institute‐Structure Fédérative de Recherche NeckerINSERM U1163ParisFrance
| | | | - Pierre‐Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Jean‐Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Isabelle Callebaut
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de Cosmochimie, IMPMCSorbonne UniversitéParisFrance
| | | | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| |
Collapse
|
82
|
Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, Maxwell AP. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the Heritability Puzzle. Front Genet 2019; 10:453. [PMID: 31214239 PMCID: PMC6554557 DOI: 10.3389/fgene.2019.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem with an increasing prevalence partly driven by aging population structure. Both genomic and environmental factors contribute to this complex heterogeneous disease. CKD heritability is estimated to be high (30-75%). Genome-wide association studies (GWAS) and GWAS meta-analyses have identified several genetic loci associated with CKD, including variants in UMOD, SHROOM3, solute carriers, and E3 ubiquitin ligases. However, these genetic markers do not account for all the susceptibility to CKD, and the causal pathways remain incompletely understood; other factors must be contributing to the missing heritability. Less investigated biological factors such as telomere length; mitochondrial proteins, encoded by nuclear genes or specific mitochondrial DNA (mtDNA) encoded genes; structural variants, such as copy number variants (CNVs), insertions, deletions, inversions and translocations are poorly covered and may explain some of the missing heritability. The sex chromosomes, often excluded from GWAS studies, may also help explain gender imbalances in CKD. In this review, we outline recent findings on molecular biomarkers for CKD (telomeres, CNVs, mtDNA variants, sex chromosomes) that typically have received less attention than gene polymorphisms. Shorter telomere length has been associated with renal dysfunction and CKD progression, however, most publications report small numbers of subjects with conflicting findings. CNVs have been linked to congenital anomalies of the kidney and urinary tract, posterior urethral valves, nephronophthisis and immunoglobulin A nephropathy. Information on mtDNA biomarkers for CKD comes primarily from case reports, therefore the data are scarce and diverse. The most consistent finding is the A3243G mutation in the MT-TL1 gene, mainly associated with focal segmental glomerulosclerosis. Only one GWAS has found associations between X-chromosome and renal function (rs12845465 and rs5987107). No loci in the Y-chromosome have reached genome-wide significance. In conclusion, despite the efforts to find the genetic basis of CKD, it remains challenging to explain all of the heritability with currently available methods and datasets. Although additional biomarkers have been investigated in less common suspects such as telomeres, CNVs, mtDNA and sex chromosomes, hidden heritability in CKD remains elusive, and more comprehensive approaches, particularly through the integration of multiple -"omics" data, are needed.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ryan Skelly
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Laura Jane Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
83
|
Laudadio I, Carissimi C, Fulci V. How RNAi machinery enters the world of telomerase. Cell Cycle 2019; 18:1056-1067. [PMID: 31014212 PMCID: PMC6592256 DOI: 10.1080/15384101.2019.1609834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022] Open
Abstract
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
84
|
He GJ, Yan YB. Contributions of the C-terminal domain to poly(A)-specific ribonuclease (PARN) stability and self-association. Biochem Biophys Rep 2019; 18:100626. [PMID: 30949591 PMCID: PMC6430076 DOI: 10.1016/j.bbrep.2019.100626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions. The C-terminal domain enhanced PARN stability against thermal inactivation. K+ reinforced the protective effect of the C-terminal domain. The C-terminal domain of PARN was intrinsically aggregation-prone. K+ modulated PARN self-association via the C-terminal domain.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
85
|
Disruption of Telomerase RNA Maturation Kinetics Precipitates Disease. Mol Cell 2019; 74:688-700.e3. [PMID: 30930056 DOI: 10.1016/j.molcel.2019.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
Mutations in RNA-processing enzymes are increasingly linked to human disease. Telomerase RNA and related noncoding RNAs require 3' end-processing steps, including oligoadenylation. Germline mutations in poly(A)ribonuclease (PARN) cause accumulation of extended human telomerase RNA (hTR) species and precipitate dyskeratosis congenita and pulmonary fibrosis. Here, we develop nascent RNAend-seq to measure processing rates of RNA precursors. We find that mature hTR derives from extended precursors but that in PARN-mutant cells hTR maturation kinetically stalls and unprocessed precursors are degraded. Loss of poly(A)polymerase PAPD5 in PARN-mutant cells accelerates hTR maturation and restores hTR processing, indicating that oligoadenylation and deadenylation set rates of hTR maturation. The H/ACA domain mediates hTR maturation by precisely defining the 3' end, recruiting poly(A)polymerase activity, and conferring sensitivity to PARN regulation. These data reveal a feedforward circuit in which post-transcriptional oligoadenylation controls RNA maturation kinetics. Similar alterations in RNA processing rates may contribute to mechanisms of RNA-based human disease.
Collapse
|
86
|
Zhang D, Zhou Z, Abu-Hijleh M, Batra K, Xing C, Garcia CK. Homozygous Rare PARN Missense Mutation in Familial Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 199:797-799. [PMID: 30525901 PMCID: PMC6423103 DOI: 10.1164/rccm.201809-1632le] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- David Zhang
- University of Texas Southwestern Medical CenterDallas, Texas
| | - Zhengyang Zhou
- University of Texas Southwestern Medical CenterDallas, Texas
| | | | - Kiran Batra
- University of Texas Southwestern Medical CenterDallas, Texas
| | - Chao Xing
- University of Texas Southwestern Medical CenterDallas, Texas
| | | |
Collapse
|
87
|
Lee D, Park D, Park JH, Kim JH, Shin C. Poly(A)-specific ribonuclease sculpts the 3' ends of microRNAs. RNA (NEW YORK, N.Y.) 2019; 25:388-405. [PMID: 30591540 PMCID: PMC6380276 DOI: 10.1261/rna.069633.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
The 3' ends of metazoan microRNAs (miRNAs) are initially defined by the RNase III enzymes during maturation, but subsequently experience extensive modifications by several enzymatic activities. For example, terminal nucleotidyltransferases (TENTs) elongate miRNAs by adding one or a few nucleotides to their 3' ends, which occasionally leads to differential regulation of miRNA stability or function. However, the catalytic entities that shorten miRNAs and the molecular consequences of such shortening are less well understood, especially in vertebrates. Here, we report that poly(A)-specific ribonuclease (PARN) sculpts the 3' ends of miRNAs in human cells. By generating PARN knockout cells and characterizing their miRNAome, we demonstrate that PARN digests the 3' extensions of miRNAs that are derived from the genome or attached by TENTs, thereby effectively reducing the length of miRNAs. Surprisingly, PARN-mediated shortening has little impact on miRNA stability, suggesting that this process likely operates to finalize miRNA maturation, rather than to initiate miRNA decay. PARN-mediated shortening is pervasive across most miRNAs and appears to be a conserved mechanism contributing to the 3' end formation of vertebrate miRNAs. Our findings add miRNAs to the expanding list of noncoding RNAs whose 3' end formation depends on PARN.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Daechan Park
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
88
|
Shukla S, Bjerke GA, Muhlrad D, Yi R, Parker R. The RNase PARN Controls the Levels of Specific miRNAs that Contribute to p53 Regulation. Mol Cell 2019; 73:1204-1216.e4. [PMID: 30770239 DOI: 10.1016/j.molcel.2019.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/08/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Glen A Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Denise Muhlrad
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
89
|
Rubtsova MP, Vasilkova DP, Moshareva MA, Malyavko AN, Meerson MB, Zatsepin TS, Naraykina YV, Beletsky AV, Ravin NV, Dontsova OA. Integrator is a key component of human telomerase RNA biogenesis. Sci Rep 2019; 9:1701. [PMID: 30737432 PMCID: PMC6368637 DOI: 10.1038/s41598-018-38297-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/17/2018] [Indexed: 11/27/2022] Open
Abstract
Telomeres are special DNA-protein structures that are located at the ends of linear eukaryotic chromosomes. The telomere length determines the proliferation potential of cells. Telomerase is a key component of the telomere length maintenance system. While telomerase is inactive in the majority of somatic cells, its activity determines the clonogenic potential of stem cells as a resource for tissue and organism regeneration. Reactivation of telomerase occurs during the process of immortalization in the majority of cancer cells. Telomerase is a ribonucleoprotein that contains telomerase reverse transcriptase and telomerase RNA components. The RNA processing mechanism of telomerase involves exosome trimming or degradation of the primary precursor. Recent data provide evidence that the competition between the processing and decay of telomerase RNA may regulate the amount of RNA at the physiological level. We show that termination of human telomerase RNA transcription is dependent on its promoter, which engages with the multisubunit complex Integrator to interact with RNA polymerase II and terminate transcription of the human telomerase RNA gene followed by further processing.
Collapse
Affiliation(s)
- M P Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143026, Russia. .,Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia.
| | - D P Vasilkova
- Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - M A Moshareva
- Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - A N Malyavko
- Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - M B Meerson
- Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - T S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143026, Russia.,Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Y V Naraykina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143026, Russia.,Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - A V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - N V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - O A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143026, Russia. .,Lomonosov Moscow State University, Department of Chemistry, Faculty of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
90
|
Posttranscriptional modulation of TERC by PAPD5 inhibition rescues hematopoietic development in dyskeratosis congenita. Blood 2019; 133:1308-1312. [PMID: 30728146 DOI: 10.1182/blood-2018-11-885368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Reduced levels of TERC, the telomerase RNA component, cause dyskeratosis congenita (DC) in patients harboring mutations in TERC, PARN, NOP10, NHP2, NAF1, or DKC1. Inhibition of the noncanonical poly(A) polymerase PAPD5, or the exosome RNA degradation complex, partially restores TERC levels in immortalized DKC1 mutant cells, but it remains unknown if modulation of posttranscriptional processing of TERC could improve hematopoietic output in DC. We used human embryonic stem cells (hESCs) with a common dyskerin mutation (DKC1_A353V), which have defective telomere maintenance and reduced definitive hematopoietic potential, to understand the effects of reducing EXOSC3 activity, or silencing PAPD5-mediated oligoadenylation, on hematopoietic progenitor specification and function in DC. Reduction of EXOSC3 or PAPD5 levels in DKC1 mutant hESCs led to functional improvements in TERC levels and telomerase activity, with concomitant telomere elongation and reduced levels of DNA damage signaling. Interestingly, the silencing of PAPD5, but not EXOSC3, significantly restored definitive hematopoietic potential in DKC1 mutant cells. Mechanistically, we show that PAPD5 inhibition is sustained in differentiated CD34+ cells, with a concomitant increase in mature, functional, forms of TERC, indicating that regulation of PAPD5 is a potential strategy to reverse hematologic dysfunction in DC patients.
Collapse
|
91
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
92
|
|
93
|
Laudadio I, Orso F, Azzalin G, Calabrò C, Berardinelli F, Coluzzi E, Gioiosa S, Taverna D, Sgura A, Carissimi C, Fulci V. AGO2 promotes telomerase activity and interaction between the telomerase components TERT and TERC. EMBO Rep 2018; 20:embr.201845969. [PMID: 30591524 DOI: 10.15252/embr.201845969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) constitute the core telomerase enzyme that maintains the length of telomeres. Telomere maintenance is affected in a broad range of cancer and degenerative disorders. Taking advantage of gain- and loss-of-function approaches, we show that Argonaute 2 (AGO2) promotes telomerase activity and stimulates the association between TERT and TERC AGO2 depletion results in shorter telomeres as well as in lower proliferation rates in vitro and in vivo We also demonstrate that AGO2 interacts with TERC and with a newly identified sRNA (terc-sRNA), arising from the H/ACA box of TERC Notably, terc-sRNA is sufficient to enhance telomerase activity when overexpressed. Analyses of sRNA-Seq datasets show that terc-sRNA is detected in primary human tissues and increases in tumors as compared to control tissues. Collectively, these data uncover a new layer of complexity in the regulation of telomerase activity by AGO2 and might lay the foundation for new therapeutic targets in tumors and telomere diseases.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Gianluca Azzalin
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Calabrò
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Elisa Coluzzi
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Silvia Gioiosa
- CNR, Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), Bari, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Antonella Sgura
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
94
|
The H/ACA complex disrupts triplex in hTR precursor to permit processing by RRP6 and PARN. Nat Commun 2018; 9:5430. [PMID: 30575725 PMCID: PMC6303318 DOI: 10.1038/s41467-018-07822-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Human telomerase RNA (hTR) is transcribed as a precursor that is then posttranscriptionally modified and processed. A fraction of the transcripts is oligoadenylated by TRAMP and either processed into the mature hTR or degraded by the exosome. Here, we characterize the processing of 3′ extended forms of varying length by PARN and RRP6. We show that tertiary RNA interactions unique to the longer transcripts favor RNA degradation, whereas H/ACA RNP assembly stimulates productive processing. Interestingly, the H/ACA complex actively promotes processing in addition to protecting the mature 3′ end. Processing occurs in two steps with longer forms first being trimmed by RRP6 and shorter forms then being processed by PARN. These results reveal how RNA structure and RNP assembly affect the kinetics of processing and degradation and ultimately determine the amount of functional telomerase produced in cells. Telomerase RNA (hTR) is transcribed as a 3′-extended precursor. Here the authors examine the processing of hTR precursors of various lengths and show that processing occurs in distinct steps involving different nucleases PARN and RRP6.
Collapse
|
95
|
Saito A, Horie M, Micke P, Nagase T. The Role of TGF-β Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2018; 19:ijms19113611. [PMID: 30445777 PMCID: PMC6275044 DOI: 10.3390/ijms19113611] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown etiology and dismal prognosis. IPF patients are known to have an increased risk of lung cancer and careful decision-making is required for the treatment of lung cancer associated with IPF. Transforming growth factor (TGF)-β signaling plays a central role in tissue fibrosis and tumorigenesis. TGF-β-mediated pathological changes that occur in IPF lung tissue may promote the process of field cancerization and provide the microenvironment favorable to cancer initiation and progression. This review summarizes the current knowledge related to IPF pathogenesis and explores the molecular mechanisms that underlie the occurrence of lung cancer in the background of IPF, with an emphasis on the multifaceted effects of TGF-β signaling.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden.
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
96
|
Tudek A, Lloret-Llinares M, Jensen TH. The multitasking polyA tail: nuclear RNA maturation, degradation and export. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0169. [PMID: 30397105 DOI: 10.1098/rstb.2018.0169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
A polyA (pA) tail is an essential modification added to the 3' ends of a wide range of RNAs at different stages of their metabolism. Here, we describe the main sources of polyadenylation and outline their underlying biochemical interactions within the nuclei of budding yeast Saccharomyces cerevisiae, human cells and, when relevant, the fission yeast Schizosaccharomyces pombe Polyadenylation mediated by the S. cerevisiae Trf4/5 enzymes, and their human homologues PAPD5/7, typically leads to the 3'-end trimming or complete decay of non-coding RNAs. By contrast, the primary function of canonical pA polymerases (PAPs) is to produce stable and nuclear export-competent mRNAs. However, this dichotomy is becoming increasingly blurred, at least in S. pombe and human cells, where polyadenylation mediated by canonical PAPs may also result in transcript decay.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
97
|
Aubert M, O'Donohue MF, Lebaron S, Gleizes PE. Pre-Ribosomal RNA Processing in Human Cells: From Mechanisms to Congenital Diseases. Biomolecules 2018; 8:biom8040123. [PMID: 30356013 PMCID: PMC6315592 DOI: 10.3390/biom8040123] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomal RNAs, the most abundant cellular RNA species, have evolved as the structural scaffold and the catalytic center of protein synthesis in every living organism. In eukaryotes, they are produced from a long primary transcript through an intricate sequence of processing steps that include RNA cleavage and folding and nucleotide modification. The mechanisms underlying this process in human cells have long been investigated, but technological advances have accelerated their study in the past decade. In addition, the association of congenital diseases to defects in ribosome synthesis has highlighted the central place of ribosomal RNA maturation in cell physiology regulation and broadened the interest in these mechanisms. Here, we give an overview of the current knowledge of pre-ribosomal RNA processing in human cells in light of recent progress and discuss how dysfunction of this pathway may contribute to the physiopathology of congenital diseases.
Collapse
Affiliation(s)
- Maxime Aubert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| |
Collapse
|
98
|
Mangaonkar AA, Ferrer A, Pinto E Vairo F, Cousin MA, Kuisle RJ, Klee EW, Kennedy CC, Peters SG, Scott JP, Utz JP, Baqir M, Sekiguchi H, Khan SP, Rodriguez V, Simonetto DA, Kamath PS, Abraham RS, Wylam ME, Patnaik MM. Clinical Correlates and Treatment Outcomes for Patients With Short Telomere Syndromes. Mayo Clin Proc 2018; 93:834-839. [PMID: 29976374 PMCID: PMC7646091 DOI: 10.1016/j.mayocp.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 10/28/2022]
Abstract
Short telomere syndromes (STSs) are accelerated aging syndromes with multisystemic manifestations that present complex management challenges. In this article, we discuss a single-institution experience in diagnosing and managing patients with inherited STSs. In total, we identified 17 patients with short telomeres, defined by flow-fluorescence in-situ hybridization telomere lengths of less than first centile in granulocytes/lymphocytes OR the presence of a characteristic germline pathogenic variant in the context of a highly suggestive clinical phenotype. Genetic variations in the telomere complex were identified in 6 (35%) patients, with 4 being known pathogenic variants involving TERT (n=2), TERC (n=1), and DKC1 (n=1) genes, while 2 were variants of uncertain significance in TERT and RTEL1 genes. Idiopathic interstitial pneumonia (IIP) (n=12 [71%]), unexplained cytopenias (n=5 [29%]), and cirrhosis (n=2 [12%]) were most frequent clinical phenotypes at diagnosis. At median follow-up of 48 (range, 0-316) months, Kaplan-Meier estimate of overall survival, median (95% CI), was 182 (113, not reached) months. Treatment modalities included lung transplantation for IIP (n=5 [29%]), with 3 patients developing signs of acute cellular rejection (2, grade A2; 1, grade A1); danazol therapy for cytopenias (n=4 [24%]), with only 1 out of 4 patients showing a partial hematologic response; and allogeneic hematopoietic stem cell transplant for progressive bone marrow failure (n=2), with 1 patient dying from transplant-related complications. In summary, patients with STSs present with diverse clinical manifestations and require a multidisciplinary approach to management, with organ-specific transplantation capable of providing clinical benefit.
Collapse
Affiliation(s)
| | - Alejandro Ferrer
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Margot A Cousin
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Ryan J Kuisle
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Eric W Klee
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Steve G Peters
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - J P Scott
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - James P Utz
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Misbah Baqir
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Hiroshi Sekiguchi
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Shakila P Khan
- Division of Pediatric Hematology/Oncology, Mayo Clinic, Rochester, MN
| | | | | | | | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Mark E Wylam
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
99
|
Beta RAA, Balatsos NAA. Tales around the clock: Poly(A) tails in circadian gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1484. [PMID: 29911349 DOI: 10.1002/wrna.1484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 11/07/2022]
Abstract
Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
100
|
The Conserved RNA Exonuclease Rexo5 Is Required for 3' End Maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Rep 2018; 21:758-772. [PMID: 29045842 DOI: 10.1016/j.celrep.2017.09.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/16/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368) protein, a metazoan-specific member of the DEDDh 3'-5' single-stranded RNA exonucleases, by genetic, biochemical, and RNA-sequencing approaches. Rexo5 is required for small nucleolar RNA (snoRNA) and rRNA biogenesis and is essential in D. melanogaster. Loss-of-function mutants accumulate improperly 3' end-trimmed 28S rRNA, 5S rRNA, and snoRNA precursors in vivo. Rexo5 is ubiquitously expressed at low levels in somatic metazoan cells but extremely elevated in male and female germ cells. Loss of Rexo5 leads to increased nucleolar size, genomic instability, defective ribosome subunit export, and larval death. Loss of germline expression compromises gonadal growth and meiotic entry during germline development.
Collapse
|