51
|
Caglayan AO, Dundar M. Inherited diseases and syndromes leading to aortic aneurysms and dissections. Eur J Cardiothorac Surg 2009; 35:931-40. [DOI: 10.1016/j.ejcts.2009.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 01/15/2023] Open
|
52
|
Suzuki S, Masuda M. An update on surgery for acute type A aortic dissection: Aortic root repair, endovascular stent graft, and genetic research. Surg Today 2009; 39:281-9. [PMID: 19319633 DOI: 10.1007/s00595-008-3887-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
Affiliation(s)
- Shinichi Suzuki
- Department of Surgery, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | | |
Collapse
|
53
|
Faivre L, Masurel-Paulet A, Collod-Béroud G, Callewaert BL, Child AH, Stheneur C, Binquet C, Gautier E, Chevallier B, Huet F, Loeys BL, Arbustini E, Mayer K, Arslan-Kirchner M, Kiotsekoglou A, Comeglio P, Grasso M, Halliday DJ, Béroud C, Bonithon-Kopp C, Claustres M, Robinson PN, Adès L, De Backer J, Coucke P, Francke U, De Paepe A, Boileau C, Jondeau G. Clinical and molecular study of 320 children with Marfan syndrome and related type I fibrillinopathies in a series of 1009 probands with pathogenic FBN1 mutations. Pediatrics 2009; 123:391-8. [PMID: 19117906 DOI: 10.1542/peds.2008-0703] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
From a large series of 1009 probands with pathogenic FBN1 mutations, data for 320 patients <18 years of age at the last follow-up evaluation were analyzed (32%). At the time of diagnosis, the median age was 6.5 years. At the last examination, the population was classified as follows: neonatal Marfan syndrome, 14%; severe Marfan syndrome, 19%; classic Marfan syndrome, 32%; probable Marfan syndrome, 35%. Seventy-one percent had ascending aortic dilation, 55% ectopia lentis, and 28% major skeletal system involvement. Even when aortic complications existed in childhood, the rates of aortic surgery and aortic dissection remained low (5% and 1%, respectively). Some diagnostic features (major skeletal system involvement, striae, dural ectasia, and family history) were more frequent in the 10- to <18-year age group, whereas others (ascending aortic dilation and mitral abnormalities) were more frequent in the population with neonatal Marfan syndrome. Only 56% of children could be classified as having Marfan syndrome, according to international criteria, at their last follow-up evaluation when the presence of a FBN1 mutation was not considered as a major feature, with increasing frequency in the older age groups. Eighty-five percent of child probands fulfilled international criteria after molecular studies, which indicates that the discovery of a FBN1 mutation can be a valuable diagnostic aid in uncertain cases. The distributions of mutation types and locations in this pediatric series revealed large proportions of probands carrying mutations located in exons 24 to 32 (33%) and in-frame mutations (75%). Apart from lethal neonatal Marfan syndrome, we confirm that the majority of clinical manifestations of Marfan syndrome increase with age, which emphasizes the poor applicability of the international criteria to this diagnosis in childhood and the need for follow-up monitoring in cases of clinical suspicion of Marfan syndrome.
Collapse
Affiliation(s)
- Laurence Faivre
- Genetic Center, Centre Hospitalier Universitaire Dijon, Dijon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Faivre L, Collod-Beroud G, Callewaert B, Child A, Binquet C, Gautier E, Loeys BL, Arbustini E, Mayer K, Arslan-Kirchner M, Stheneur C, Kiotsekoglou A, Comeglio P, Marziliano N, Wolf JE, Bouchot O, Khau-Van-Kien P, Beroud C, Claustres M, Bonithon-Kopp C, Robinson PN, Adès L, De Backer J, Coucke P, Francke U, De Paepe A, Jondeau G, Boileau C. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation. Eur J Hum Genet 2008; 17:491-501. [PMID: 19002209 DOI: 10.1038/ejhg.2008.207] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24-32. We previously showed that a mutation in exons 24-32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called 'neonatal' region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24-32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon (PTC) within exons 24-32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a PTC within exons 24-32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exons 24-32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant.
Collapse
Affiliation(s)
- L Faivre
- Centre de Génétique, CHU, Dijon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Callewaert B, Malfait F, Loeys B, De Paepe A. Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol 2008; 22:165-89. [PMID: 18328988 DOI: 10.1016/j.berh.2007.12.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ehlers-Danlos syndromes (EDS) and Marfan syndrome (MFS) are multisystemic disorders that primarily affect the soft connective tissues. Both disorders have benefited from recent advances in clinical and molecular characterization, allowing improvements in clinical diagnosis and management. EDS are a heterogeneous group of conditions characterized by skin hyperextensibility, atrophic scarring, joint hypermobility and generalized tissue fragility. The current classification proposes six subtypes based on clinical, biochemical and molecular characteristics. However, examples of unclassified variants and 'overlap phenotypes' are becoming more common. Mutations in genes encoding fibrillar collagens or collagen-modifying enzymes have been identified in most forms of EDS, including the classic and vascular subtypes (collagen type V and III, respectively), and the rare arthrochalasis, kyphoscoliosis and dermatosparaxis variants (type I collagen defects). To date, the genetic background of the hypermobility type of EDS remains unclear, although some new insights have been gained recently. MFS is an autosomal-dominant disorder that affects the cardiovascular, ocular and skeletal system with aortic root dilation/dissection, ectopia lentis and bone overgrowth, respectively. Advances in therapeutic, mainly surgical, techniques have improved median survival significantly, yet severe morbidity and a substantial risk for premature mortality remain associated. The disorder is caused by mutations in the FBN1 gene, encoding the microfibrillar protein fibrillin-1. Recently, new insights in the pathogenesis changed the prevailing concept of this type 1 fibrillinopathy as a structural disorder of the connective tissue into a developmental abnormality manifesting perturbed cytokine signalling. These findings have opened new and unexpected targets for aetiologically directed drug treatments.
Collapse
Affiliation(s)
- Bert Callewaert
- Ghent University Hospital, Centre for Medical Genetics, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
56
|
Fricke M, Langer C, Brunner E, Sakai LY, Füzesi L, Reinhardt DP, Quondamatteo F. Fibrillin-1 in incisional hernias: an immunohistochemical study in scar and non-scar regions of human skin and muscle fasciae. J Anat 2008; 212:674-85. [PMID: 18410314 DOI: 10.1111/j.1469-7580.2008.00885.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Incisional hernias represent one of the most common complications after laparotomy. Specific pre-operative risk factors have not yet been identified. Recent studies indicate that changes in extracellular matrix components such as collagen I and collagen III may be involved in hernia development. In the present study we have evaluated the significance of fibrillin-1 in hernia development as one of the main components of the extracellular matrix. Tissue samples from non-scar skin and muscle fascia of 12 patients with incisional hernias as well as from the respective scar tissues were obtained. Corresponding tissue samples of 10 patients with normal postoperative wound healing served as controls. Distribution of fibrillin-1 was evaluated immunohistochemically. Differences in fibrillin-1 distribution in the non-scar tissues of muscle fascia have been found in patients with incisional hernia, compared to those without hernia. In scar regions of both patient groups, slight differences in the pattern of fibrillin-1 were observed. A tendency to a differential deposition of fibrillin-1 in skin samples, although hardly quantifiable, was observed as well. Our results suggest that fibrillin-1 is a relevant factor contributing to tissue stability. Disturbances in its deposition, even before scar formation, may be an important factor to the development of incisional hernias.
Collapse
|
57
|
Abstract
Marfan syndrome is a common inherited disorder of connective tissue caused by deficiency of the matrix protein fibrillin-1. Effective surgical therapy for the most life-threatening manifestation, aortic root aneurysm, has led to a nearly normal lifespan for affected individuals who are appropriately recognized and treated. Traditional medical therapies, such as beta-adrenergic receptor blockade, are used to slow pathologic aortic growth and decrease the risk of aortic dissection by decreasing hemodynamic stress. New insights regarding the pathogenesis of Marfan syndrome have developed from investigation of murine models of this disorder. Fibrillin-1 deficiency is associated with excess signaling by transforming growth factor beta (TGFbeta). TGFbeta antagonists have shown great success in improving or preventing several manifestations of Marfan syndrome in these mice, including aortic aneurysm. These results highlight the potential for development of targeted therapies based on discovery of disease genes and interrogation of pathogenesis in murine models.
Collapse
Affiliation(s)
- Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
58
|
|
59
|
Abstract
PURPOSE OF REVIEW Atypical skull shapes occur in as many as 20% of infants. The purpose of this review is to discuss the clinical approach to the evaluation of a child with an abnormal head shape. Readers will learn how to identify the head shapes caused by environmental deformation and craniosynostosis. We also review recent findings with regard to the genetics of single-suture craniosynostosis. RECENT FINDINGS Healthcare providers can use key aspects of the examination of a child with a head shape abnormality to differentiate positional deformity from craniosynostosis. Overlap between the genetic causes of isolated single-suture craniosynostosis and syndromic forms is discussed. SUMMARY Pediatricians can identify the causes of the majority of head shape abnormalities by combining their understanding of normal calvarial growth with a careful physical examination. Molecular genetics is playing an increasing role in the evaluation of children with single-suture fusion.
Collapse
|
60
|
Ramirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev 2007; 17:252-8. [PMID: 17467262 DOI: 10.1016/j.gde.2007.04.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 04/16/2007] [Indexed: 11/21/2022]
Abstract
Marfan syndrome is a connective tissue disorder with ocular, musculoskeletal and cardiovascular manifestations that are caused by mutations in fibrillin-1, the major constituent of extracellular microfibrils. Mouse models of Marfan syndrome have revealed that fibrillin-1 mutations perturb local TGFbeta signaling, in addition to impairing tissue integrity. This discovery has led to the identification of a new syndrome with overlapping Marfan syndrome-like manifestations that is caused by mutations in TGFbeta receptor types I and II. It has also prompted the idea that TGFbeta antagonism will be a productive treatment strategy in Marfan syndrome and perhaps in other related disorders. More generally, these studies have established that Marfan syndrome is part of a group of developmental disorders with broad and complex effects on morphogenesis, homeostasis and organ function.
Collapse
Affiliation(s)
- Francesco Ramirez
- Child Health Institute of New Jersey, Robert W. Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA. [corrected]
| | | |
Collapse
|
61
|
Valiev RR, Khusainova RI, Kutuev IA, Khusnutdinova EK. Analysis of the fibrillin-1 gene (FBN1) in patients with Marfan syndrome. Mol Biol 2006. [DOI: 10.1134/s0026893306060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Mizuguchi T, Matsumoto N. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders. J Hum Genet 2006; 52:1-12. [PMID: 17061023 DOI: 10.1007/s10038-006-0078-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/26/2006] [Indexed: 12/11/2022]
Abstract
Marfan syndrome (MFS, OMIM #154700) is a hereditary connective tissue disorder, clinically presenting with cardinal features of skeletal, ocular, and cardiovascular systems. In classical MFS, changes in connective tissue integrity can be explained by defects in fibrillin-1, a major component of extracellular microfibrils. However, some of the clinical manifestations of MFS cannot be explained by mechanical properties alone. Recent studies manipulating mouse Fbn1 have provided new insights into the molecular pathogenesis of MFS. Dysregulation of transforming growth factor beta (TGFbeta) signaling in lung, mitral valve and aortic tissues has been implicated in mouse models of MFS. TGFBR2 and TGFBR1 mutations were identified in a subset of patients with MFS (MFS2, OMIM #154705) and other MFS-related disorders, including Loeys-Dietz syndrome (LDS, #OMIM 609192) and familial thoracic aortic aneurysms and dissections (TAAD2, #OMIM 608987). These data indicate that genetic heterogeneity exists in MFS and its related conditions and that regulation of TGFbeta signaling plays a significant role in these disorders.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Solution-Oriented Research for Science and Technology (SORST), JST, Kawaguchi, Japan.
| |
Collapse
|
63
|
Jödicke A, Hahn A, Berthold LD, Scharbrodt W, Böker DK. Dysplasia of C-1 and craniocervical instability in patients with Shprintzen-Goldberg syndrome. Case report and review of the literature. J Neurosurg 2006; 105:238-41. [PMID: 16970241 DOI: 10.3171/ped.2006.105.3.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Shprintzen-Goldberg syndrome is a rare connective tissue disorder characterized by marfanoid habitus and additional dysmorphic stigmata. Craniocervical anomalies occur in fewer than 30% of cases. Serious vertebral instability can also occur, albeit rarely. The authors report on the first patient treated with surgical fusion at the craniocervical junction because of a C-1 dysplasia and severe instability. The skeletal and cardiovascular anomalies that can pose additional problems for surgical treatment and perioperative care are discussed in detail.
Collapse
Affiliation(s)
- Andreas Jödicke
- Department of Neurosurgery, University Medical Centre Giessen and Marburg, Giessen, Germany.
| | | | | | | | | |
Collapse
|
64
|
Adès LC, Sullivan K, Biggin A, Haan EA, Brett M, Holman KJ, Dixon J, Robertson S, Holmes AD, Rogers J, Bennetts B. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet A 2006; 140:1047-58. [PMID: 16596670 DOI: 10.1002/ajmg.a.31202] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recent identification of TGFBR2 mutations in Marfan syndrome II (MFSII) [Mizuguchi et al. (2004); Nat Genet 36:855-860] and of TGFBR1 and TGFBR2 mutations in Loeys-Dietz aortic aneurysm syndrome (LDS) [Loeys et al. (2005); Nat Genet 37:275-281] [OMIM 609192] has provided direct evidence of abnormal signaling in transforming growth factors beta (TGF-beta) in the pathogenesis of Marfan syndrome (MFS). In light of this, we describe the phenotypes and genotypes of five individuals. Patient 1 had MFS and abnormal cranial dura. Patient 2 had severe early onset MFS and an abnormal skull. Patients 3 and 4 had probable Furlong syndrome (FS). Patient 5 had marfanoid (MD) features, mental retardation (MR), and a deletion of chromosome 15q21.1q21.3. All patients had a condition within the MFS, MD-craniosynostosis (CS) or MD-MR spectrum. The names of these entities may become redundant, and instead, come to be considered within the spectrum of TGF-beta signaling pathway disorders. Two recurrent heterozygous FBN1 mutations were found in Patients 1 and 2, and an identical novel heterozygous de novo TGFBR1 mutation was found in Patients 3 and 4, in whom altered fibrillin-1 processing was demonstrated previously [Milewicz et al. (2000); Am J Hum Genet 67:279]. A heterozygous FBN1 deletion was found in Patient 5. These findings support the notion that perturbation of extracellular matrix homeostasis and/or remodeling caused by abnormal TGF-beta signaling is the core pathogenetic mechanism in MFS and related entities including the MD-CS syndromes.
Collapse
Affiliation(s)
- L C Adès
- Marfan Research Group, The Children's Hospital at Westmead, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Opperman LA, Rawlins JT. The extracellular matrix environment in suture morphogenesis and growth. Cells Tissues Organs 2006; 181:127-35. [PMID: 16612078 DOI: 10.1159/000091374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sutures are the major bone growth sites of the craniofacial skeleton and form in response to developmental approximation of and interaction between two opposing osteogenic fronts. Premature obliteration of these craniofacial bone growth sites or craniosynostosis results in compensatory growth at other bone growth sites, with concomitant craniofacial dysmorphology. While much is now known about the growth and transcriptional factor regulation of suture formation and maintenance, little about the nature of the extracellular environment within sutures and their surrounding bones has been described. This review elucidates the nature of the sutural extracellular matrix and its role in mediating suture maintenance and growth through the regulation of cellular and biomechanical signaling.
Collapse
Affiliation(s)
- Lynne A Opperman
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex. 75266-0677, USA.
| | | |
Collapse
|
66
|
Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M. The molecular genetics of Marfan syndrome and related disorders. J Med Genet 2006; 43:769-87. [PMID: 16571647 PMCID: PMC2563177 DOI: 10.1136/jmg.2005.039669] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the gene for fibrillin-1 (FBN1). The leading cause of premature death in untreated individuals with MFS is acute aortic dissection, which often follows a period of progressive dilatation of the ascending aorta. Recent research on the molecular physiology of fibrillin and the pathophysiology of MFS and related disorders has changed our understanding of this disorder by demonstrating changes in growth factor signalling and in matrix-cell interactions. The purpose of this review is to provide a comprehensive overview of recent advances in the molecular biology of fibrillin and fibrillin-rich microfibrils. Mutations in FBN1 and other genes found in MFS and related disorders will be discussed, and novel concepts concerning the complex and multiple mechanisms of the pathogenesis of MFS will be explained.
Collapse
Affiliation(s)
- P N Robinson
- Institute of Medical Genetics, Charité University Hospital, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Pannu H, Tran-Fadulu V, Milewicz DM. Genetic basis of thoracic aortic aneurysms and aortic dissections. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 139C:10-6. [PMID: 16273536 DOI: 10.1002/ajmg.c.30069] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ascending thoracic aortic aneurysms leading to type A dissections (TAAD) can occur in association with a genetic syndrome, such as Marfan syndrome (MFS), or as an autosomal dominant disorder in the absence of syndromic features, termed familial TAAD. Familial TAAD demonstrates genetic heterogeneity, and linkage studies have identified three TAAD loci at 5q13-14 (TAAD1), 11q23 (FAA1), and 3p24-25 (TAAD2). The underlying genetic heterogeneity of TAAD is reflected in the phenotypic variation associated with familial TAAD with respect to age of onset, progression, penetrance, and association with additional cardiac and vascular features. Recently, mutations in the TGFBR2 gene have been identified as the cause of disease linked to the TAAD2 locus, supporting the hypothesis that dysregulation of TGFbeta signaling is a mechanism leading to aneurysms and dissections. The recent identification of the TGFbeta pathway as a key target in the molecular pathogenesis of TAAD has opened new avenues for future genetic and therapeutic research.
Collapse
Affiliation(s)
- Hariyadarshi Pannu
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Medical School, Houston, USA
| | | | | |
Collapse
|
68
|
Robinson PN, Neumann LM, Demuth S, Enders H, Jung U, König R, Mitulla B, Müller D, Muschke P, Pfeiffer L, Prager B, Somer M, Tinschert S. Shprintzen-Goldberg syndrome: fourteen new patients and a clinical analysis. Am J Med Genet A 2005; 135:251-62. [PMID: 15884042 DOI: 10.1002/ajmg.a.30431] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Shprintzen-Goldberg syndrome (SGS) is a disorder of unknown cause comprising craniosynostosis, a marfanoid habitus and skeletal, neurological, cardiovascular, and connective-tissue anomalies. There are no pathognomonic signs of SGS and diagnosis depends on recognition of a characteristic combination of anomalies. Here, we describe 14 persons with SGS and compare their clinical findings with those of 23 previously reported individuals, including two families with more than one affected individual. Our analysis suggests that there is a characteristic facial appearance, with more than two thirds of all individuals having hypertelorism, down-slanting palpebral fissures, a high-arched palate, micrognathia, and apparently low-set and posteriorly rotated ears. Other commonly reported manifestations include hypotonia in at least the neonatal period, developmental delay, and inguinal or umbilical hernia. The degree of reported intellectual impairment ranges from mild to severe. The most common skeletal manifestations in SGS were arachnodactyly, pectus deformity, camptodactyly, scoliosis, and joint hypermobility. None of the skeletal signs alone is specific for SGS. Our study includes 14 mainly German individuals with SGS evaluated over a period of 10 years. Given that only 23 other persons with SGS have been reported to date worldwide, we suggest that SGS may be more common than previously assumed.
Collapse
Affiliation(s)
- Peter N Robinson
- Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sahar DE, Longaker MT, Quarto N. Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev Biol 2005; 280:344-61. [PMID: 15882577 DOI: 10.1016/j.ydbio.2005.01.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 01/19/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
Cranial suture development involves a complex interaction of genes and tissues derived from neural crest cells (NCC) and paraxial mesoderm. In mice, the posterior frontal (PF) suture closes during the first month of life while other sutures remain patent throughout the life of the animal. Given the unique NCC origin of PF suture complex (analogous to metopic suture in humans), we performed quantitative real-time PCR and immunohistochemistry to study the expression pattern of the NCC determinant gene Sox9 and select markers of extracellular matrix. Our results indicated a unique up-regulated expression of Sox9, a regulator of chondrogenesis, during initiation of PF suture closure, along with the expression of specific cartilage markers (Type II Collagen and Type X Collagen), as well as cartilage tissue formation in the PF suture. This process was followed by expression of bone markers (Type I Collagen and Osteocalcin), suggesting endochondral ossification. Moreover, we studied the effect of haploinsufficiency of the NCC determinant gene Sox9 in the NCC derived PF suture complex. A decrease in dosage of Sox9 by haploinsufficiency in NCC-derived tissues resulted in delayed PF suture closure. These results demonstrate a unique development of the PF suture complex and the role of Sox9 as an important contributor to timely and proper closure of the PF suture through endochondral ossification.
Collapse
Affiliation(s)
- David E Sahar
- Department of Surgery, The Children's Surgical Research Program, Stanford University, CA 94305-5148, USA
| | | | | |
Collapse
|
70
|
Pauliks LB, Chan KC, Lorts A, Elias ER, Cayre RO, Valdes-Cruz LM. Shprintzen-Goldberg syndrome with tetralogy of fallot and subvalvar aortic stenosis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2005; 24:703-706. [PMID: 15840802 DOI: 10.7863/jum.2005.24.5.703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Linda B Pauliks
- Tufts-New England Medical Center, 750 Washington St, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Kosaki K, Takahashi D, Udaka T, Kosaki R, Matsumoto M, Ibe S, Isobe T, Tanaka Y, Takahashi T. Molecular pathology of Shprintzen-Goldberg syndrome. Am J Med Genet A 2005; 140:104-8; author reply 109-10. [PMID: 16333834 DOI: 10.1002/ajmg.a.31006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
72
|
Robinson PN, Neumann LM, Tinschert S. Response to Kosaki et al. “Molecular pathology of Shprintzen-Goldberg syndrome”. Am J Med Genet A 2005. [DOI: 10.1002/ajmg.a.31007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Jurkat-Rott K, Lehmann-Horn F. Reviewing in science requires quality criteria and professional reviewers. Eur J Cell Biol 2004; 83:93-5. [PMID: 15202567 DOI: 10.1078/0171-9335-00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
74
|
Hyytiäinen M, Penttinen C, Keski-Oja J. Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci 2004; 41:233-64. [PMID: 15307633 DOI: 10.1080/10408360490460933] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transforming growth factor betas (TGF-betas) are multifunctional and pleiotropic growth factors. Their major effects include inhibition of cell proliferation and enhancement of extracellular matrix production. TGF-betas are secreted from cells as latent complexes, consisting of mature dimeric growth factor, the latency-associated propeptide (LAP), and a distinct gene product, latent TGF-beta binding protein LTBP. The secreted complex is targeted to specific locations in the extracellular matrix by the appropriate LTBP. The latent complex needs subsequently to be activated. Most studies describing biological effects of TGF-beta have been carried out in cell cultures using high concentrations of active, soluble TGF-beta, where appropriate targeting of the growth factor is missing. However, TGF-beta is produced and secreted in vivo as a latent complex in a specific and targeted manner. Various experimental approaches have convincingly shown the importance of the activation of latent TGF-beta, as well as the importance of LTBPs as targeting molecules of the effects of TGF-beta. Essential steps in the activation appear to be cellular recognition of extracellular matrix-associated LTBPs and subsequent recognition of the associated latent TGF-beta. Cell recognition by specific molecules like integrins and proteolytic events involving plasminogen activation evidently play multifaceted roles in the regulation of TGF-beta activation.
Collapse
Affiliation(s)
- Marko Hyytiäinen
- Department of Virology, Haartman Institute and Helsinki University Hospital, University of Helsinki, Finland
| | | | | |
Collapse
|
75
|
Abstract
Sudden cardiac death is a common mechanism of demise in association with congenital cardiac abnormalities. The varied mechanisms may include failure of the transitional circulation, arrhythmias, postoperative or perioperative complications in the neonate and coronary ischaemia, arrhythmias, sepsis, thrombosis, or pulmonary hypertensive crisis in the older child. Knowledge of the natural history of unoperated and operated forms of congenital heart disease and long term follow up with the detection and treatment of underlying hemodynamic abnormalities should improve outcomes. There are few patients with congenital cardiac anomalies that are cured and most require long term care.
Collapse
Affiliation(s)
- Andrew N Pelech
- Department of Pediatrics, Medical College of Wisconsin, MACC Fund Research Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
76
|
Byers PH. Determination of the molecular basis of Marfan syndrome: a growth industry. J Clin Invest 2004; 114:161-3. [PMID: 15254580 PMCID: PMC449756 DOI: 10.1172/jci22399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although it has been known for more than a decade that Marfan syndrome - a dominantly inherited connective tissue disorder characterized by tall stature, arachnodactyly, lens subluxation, and a high risk of aortic aneurysm and dissection - results from mutations in the FBN1 gene, which encodes fibrillin-1, the precise mechanism by which the pleiotropic phenotype is produced has been unclear. A report in this issue now proposes that loss of fibrillin-1 protein by any of several mechanisms and the subsequent effect on the pool of TGF-beta may be more relevant in the development of Marfan syndrome than mechanisms previously proposed in a dominant-negative disease model. The model proposed in this issue demonstrates several strategies for clinical intervention.
Collapse
Affiliation(s)
- Peter H Byers
- Department of Pathology, University of Washington, Seattle, Washington 98195-7470, USA.
| |
Collapse
|
77
|
Byers PH. Determination of the molecular basis of Marfan syndrome: a growth industry. J Clin Invest 2004. [DOI: 10.1172/jci200422399] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
78
|
Charbonneau NL, Ono RN, Corson GM, Keene DR, Sakai LY. Fine tuning of growth factor signals depends on fibrillin microfibril networks. ACTA ACUST UNITED AC 2004; 72:37-50. [PMID: 15054903 DOI: 10.1002/bdrc.20000] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growth factors, potent regulators of cell differentiation, tissue morphogenesis, tissue homeostasis, and cellular response to injury, reside in the extracellular matrix. Genetic evidence in humans and mice as well as biochemical data implicate fibrillins and LTBPs in the extracellular control of TGFbeta and BMP signaling. Fibrillins and LTBPs form tissue-specific and temporally regulated microfibril networks. In the developing embryo, three fibrillins and four LTBPs contribute molecular heterogeneity to microfibril networks, and provide different templates upon which TGFbeta-related growth factors can be positioned. By accommodating this molecular heterogeneity, microfibril architecture can orchestrate a variety of different signals in very specific tissue locations. Human fibrillinopathies display a broad phenotypic spectrum from tall to short stature, from hypermobile joints to joint contractures and stiffness, and from severe to mild or no cardiovascular manifestations. A spectrum of growth factor dysregulation may be caused by differential effects of mutations in fibrillins on microfibril architecture, thus altering appropriate targeting or positioning of growth factors within microfibril networks. Growth factor dysregulation may help to explain the broad phenotypic spectrum of the fibrillinopathies.
Collapse
Affiliation(s)
- Noe L Charbonneau
- Shriners Hospital for Children, and the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | | | | | | | | |
Collapse
|
79
|
Collod-Béroud G, Le Bourdelles S, Ades L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio P, De Paepe A, Hyland JC, Holman K, Kaitila I, Loeys B, Matyas G, Nuytinck L, Peltonen L, Rantamaki T, Robinson P, Steinmann B, Junien C, Béroud C, Boileau C. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat 2003; 22:199-208. [PMID: 12938084 DOI: 10.1002/humu.10249] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were first described in the heritable connective disorder, Marfan syndrome (MFS). FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS, called "type-1 fibrillinopathies." In 1995, in an effort to standardize the information regarding these mutations and to facilitate their mutational analysis and identification of structure/function and phenotype/genotype relationships, we created a human FBN1 mutation database, UMD-FBN1. This database gives access to a software package that provides specific routines and optimized multicriteria research and sorting tools. For each mutation, information is provided at the gene, protein, and clinical levels. This tool is now a worldwide reference and is frequently used by teams working in the field; more than 220,000 interrogations have been made to it since January 1998. The database has recently been modified to follow the guidelines on mutation databases of the HUGO Mutation Database Initiative (MDI) and the Human Genome Variation Society (HGVS), including their approved mutation nomenclature. The current update shows 559 entries, of which 421 are novel. UMD-FBN1 is accessible at www.umd.be/. We have also recently developed a FBN1 polymorphism database in order to facilitate diagnostics.
Collapse
|
80
|
Shur N, Cowan J, Wheeler PG. Craniosynostosis and congenital heart anomalies associated with a maternal deletion of 15q15-22.1. Am J Med Genet A 2003; 120A:542-6. [PMID: 12884436 DOI: 10.1002/ajmg.a.20093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report an infant with multiple congenital anomalies, including craniosynostosis, tetralogy of Fallot variant, and limb anomalies associated with a maternal deletion of 15q15-22.1. Only two other patients have been reported with a similar deletion, but the deletion was paternal in both cases. We review our patient's findings and compare them to previously reported individuals with similar 15q abnormalities. Our patient allows an expansion of phenotype associated with mid-15q deletions to include severe craniosynostosis, congenital heart disease, and limb anomalies. This will assist in prenatal counseling and predicting postnatal outcome for other affected individuals. The specific breakpoints in our patient and the other patients with similar deletions may also assist in determining a critical region for suture formation.
Collapse
Affiliation(s)
- Natasha Shur
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
81
|
Abstract
Because of its superior depiction of bone detail, CT is a useful tool in the characterization of CF deformities and presurgical planning. Modern CT scanners and workstations provide 2D techniques such as multiplanar reformats and 3D techniques, such as MIP and volume renderings, which may be used effectively in the diagnosis and management of patients with CF malformations.
Collapse
Affiliation(s)
- Paul A Caruso
- Department of Radiology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
82
|
|
83
|
Abstract
OBJECTIVE The Shprintzen-Goldberg syndrome is an extremely rare syndrome with a characteristic face. This is one of a group of disorders characterized by craniosynostosis and marfanoid features. The aim of this study was to present a new sporadic case of the syndrome and describe in detail the findings at the maxillofacial region.
Collapse
Affiliation(s)
- N Topouzelis
- Department of Orthodontics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
84
|
Loeys BL, Matthys DM, de Paepe AM. Genetic fibrillinopathies: new insights in molecular diagnosis and clinical management. Acta Clin Belg 2003; 58:3-11. [PMID: 12723256 DOI: 10.1179/acb.2003.58.1.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with a prevalence of 2-3 per 10,000 individuals and symptoms ranging from skeletal overgrowth, cutaneous striae to ectopia lentis and aortic dilatation leading to dissection. Mutation in the gene for fibrillin-1 (FBN1) cause MFS and other related disorders of connective tissue, grouped as fibrillinopathies. Fibrillin-1 is the main constituent of extracellular microfibrils. Microfibrils can exist as individual structures or associate with elastin to form elastic fibers. This article provides an overview of the current diagnostic criteria and medical management, estimates the role of fibrillin-1 mutation analysis, sheds new light on genotype-phenotype correlations and summarizes new insights on the pathogenesis of this disorder based on mouse models.
Collapse
|
85
|
Hu J, McPherson E, Surti U, Hasegawa SL, Gunawardena S, Gollin SM. Tetrasomy 15q25.3 --> qter resulting from an analphoid supernumerary marker chromosome in a patient with multiple anomalies and bilateral Wilms tumors. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 113:82-8. [PMID: 12400070 DOI: 10.1002/ajmg.10708] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a girl who had been followed since birth for apparent Shprintzen-Goldberg syndrome (SGS), with macrosomia, long fingers and toes, and craniosynostosis, and presented at 4 years of age with bilateral Wilms tumors (also called nephroblastoma). Cytogenetic analysis of her peripheral blood revealed a de novo supernumerary marker chromosome. This stable marker chromosome is present in 19 of 20 lymphocytes analyzed, as well as in all 40 tumor cells (20 from each tumor) studied. Classical and molecular cytogenetic studies indicate that the marker is derived from an inverted duplication of chromosome 15q25.3 --> qter and contains a neocentromere. The presence of this marker chromosome in our patient results in tetrasomy 15q25.3 --> qter. The relationship between her genotype and phenotype are discussed in light of genes, including IGF1R and FES, mapped to the aneusomic segment.
Collapse
Affiliation(s)
- J Hu
- Pittsburgh Cytogenetics Laboratory, University of Pittsburgh Center for Human Genetics and Integrative Biology, UPMC Magee-Womens Hospital, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
86
|
Collod-Béroud G, Boileau C. Marfan syndrome in the third Millennium. Eur J Hum Genet 2002; 10:673-81. [PMID: 12404097 PMCID: PMC2695985 DOI: 10.1038/sj.ejhg.5200876] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 07/16/2002] [Accepted: 07/18/2002] [Indexed: 11/08/2022] Open
Abstract
The Marfan syndrome (MFS) is a prominent member of heritable disorders of connective tissue with manifestations involving primarily the skeletal, ocular and cardiovascular systems but also and less systematically investigated the lung, skin and integument, and dura. Over the last two decades, a considerable amount of clinical, molecular and protein data had accumulated. In combination with the study of natural and transgenic animal models, this new information provides greater insight into the pathogenic mechanisms underlying not only the pleiotropic manifestations of MFS but also the important degree of clinical variability (age of onset and severity) observed between patients. The following aspects will be described in this review: the structure and function of fibrillin-1; the fibrillin proteins; mutations in the FBN1 gene and pathogenic mechanisms; animal models. Finally, the currently available laboratory diagnostic tests and their limits will be discussed.
Collapse
Affiliation(s)
- Gwenaëlle Collod-Béroud
- Génétique, chromosome et cancer
INSERM : U383Université Paris Descartes - Paris VGh Necker - Enfants Malades
149, Rue de Sevres
75743 PARIS CEDEX 15,FR
- * Correspondence should be adressed to: Gwenaëlle Collod-Béroud
| | - Catherine Boileau
- Génétique, chromosome et cancer
INSERM : U383Université Paris Descartes - Paris VGh Necker - Enfants Malades
149, Rue de Sevres
75743 PARIS CEDEX 15,FR
- Service de biochimie, d'hormonologie et de génétique moléculaire
AP-HPHôpital Ambroise ParéUniversité Paris Descartes - Paris V9, avenue Charles-de-Gaulle
92100 Boulogne-Billancourt,FR
| |
Collapse
|
87
|
Katzke S, Booms P, Tiecke F, Palz M, Pletschacher A, Türkmen S, Neumann LM, Pregla R, Leitner C, Schramm C, Lorenz P, Hagemeier C, Fuchs J, Skovby F, Rosenberg T, Robinson PN. TGGE screening of the entire FBN1 coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies. Hum Mutat 2002; 20:197-208. [PMID: 12203992 DOI: 10.1002/humu.10112] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the gene for fibrillin-1 (FBN1) cause Marfan syndrome (MFS), an autosomal dominant heritable disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular system. FBN1 mutations have also been identified in a series of related disorders of connective tissue collectively termed type-1 fibrillinopathies. We have developed temperature-gradient gel electrophoresis (TGGE) assays for all 65 FBN1 exons, screened 126 individuals with MFS, other type-1 fibrillinopathies, and other potentially related disorders of connective tissue for FBN1 mutations, and identified a total of 53 mutations, of which 33 are described here for the first time. Several mutations were identified in individuals with fibrillinopathies other than classic Marfan syndrome, including aneurysm of the ascending aorta with only minor skeletal anomalies, and several individuals with only skeletal and ocular involvement. The mutation detection rate in this study was 42% overall, but was only 12% in individuals not fulfilling the diagnostic criteria for MFS, suggesting that clinical overdiagnosis is one reason for the low detection rate observed for FBN1 mutation analysis.
Collapse
Affiliation(s)
- Stefanie Katzke
- Institute of Medical Genetics, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
A patient with Shprintzen-Goldberg syndrome was followed up for 24 years. The patient's parents were unrelated and unaffected. Walking and speech were delayed. Facial dysmorphism was obvious as well as pectus excavatum, scoliosis, bilateral dislocation of the radial heads, hammer toes and hallux valgus, pes planus, arachnodactyly, and camptodactyly. Skin was thin and fragile. CT scan showed ventricular enlargement. He had a mitral valve prolapse. He was operated on twice for bilateral inguinal and crural hernia and several times for his foot deformities. Puberty was delayed until 18 years. At 24 years of age he was still thin, dolichocephalic, and the facial dysmorphic features were still obvious. Pectus excavatum was still severe but the thoracolumbar scoliosis was mild. His foot deformities had improved and his joints were less hypermobile. Psychomotor development was quite normal. His main concern was the minimal subcutaneous fat and fragility of skin. Echocardiography was now normal.
Collapse
Affiliation(s)
- C Stoll
- Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg, France.
| |
Collapse
|
89
|
Toudjarska I, Kilpatrick MW, Lembessis P, Carra S, Harton GL, Sisson ME, Black SH, Stern HJ, Gelman-Kohan Z, Shohat M, Tsipouras P. Novel approach to the molecular diagnosis of Marfan syndrome: application to sporadic cases and in prenatal diagnosis. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 99:294-302. [PMID: 11251996 DOI: 10.1002/ajmg.1174] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Marfan syndrome is an autosomal dominant disorder affecting the skeletal, ocular, and cardiovascular systems. Defects in the gene that encodes fibrillin-1 (FBN1), the main structural component of the elastin-associated microfibrils, are responsible for the disorder. Molecular diagnosis in families with Marfan syndrome can be undertaken by using intragenic FBN1 gene markers to identify and track the disease allele. However, in sporadic cases, which constitute up to 30% of the total, DNA-based diagnosis cannot be performed using linked markers but rather requires the identification of the specific FBN1 gene mutation. Due to the size and complexity of the FBN1 gene, identification of a causative Marfan syndrome mutation is not a trivial undertaking. Herein, we describe a comprehensive approach to the molecular diagnosis of Marfan syndrome that relies on the direct analysis of the FBN1 gene at the cDNA level and detects both coding sequence mutations and those leading to exon-skipping, which are often missed by analysis at the genomic DNA level. The ability to consistently determine the specific FBN1 gene mutation responsible for a particular case of Marfan syndrome allows both prenatal and pre-implantation diagnosis, even in sporadic instances of the disease.
Collapse
Affiliation(s)
- I Toudjarska
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Dianna M. Milewicz
- From the Department of Internal Medicine, University of Texas at Houston Medical School, Houston (D.M.M.), and Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Mass (C.E.S.)
| | - Christine E. Seidman
- From the Department of Internal Medicine, University of Texas at Houston Medical School, Houston (D.M.M.), and Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Mass (C.E.S.)
| |
Collapse
|
91
|
Abstract
Over the last decade, a considerable amount of new information has emerged describing the protein components of elastic fibers. It is now evident that elastic fibers are complex extracellular matrix polymers, composed of at least 19 different proteins that comprise both the microfibrillar and the amorphous components of elastic fibers. Mutations in three of the genes encoding the most abundant of these elastic fiber proteins result in a broad spectrum of elastic tissue phenotypes, ranging from skeletal and skin abnormalities to vascular and ocular defects. The following disorders will be discussed in this review: supravalvular aortic stenosis; Williams-Beuren syndrome; cutis laxa; Marfan syndrome; ectopia lentis; familial thoracic aortic aneurysms and dissections; MASS syndrome; isolated skeletal features of Marfan syndrome; Shprintzen-Goldberg syndrome; and congenital contractural arachnodactyly.
Collapse
Affiliation(s)
- D M Milewicz
- Department of Internal Medicine, University of Texas Medical School, 6431 Fannin, MSB 1.614, Houston, TX 77030, USA.
| | | | | |
Collapse
|
92
|
Phakdeekitcharoen B, Watnick TJ, Ahn C, Whang DY, Burkhart B, Germino GG. Thirteen novel mutations of the replicated region of PKD1 in an Asian population. Kidney Int 2000; 58:1400-12. [PMID: 11012875 DOI: 10.1046/j.1523-1755.2000.00302.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations of PKD1 are thought to account for approximately 85% of all mutations in autosomal dominant polycystic kidney disease (ADPKD). The search for PKD1 mutations has been hindered by both its large size and complicated genomic structure. To date, few mutations that affect the replicated segment of PKD1 have been described, and virtually all have been reported in Caucasian patients. METHODS In the present study, we have used a long-range polymerase chain reaction (PCR)-based strategy previously developed by our laboratory to analyze exons in the replicated region of PKD1 in a population of 41 unrelated Thai and 6 unrelated Korean families with ADPKD. We have amplified approximately 3.5 and approximately 5 kb PKD1 gene-specific fragments (5'MR and 5'LR) containing exons 13 to 15 and 15 to 21 and performed single-stand conformation analysis (SSCA) on nested PCR products. RESULTS Nine novel pathogenic mutations were detected, including six nonsense and three frameshift mutations. One of the deletions was shown to be a de novo mutation. Four potentially pathogenic variants, including one 3 bp insertion and three missense mutations, were also discovered. Two of the nonconservative amino acid substitutions were predicted to disrupt the three-dimensional structure of the PKD repeats. In addition, six polymorphisms, including two missense and four silent nucleotide substitutions, were identified. Approximately 25% of both the pathogenic and normal variants were found to be present in at least one of the homologous loci. CONCLUSION To our knowledge, this is the first report of mutation analysis of the replicated region of PKD1 in a non-Caucasian population. The methods used in this study are widely applicable and can be used to characterize PKD1 in a number of ethnic groups using DNA samples prepared using standard techniques. Our data suggest that gene conversion may play a significant role in producing variability of the PKD1 sequence in this population. The identification of additional mutations will help guide the study of polycystin-1 and better help us to understand the pathophysiology of this common disease.
Collapse
Affiliation(s)
- B Phakdeekitcharoen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
93
|
Watanabe Y, Yano S, Koga Y, Yukizane S, Nishiyori A, Yoshino M, Kato H, Ogata T, Adachi M. P1148A in fibrillin-1 is not a mutation leading to Shprintzen-Goldberg syndrome. Hum Mutat 2000; 10:326-7. [PMID: 9338588 DOI: 10.1002/(sici)1098-1004(1997)10:4<326::aid-humu10>3.0.co;2-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
94
|
Abstract
Fibrillin is the major component of extracellular microfibrils and is widely distributed in connective tissue throughout the body. Mutations in the fibrillin-1 (FBN1) gene, on chromosome 15q21.1, have been found to cause Marfan syndrome, a dominantly inherited disorder characterised by clinically variable skeletal, ocular, and cardiovascular abnormalities. Fibrillin-1 mutations have also been found in several other related connective tissue disorders, such as severe neonatal Marfan syndrome, dominant ectopia lentis, familial ascending aortic aneurysm, isolated skeletal features of Marfan syndrome, and Shprintzen-Goldberg syndrome. Mutations are spread throughout the gene and, with the exception of neonatal Marfan syndrome, show no obvious clustering or phenotypic association.
Collapse
Affiliation(s)
- C Hayward
- Human Genetics Unit, Molecular Medicine Centre, University of Edinburgh, Scotland
| | | |
Collapse
|
95
|
Abstract
The Marfan syndrome (MFS), initially described just over 100 years ago, was among the first conditions classified as a heritable disorder of connective tissue. MFS lies at one end of a phenotypic continuum, with people in the general population who have one or another of the features of MFS at the other end, and those with a variety of other conditions in between. Diagnosis of MFS and these other conditions remains based on clinical features. Mutations in FBN1, the gene that encodes fibrillin-1, are responsible for MFS and (in a few patients) other disorders in the continuum. In addition to skeletal, ocular, and cardiovascular features, patients with MFS have involvement of the skin, integument, lungs, and muscle tissue. Over the past 30 years, evolution of aggressive medical and surgical management of the cardiovascular problems, especially mitral valve prolapse, aortic dilatation, and aortic dissection, has resulted in considerable improvement in life expectancy.
Collapse
Affiliation(s)
- R E Pyeritz
- Department of Human Genetics, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19102, USA.
| |
Collapse
|
96
|
Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 2000; 37:9-25. [PMID: 10633129 PMCID: PMC1734449 DOI: 10.1136/jmg.37.1.9] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mutations in the gene for fibrillin-1 (FBN1) have been shown to cause Marfan syndrome, an autosomal dominant disorder of connective tissue characterised by pleiotropic manifestations involving primarily the ocular, skeletal, and cardiovascular systems. Fibrillin-1 is a major component of the 10-12 nm microfibrils, which are thought to play a role in tropoelastin deposition and elastic fibre formation in addition to possessing an anchoring function in some tissues. Fibrillin-1 mutations have also been found in patients who do not fulfil clinical criteria for the diagnosis of Marfan syndrome, but have related disorders of connective tissue, such as isolated ectopia lentis, familial aortic aneurysm, and Marfan-like skeletal abnormalities, so that Marfan syndrome may be regarded as one of a range of type 1 fibrillinopathies. There appear to be no particular hot spots since mutations are found throughout the entire fibrillin-1 gene. However, a clustering of mutations associated with the most severe form of Marfan syndrome, neonatal Marfan syndrome, has been noted in a region encompassing exons 24 to 32. The gene for fibrillin-2 (FBN2) is highly homologous to FBN1, and mutations in FBN2 have been shown to cause a phenotypically related disorder termed congenital contractural arachnodactyly. Since mutations in the fibrillin genes are likely to affect the global function of the microfibrils, the term microfibrillopathy may be the most appropriate to designate the spectrum of disease associated with dysfunction of these molecules. The understanding of the global and the molecular functions of the fibrillin containing microfibrils is still incomplete and, correspondingly, no comprehensive theory of the pathogenesis of Marfan syndrome has emerged to date. Many, but not all, fibrillin-1 gene mutations are expected to exert a dominant negative effect, whereby mutant fibrillin monomers impair the global function of the microfibrils. In this paper we review the molecular physiology and pathophysiology of Marfan syndrome and related microfibrillopathies.
Collapse
Affiliation(s)
- P N Robinson
- Laboratory of Paediatric Molecular Biology, Department of General Paediatrics, Charité University Hospital, Humboldt University, D-10098 Berlin, Germany
| | | |
Collapse
|
97
|
|
98
|
Collod-Béroud G, Lackmy-Port-Lys M, Jondeau G, Mathieu M, Maingourd Y, Coulon M, Guillotel M, Junien C, Boileau C. Demonstration of the recurrence of Marfan-like skeletal and cardiovascular manifestations due to germline mosaicism for an FBN1 mutation. Am J Hum Genet 1999; 65:917-21. [PMID: 10441597 PMCID: PMC1377997 DOI: 10.1086/302545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
99
|
Liu WO, Oefner PJ, Qian C, Odom RS, Francke U. Denaturing HPLC-identified novel FBN1 mutations, polymorphisms, and sequence variants in Marfan syndrome and related connective tissue disorders. GENETIC TESTING 1999; 1:237-42. [PMID: 10464652 DOI: 10.1089/gte.1997.1.237] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Marfan syndrome (MFS), a common connective tissue disorder, is caused by fibrillin-1 (FBN1) mutations that are scattered throughout the gene and are largely unique to individual families. Mutation detection in this large gene of 65 exons is a considerable technical challenge. To develop an efficient method capable of identifying all possible mutations in this gene, we have explored the use of a novel denaturing high-performance liquid chromatography (DHPLC) system. This technique compares two or more chromosomes as a mixture of denatured and reannealed PCR amplicons. Under partially denaturing conditions, heteroduplexes can be separated from homoduplexes. A panel of 94 DNA samples from individuals with MFS or related connective tissue disorders was screened exon-by-exon by this method. A total of 66 unique heteroduplex profiles was identified. Sequencing of the amplicons detected 37 novel and two previously reported mutations, as well as 15 novel and 10 known polymorphisms or unique sequence variants that are probably of no clinical significance. Of the 34 mutations found in definitive MFS cases, 16 were identified in the 21 samples that had not been screened before (76% detection rate) and 17/40 (43%) were in samples previously screened by other mutation detection methods. In 32 individuals with MFS-related phenotypes, five FBN1 mutations were identified (16%). Our results demonstrate the power of the DHPLC method to detect FBN1 mutations. It should be applicable for mutation screening in any gene in a large population.
Collapse
Affiliation(s)
- W O Liu
- Howard Hughes Medical Institute, Department of Genetics, Stanford University Medical Center, CA 94305, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
Fibrillin 1 is the main constituent of extracellular microfibrils. Microfibrils can exist as individual structures or associate with elastin to form elastic fibres. Fibrillin 1 mutations are the cause of the pleiotropic manifestations of the Marfan syndrome (MFS) which principally involve the musculoskeletal, ocular and cardiovascular systems. MFS pathogenesis requires high levels of mutant fibrillin 1 molecules with dominant-negative activity on microfibrillar assembly and function. Gene-targeting experiments in the mouse have shed new light on fibrillin 1 function, genotype-phenotype correlations and aneurysm progression. These experiments have documented the involvement of fibrillin 1 in maintaining tissue homeostasis, suggested the existence of a critical threshold of functional microfibrils for tissue biomechanics, and outlined novel contributors to the pathogenic sequence of vascular wall collapse.
Collapse
Affiliation(s)
- F Ramirez
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|