51
|
Kim YA, Jin HY, Kim YM. Diagnostic Odyssey and Application of Targeted Exome Sequencing in the Investigation of Recurrent Infant Deaths in a Syrian Consanguineous Family: a Case of Spinal Muscular Atrophy with Respiratory Distress Type 1. J Korean Med Sci 2019; 34:e54. [PMID: 30863264 PMCID: PMC6406039 DOI: 10.3346/jkms.2019.34.e54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/30/2018] [Indexed: 11/26/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive disorder caused by a defect in the immunoglobulin mu binding protein 2 (IGHMBP2) gene, leading to motor neuron degeneration. We identified an infant with SMARD1 by targeted exome sequencing from a consanguineous Syrian family having a history of recurrent infant deaths. The patient initially presented intrauterine growth retardation, poor sucking, failure to thrive, and respiratory failure at the age of two months, and an inborn error of metabolism was suspected at first. Over a period of one month, the infant showed rapid progression of distal muscular weakness with hand and foot contractures, which were suggestive of neuromuscular disease. Using targeted exome sequencing, the mutation in IGHMBP2 was confirmed, although the first report was normal. Targeted exome sequencing enabled identification of the genetic cause of recurrent mysterious deaths in the consanguineous family. Additionally, it is suggested that a detailed phenotypic description and communication between bioinformaticians and clinicians is important to reduce false negative results in exome sequencing.
Collapse
Affiliation(s)
- Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hye Young Jin
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
52
|
Yoshimura A, Yuan JH, Hashiguchi A, Ando M, Higuchi Y, Nakamura T, Okamoto Y, Nakagawa M, Takashima H. Genetic profile and onset features of 1005 patients with Charcot-Marie-Tooth disease in Japan. J Neurol Neurosurg Psychiatry 2019; 90:195-202. [PMID: 30257968 PMCID: PMC6518473 DOI: 10.1136/jnnp-2018-318839] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE : To identify the genetic characteristics in a large-scale of patients with Charcot-Marie-Tooth disease (CMT). METHODS: From May 2012 to August 2016, we collected 1005 cases with suspected CMT throughout Japan, whereas PMP22 duplication/deletion were excluded in advance for demyelinating CMT cases. We performed next-generation sequencing targeting CMT-related gene panels using Illumina MiSeq or Ion Proton, then analysed the gene-specific onset age of the identified cases and geographical differences in terms of their genetic spectrum. RESULTS : From 40 genes, we identified pathogenic or likely pathogenic variants in 301 cases (30.0%). The most common causative genes were GJB1 (n=66, 21.9%), MFN2 (n=66, 21.9%) and MPZ (n=51, 16.9%). In demyelinating CMT, variants were detected in 45.7% cases, and the most common reasons were GJB1 (40.3%), MPZ (27.1%), PMP22 point mutations (6.2%) and NEFL (4.7%). Axonal CMT yielded a relatively lower detection rate (22.9%), and the leading causes, occupying 72.4%, were MFN2 (37.2%), MPZ (9.0%), HSPB1 (8.3%), GJB1 (7.7%), GDAP1 (5.1%) and MME (5.1%). First decade of life was found as the most common disease onset period, and early-onset CMT cases were most likely to receive a molecular diagnosis. Geographical distribution analysis indicated distinctive genetic spectrums in different regions of Japan. CONCLUSIONS : Our results updated the genetic profile within a large-scale of Japanese CMT cases. Subsequent analyses regarding onset age and geographical distribution advanced our understanding of CMT, which would be beneficial for clinicians.
Collapse
Affiliation(s)
- Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
53
|
Spinal muscular atrophy with respiratory distress type 1: A multicenter retrospective study. Neuromuscul Disord 2019; 29:114-126. [DOI: 10.1016/j.nmd.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
|
54
|
Villalón E, Shababi M, Kline R, Lorson ZC, Florea KM, Lorson CL. Selective vulnerability in neuronal populations in nmd/SMARD1 mice. Hum Mol Genet 2019; 27:679-690. [PMID: 29272405 DOI: 10.1093/hmg/ddx434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease causing distal limb muscle atrophy that progresses proximally and is accompanied by diaphragmatic paralysis. Neuromuscular junction (NMJ) alterations have been reported in muscles of SMARD1 model mice, known as nmd mice, with varying degrees of severity, suggesting that different muscles are specifically and selectively resistant or susceptible to denervation. To evaluate the extent of NMJ pathology in a broad range of muscles, a panel of axial and appendicular muscles were isolated and immunostained from nmd mice. These analyses revealed that selective distal appendage muscles were highly vulnerable to denervation. Susceptibility to pathology was not limited to NMJ alterations, but included defects in myelination within those neurons innervating susceptible muscles. Interestingly, end plate fragmentation was present within all muscles independent of the extent of NMJ alterations, suggesting that end plate fragmentation is an early hallmark of SMARD1 pathogenesis. Expressing the full-length IGHMBP2 cDNA using an adeno-associated virus (AAV9) significantly decreased all aspects of muscle and nerve disease pathology. These results shed new light onto the pathogenesis of SMARD1 by identifying specific motor units that are resistant and susceptible to neurodegeneration in an important model of SMARD1.
Collapse
Affiliation(s)
- Eric Villalón
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Monir Shababi
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Rachel Kline
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zachary C Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kyra M Florea
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
55
|
Yasui Y, Sato H, Niida Y, Kohno M. Spinal muscular atrophy with respiratory distress type 1 associated with novel compound heterozygous mutations in IGHMBP2: Differential diagnosis in a case with congenital diaphragm eventration. Congenit Anom (Kyoto) 2019; 59:22-23. [PMID: 29575095 DOI: 10.1111/cga.12280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Yoshitomo Yasui
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Hitoshi Sato
- Department of Pediatrics, Kanazawa Medical University, Ishikawa, Japan
| | - Yo Niida
- Division of Clinical Genetics, Kanazawa Medical University, Ishikawa, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
56
|
Charcot Marie Tooth disease type 2S with late onset diaphragmatic weakness: An atypical case. Neuromuscul Disord 2018; 28:1016-1021. [PMID: 30409445 DOI: 10.1016/j.nmd.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022]
Abstract
Immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) mutations are associated with partial continuum between two extremes of rapidly lethal disorder of spinal muscular atrophy with respiratory distress type 1 (SMARD1), with infantile axonal neuropathy, diaphragmatic weakness and commonly death before 1 year of age, and Charcot-Marie-Tooth disease (CMT) type 2S with slowly progressive weakness and sensory loss but no significant respiratory compromise. We present an atypical case of CMT2S. A 9 month old boy presented with bilateral feet deformities and axonal neuropathy. Genetic testing revealed two heterozygous variants in the IGHMBP2 gene: c.1156 T > C p.(Trp386Arg) in exon 8 and c.2747G > A p.(Cys916Tyr) in exon 14, that were inherited from his father and mother respectively. At 9 years, he developed diaphragmatic weakness, following which he was established on non-invasive ventilation. Our case emphasizes the importance of life long respiratory surveillance for patients with CMT2S and expands the phenotype of this condition.
Collapse
|
57
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
58
|
Shorrock HK, van der Hoorn D, Boyd PJ, Llavero Hurtado M, Lamont DJ, Wirth B, Sleigh JN, Schiavo G, Wishart TM, Groen EJN, Gillingwater TH. UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain 2018; 141:2878-2894. [PMID: 30239612 PMCID: PMC6158753 DOI: 10.1093/brain/awy237] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/25/2018] [Indexed: 01/09/2023] Open
Abstract
Deafferentation of motor neurons as a result of defective sensory-motor connectivity is a critical early event in the pathogenesis of spinal muscular atrophy, but the underlying molecular pathways remain unknown. We show that restoration of ubiquitin-like modifier-activating enzyme 1 (UBA1) was sufficient to correct sensory-motor connectivity in the spinal cord of mice with spinal muscular atrophy. Aminoacyl-tRNA synthetases, including GARS, were identified as downstream targets of UBA1. Regulation of GARS by UBA1 occurred via a non-canonical pathway independent of ubiquitylation. Dysregulation of UBA1/GARS pathways in spinal muscular atrophy mice disrupted sensory neuron fate, phenocopying GARS-dependent defects associated with Charcot-Marie-Tooth disease. Sensory neuron fate was corrected following restoration of UBA1 expression and UBA1/GARS pathways in spinal muscular atrophy mice. We conclude that defective sensory motor connectivity in spinal muscular atrophy results from perturbations in a UBA1/GARS pathway that modulates sensory neuron fate, thereby highlighting significant molecular and phenotypic overlap between spinal muscular atrophy and Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Present address: Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Dinja van der Hoorn
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Penelope J Boyd
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Present address: Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Maica Llavero Hurtado
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, UK
| | | | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Germany
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK, Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK, UK Dementia Research Institute at UCL, London, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, UK
| | - Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Correspondence may also be addressed to: Ewout J. N. Groen E-mail:
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Correspondence to: Thomas H. Gillingwater University of Edinburgh - Biomedical Sciences (Anatomy) Hugh Robson Building George Square Edinburgh, Scotland EH8 9XD, UK E-mail:
| |
Collapse
|
59
|
UPF1-like helicase grip on nucleic acids dictates processivity. Nat Commun 2018; 9:3752. [PMID: 30218034 PMCID: PMC6138625 DOI: 10.1038/s41467-018-06313-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Helicases are molecular engines which translocate along nucleic acids (NA) to unwind double-strands or remodel NA–protein complexes. While they have an essential role in genome structure and expression, the rules dictating their processivity remain elusive. Here, we developed single-molecule methods to investigate helicase binding lifetime on DNA. We found that UPF1, a highly processive helicase central to nonsense-mediated mRNA decay (NMD), tightly holds onto NA, allowing long lasting action. Conversely, the structurally similar IGHMBP2 helicase has a short residence time. UPF1 mutants with variable grip on DNA show that grip tightness dictates helicase residence time and processivity. In addition, we discovered via functional studies that a decrease in UPF1 grip impairs NMD efficiency in vivo. Finally, we propose a three-state model with bound, sliding and unbound molecular clips, that can accurately predict the modulation of helicase processivity. UPF1 is a highly processive helicase that plays an essential role in nonsense-mediated mRNA decay. Here the authors use single molecule binding assays to establish a functionally important relationship between helicase grip to nucleic acids, binding lifetime and the duration of translocation.
Collapse
|
60
|
Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol 2018; 136:425-443. [PMID: 29725819 DOI: 10.1007/s00401-018-1852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis type 4 (ALS4) is a rare, early-onset, autosomal dominant form of ALS, characterized by slow disease progression and sparing of respiratory musculature. Dominant, gain-of-function mutations in the senataxin gene (SETX) cause ALS4, but the mechanistic basis for motor neuron toxicity is unknown. SETX is a RNA-binding protein with a highly conserved helicase domain, but does not possess a low-complexity domain, making it unique among ALS-linked disease proteins. We derived ALS4 mouse models by expressing two different senataxin gene mutations (R2136H and L389S) via transgenesis and knock-in gene targeting. Both approaches yielded SETX mutant mice that develop neuromuscular phenotypes and motor neuron degeneration. Neuropathological characterization of SETX mice revealed nuclear clearing of TDP-43, accompanied by TDP-43 cytosolic mislocalization, consistent with the hallmark pathology observed in human ALS patients. Postmortem material from ALS4 patients exhibited TDP-43 mislocalization in spinal cord motor neurons, and motor neurons from SETX ALS4 mice displayed enhanced stress granule formation. Immunostaining analysis for nucleocytoplasmic transport proteins Ran and RanGAP1 uncovered nuclear membrane abnormalities in the motor neurons of SETX ALS4 mice, and nuclear import was delayed in SETX ALS4 cortical neurons, indicative of impaired nucleocytoplasmic trafficking. SETX ALS4 mice thus recapitulated ALS disease phenotypes in association with TDP-43 mislocalization and provided insight into the basis for TDP-43 histopathology, linking SETX dysfunction to common pathways of ALS motor neuron degeneration.
Collapse
|
61
|
Tomaselli PJ, Horga A, Rossor AM, Jaunmuktane Z, Cortese A, Blake JC, Zarate-Lopez N, Houlden H, Reilly MM. IGHMBP2 mutation associated with organ-specific autonomic dysfunction. Neuromuscul Disord 2018; 28:1012-1015. [PMID: 30385095 PMCID: PMC6302219 DOI: 10.1016/j.nmd.2018.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022]
Abstract
Novel IGHMBP2 variant found in a patient with early onset severe peripheral neuropathy. IGHMBP2 mutations may cause enteral autonomic dysfunction. Autonomic dysfunction in IGHMBP2-related disorders may be severe requiring parenteral nutrition.
Biallelic mutations in the IGHMBP2 have been associated with two distinct phenotypes: spinal muscular atrophy with respiratory distress type 1 (SMARD1) and CMT2S. We describe a patient who developed progressive muscle weakness and wasting in her upper and lower limbs from infancy. She developed respiratory involvement at age 9, eventually requiring 24-h non-invasive ventilation, and severe autonomic dysfunction restricted to the gastrointestinal tract. Neurophysiological studies at age 27 years revealed absent sensory and motor responses and severe chronic denervation changes in proximal muscles of the upper limbs. Targeted multigene panel sequencing detected a novel homozygous missense variant in the IGHMBP2 gene (c.1325A > G; p.Tyr442Cys). This variant was validated by Sanger sequencing and co-segregation analysis confirmed that both parents were asymptomatic heterozygous carriers. This case report confirms that IGHMBP2 related disorders can result in a severe peripheral neuropathy with gastrointestinal autonomic dysfunction requiring parenteral nutrition.
Collapse
Affiliation(s)
- Pedro J Tomaselli
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK; Department of Neuromuscular Disorders, Clinical Hospital of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14640-900, Brazil
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK
| | - Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK
| | - Andrea Cortese
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK
| | - Julian C Blake
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Natalia Zarate-Lopez
- Department of Gastroenterology, University College London Hospitals, London NW1 2BU, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3AR, UK.
| |
Collapse
|
62
|
Shababi M, Villalón E, Kaifer KA, DeMarco V, Lorson CL. A Direct Comparison of IV and ICV Delivery Methods for Gene Replacement Therapy in a Mouse Model of SMARD1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:348-360. [PMID: 30202772 PMCID: PMC6127875 DOI: 10.1016/j.omtm.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/13/2018] [Indexed: 01/22/2023]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an infantile autosomal recessive disease caused by the loss of the ubiquitously expressed IGHMBP2 gene. SMARD1 causes degeneration of alpha-motor neurons, resulting in distal muscle weakness, diaphragm paralysis, and respiratory malfunction. We have reported that delivery of a low dose of AAV9-IGHMBP2 to the CNS results in a significant rescue of the SMARD1 mouse model (nmd). To examine how a delivery route can impact efficacy, a direct comparison of intravenous (IV) and intracerebroventricular (ICV) delivery of AAV9-IGHMBP2 was performed. Using a low-dose, both IV and ICV delivery routes led to a significant extension in survival and increased body weight. Conversely, only ICV-treated animals demonstrated improvements in the hindlimb muscle, neuromuscular junction, and motor function. The hindlimb phenotype of IV-treated mice resembled the untreated nmd mice. We investigated whether the increased survival of IV-treated nmd mice was the result of a positive impact on the cardiac function. Our results revealed that cardiac function and pathology were similarly improved in IV- and ICV-treated mice. We concluded that while IV delivery of a low dose does not improve the hindlimb phenotype and motor function, partial restoration of cardiac performance is sufficient to significantly extend survival.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Vince DeMarco
- Department of Medicine, Division of Endocrinology, Diabetes and Cardiovascular Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
63
|
Surrey V, Zöller C, Lork AA, Moradi M, Balk S, Dombert B, Saal-Bauernschubert L, Briese M, Appenzeller S, Fischer U, Jablonka S. Impaired Local Translation of β-actin mRNA in Ighmbp2-Deficient Motoneurons: Implications for Spinal Muscular Atrophy with respiratory Distress (SMARD1). Neuroscience 2018; 386:24-40. [DOI: 10.1016/j.neuroscience.2018.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
64
|
Chiu ATG, Chan SHS, Wu SP, Ting SH, Chung BHY, Chan AOK, Wong VCN. Spinal Muscular Atrophy With Respiratory Distress Type 1-A Child With Atypical Presentation. Child Neurol Open 2018; 5:2329048X18769811. [PMID: 29761130 PMCID: PMC5946598 DOI: 10.1177/2329048x18769811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/20/2018] [Accepted: 03/07/2018] [Indexed: 11/15/2022] Open
Abstract
The authors report a child with spinal muscular atrophy with respiratory distress type 1 (SMARD1). She presented atypically with hypothyroidism and heart failure due to septal defects that required early heart surgery and microcephaly in association with cerebral atrophy and thin corpus collosum. The subsequent asymmetrical onset of diaphragmatic paralysis, persistent hypotonia, and generalized muscle weakness led to the suspicion of spinal muscular atrophy with respiratory distress type 1. Sanger sequencing confirmed a compound heterozygous mutation in the Immunoglobulin Mu Binding Protein 2 (IGHMBP2) gene, with a known mutation c.2362C > T (p.Arg788*) and a novel frameshift mutation c.2048delG (p.Gly683A1afs*50). Serial nerve conduction study and electromyography confirmed progressive sensorimotor polyneuropathy and neuronopathy. In summary, this case report describes a child with spinal muscular atrophy with respiratory distress type 1 also with congenital cardiac disease and endocrine dysfunction, expanding the phenotypic spectrum of this condition. A high index of suspicion is needed in diagnosing this rare condition to guide the management and genetic counseling.
Collapse
Affiliation(s)
- Annie Ting Gee Chiu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Sophelia Hoi Shan Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shun Ping Wu
- Department of Paediatrics, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR
| | - Shun Hin Ting
- Department of Pathology and Clinical Biochemistry, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Angel On Kei Chan
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Virginia Chun Nei Wong
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
65
|
Wu S, Chen T, Li Y, Chen L, Xu Q, Xiao F, Bai Z. An atypical phenotype of a patient with infantile spinal muscular atrophy with respiratory distress type 1 (SMARD 1). Eur J Med Genet 2018; 61:602-606. [PMID: 29653221 DOI: 10.1016/j.ejmg.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 12/09/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive disease characterized by infancy-onset diaphragmatic palsy and symmetrical distal muscular weakness. SMARD1 is caused by loss-of-function mutations in IGHMBP2 gene. In this article, we report a male SMARD1 patient with two compound heterozygous mutations (NM_002180.2: c.688C > G; p.(Gln230Glu)) and (NM_002180.2: c.1737C > A; p.(Phe579Leu)), one of which (c.688C > G; ClinVar accession: SUB3344743: SCV000612189) is novel. He suffered from diaphragmatic palsy and distal muscular weakness from 6 months of age. His lower limbs were at first in hypertonia, and then gradually progressed into hypotonia. More interestingly, bronchoscopy has shown the diffuse tracheobronchomalacia, which had been reported only once in a SMARD1 patient who also had the same mutation (c.1737C > A) as our patient. We constructed the model of IGHMBP2 and mapped both mutations in the structure to analyze the structural impact of both mutations (c.688C > G and c.1737C > A) on the IGHMBP2 protein, which showed that mutation c.688C > G reduces greatly the stability of domain 1A of IGHMBP2, while the structural impact of c.1737C > A is not extensive.
Collapse
Affiliation(s)
- Shuiyan Wu
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Chen
- Department of Endocrinology, Metabolism, and Genetic Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Li
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linqi Chen
- Department of Endocrinology, Metabolism, and Genetic Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiuqin Xu
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fei Xiao
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Zhenjiang Bai
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
66
|
Bennett CL, La Spada AR. Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration. ADVANCES IN NEUROBIOLOGY 2018; 20:265-281. [DOI: 10.1007/978-3-319-89689-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
67
|
Farias FHG, Tomlinson C, Labuda J, Perez-Camargo G, Middleton R, Warren WC. The practical use of genome sequencing data in the management of a feline colony pedigree. BMC Vet Res 2017; 13:225. [PMID: 28750619 PMCID: PMC5532773 DOI: 10.1186/s12917-017-1144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background A higher prevalence of inherited disorders among companion animals are often rooted in their historical restricted artificial selection for a variety of observed phenotypes that eventually decreased genetic diversity. Cats have been afflicted with many inherited diseases due to domestication and intense breed selection. Advances in sequencing technology have generated a more comprehensive way to access genetic information from an individual, allowing identification of putative disease-causing variants and in practice a means to avoid their spread and thus better pedigree management. We examine variants in three domestic shorthair cats and then calculated overall genetic diversity to extrapolate the benefits of this data for breeding programs within a feline colony. Results We generated whole genome sequence (WGS) data for three related cats that belong to a large feline pedigree colony. Genome-wide coverage ranged from 27-32X, from which we identified 18 million variants in total. Previously known disease-causing variants were screened in our cats, but none carry any of these known disease alleles. Loss of function (LoF) variants, that are in genes associated with a detrimental phenotype in human or mice were chosen for further evaluation on the comparative impact inferred. A set of LoF variants were observed in four genes, each with predicted detrimental phenotypes as a result. However, none of our cats displayed the expected disease phenotypes. Inbreeding coefficients and runs of homozygosity were also evaluated as a measure of genetic diversity. We find low inbreeding coefficients and total runs of homozygosity, thus suggesting pedigree management of genetic relatedness is acceptable. Conclusions The use of WGS of a small sampling among a large feline colony has enabled us to identify possible disease-causing variants, their genotype state and measure pedigree management of genetic diversity. We contend a limited but strategic sampling of feline colony individuals using WGS can inform veterinarians of future health anomalies and guide breeding practices to ensure healthy genetic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1144-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabiana H G Farias
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | | | | | | | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
68
|
Tachmazidou I, Süveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, Iotchkova V, Schwartzentruber J, Huang J, Memari Y, McCarthy S, Crawford AA, Bombieri C, Cocca M, Farmaki AE, Gaunt TR, Jousilahti P, Kooijman MN, Lehne B, Malerba G, Männistö S, Matchan A, Medina-Gomez C, Metrustry SJ, Nag A, Ntalla I, Paternoster L, Rayner NW, Sala C, Scott WR, Shihab HA, Southam L, St Pourcain B, Traglia M, Trajanoska K, Zaza G, Zhang W, Artigas MS, Bansal N, Benn M, Chen Z, Danecek P, Lin WY, Locke A, Luan J, Manning AK, Mulas A, Sidore C, Tybjaerg-Hansen A, Varbo A, Zoledziewska M, Finan C, Hatzikotoulas K, Hendricks AE, Kemp JP, Moayyeri A, Panoutsopoulou K, Szpak M, Wilson SG, Boehnke M, Cucca F, Di Angelantonio E, Langenberg C, Lindgren C, McCarthy MI, Morris AP, Nordestgaard BG, Scott RA, Tobin MD, Wareham NJ, Burton P, Chambers JC, Smith GD, Dedoussis G, Felix JF, Franco OH, Gambaro G, Gasparini P, Hammond CJ, Hofman A, Jaddoe VWV, Kleber M, Kooner JS, Perola M, Relton C, Ring SM, Rivadeneira F, Salomaa V, Spector TD, Stegle O, Toniolo D, Uitterlinden AG, Barroso I, Greenwood CMT, Perry JRB, et alTachmazidou I, Süveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, Iotchkova V, Schwartzentruber J, Huang J, Memari Y, McCarthy S, Crawford AA, Bombieri C, Cocca M, Farmaki AE, Gaunt TR, Jousilahti P, Kooijman MN, Lehne B, Malerba G, Männistö S, Matchan A, Medina-Gomez C, Metrustry SJ, Nag A, Ntalla I, Paternoster L, Rayner NW, Sala C, Scott WR, Shihab HA, Southam L, St Pourcain B, Traglia M, Trajanoska K, Zaza G, Zhang W, Artigas MS, Bansal N, Benn M, Chen Z, Danecek P, Lin WY, Locke A, Luan J, Manning AK, Mulas A, Sidore C, Tybjaerg-Hansen A, Varbo A, Zoledziewska M, Finan C, Hatzikotoulas K, Hendricks AE, Kemp JP, Moayyeri A, Panoutsopoulou K, Szpak M, Wilson SG, Boehnke M, Cucca F, Di Angelantonio E, Langenberg C, Lindgren C, McCarthy MI, Morris AP, Nordestgaard BG, Scott RA, Tobin MD, Wareham NJ, Burton P, Chambers JC, Smith GD, Dedoussis G, Felix JF, Franco OH, Gambaro G, Gasparini P, Hammond CJ, Hofman A, Jaddoe VWV, Kleber M, Kooner JS, Perola M, Relton C, Ring SM, Rivadeneira F, Salomaa V, Spector TD, Stegle O, Toniolo D, Uitterlinden AG, Barroso I, Greenwood CMT, Perry JRB, Walker BR, Butterworth AS, Xue Y, Durbin R, Small KS, Soranzo N, Timpson NJ, Zeggini E. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. Am J Hum Genet 2017; 100:865-884. [PMID: 28552196 PMCID: PMC5473732 DOI: 10.1016/j.ajhg.2017.04.014] [Show More Authors] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/21/2017] [Indexed: 01/05/2023] Open
Abstract
Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.
Collapse
Affiliation(s)
- Ioanna Tachmazidou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Dániel Süveges
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Graham R S Ritchie
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK; MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Julia Steinberg
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Klaudia Walter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Valentina Iotchkova
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | | | - Jie Huang
- Boston VA Research Institute, Boston, MA 02130, USA
| | - Yasin Memari
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Shane McCarthy
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Andrew A Crawford
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK; BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cristina Bombieri
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Massimiliano Cocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Pekka Jousilahti
- Department of Health, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Marjolein N Kooijman
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Giovanni Malerba
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Angela Matchan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Sarah J Metrustry
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Nigel W Rayner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - William R Scott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Cardiology, Ealing Hospital NHS Trust, Middlesex UB1 3EU, UK
| | - Hashem A Shihab
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Lorraine Southam
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK; Max Planck Institute for Psycholinguistics, Nijmegen 6500, the Netherlands
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Katerina Trajanoska
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Gialuigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona 37126, Italy
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Cardiology, Ealing Hospital NHS Trust, Middlesex UB1 3EU, UK
| | - María S Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Narinder Bansal
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Marianne Benn
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Zhongsheng Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Petr Danecek
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Wei-Yu Lin
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Alisa K Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Harvard University Medical School, Boston, MA 02115, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR), Cagliari 09100, Italy; Università degli Studi di Sassari, Sassari 07100, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR), Cagliari 09100, Italy
| | - Anne Tybjaerg-Hansen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Anette Varbo
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | | | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, UK
| | | | - Audrey E Hendricks
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - John P Kemp
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4072, Australia
| | - Alireza Moayyeri
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK; Institute of Health Informatics, University College London, London NW1 2DA, UK
| | | | - Michal Szpak
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Scott G Wilson
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK; School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA 6009, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR), Cagliari 09100, Italy; Università degli Studi di Sassari, Sassari 07100, Italy
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge CB1 8RN, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Cecilia Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK; Estonian Genome Center, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Børge G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | | | - Paul Burton
- D2K Research Group, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Cardiology, Ealing Hospital NHS Trust, Middlesex UB1 3EU, UK; Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Janine F Felix
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Columbus-Gemelli University Hospital, Catholic University, Rome 00168, Italy
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy; Medical Genetics, Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste 34100, Italy
| | - Christopher J Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Marcus Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital NHS Trust, Middlesex UB1 3EU, UK; Imperial College Healthcare NHS Trust, London W2 1NY, UK; National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki 00271, Finland; Estonian Genome Center, University of Tartu, Tartu, Tartumaa 51010, Estonia; Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam 3000 CA, the Netherlands
| | | | | | | | - Inês Barroso
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC H3A 1A2, Canada; Department of Oncology, McGill University, Montréal, QC H2W 1S6, Canada
| | - John R B Perry
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Brian R Walker
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adam S Butterworth
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge CB1 8RN, UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Richard Durbin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Nicole Soranzo
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge CB1 8RN, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Eleftheria Zeggini
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
69
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
70
|
Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett CF, Rigo F, Krainer AR, Hurt JA, Carulli JP, Staropoli JF. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci U S A 2017; 114:E2347-E2356. [PMID: 28270613 PMCID: PMC5373344 DOI: 10.1073/pnas.1613181114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.
Collapse
Affiliation(s)
- Mohini Jangi
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Christina Fleet
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Patrick Cullen
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Shipra V Gupta
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | | | - Eric Chiao
- Stem Cell Research, Biogen, Cambridge, MA 02142
| | - Norm Allaire
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - C Frank Bennett
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92008
| | - Frank Rigo
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92008
| | | | - Jessica A Hurt
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - John P Carulli
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142;
| | | |
Collapse
|
71
|
Yuan JH, Hashiguchi A, Yoshimura A, Yaguchi H, Tsuzaki K, Ikeda A, Wada-Isoe K, Ando M, Nakamura T, Higuchi Y, Hiramatsu Y, Okamoto Y, Takashima H. Clinical diversity caused by novel IGHMBP2 variants. J Hum Genet 2017; 62:599-604. [PMID: 28202949 DOI: 10.1038/jhg.2017.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 11/09/2022]
Abstract
Immunoglobulin helicase μ-binding protein 2 (IGHMBP2) gene is responsible for Charcot-Marie-Tooth disease (CMT) type 2S and spinal muscular atrophy with respiratory distress type 1 (SMARD1). From June 2014 to December 2015, we collected 408 cases, who referred to our genetic laboratory for genetic analysis, suspected with CMT disease or other inherited peripheral neuropathies (IPNs) on the basis of clinical manifestations and electrophysiological studies. Mutation screening was performed using Ion AmpliSeq Custom Panels, which comprise 72 disease-causing or candidate genes of IPNs. We identified novel homozygous or compound heterozygous variants of IGHMBP2 in four patients. Three patients presented with childhood-onset axonal predominant sensorimotor polyneuropathies, whereas the other case was diagnosed with SMARD1, manifesting as low birth weight, weak cry, reduced spontaneous movement and developed respiratory distress 4 months after birth. We present the original report of CMT type 2S in Japan, and illustrate that recessive IGHMBP2 variants account for ~1.6% of axonal CMT in our cohort.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Hiroshi Yaguchi
- Department of Neurology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Koji Tsuzaki
- Department of Neurology, Kansai Electric Power Hospital, Osaka, Japan
| | - Azusa Ikeda
- Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Wada-Isoe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| |
Collapse
|
72
|
Kichula EA. Inherited Neuromuscular Disorders: Presentation, Diagnosis, and Advances in Treatment. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
73
|
Spinale Muskelatrophien. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
74
|
Gama-Carvalho M, L Garcia-Vaquero M, R Pinto F, Besse F, Weis J, Voigt A, Schulz JB, De Las Rivas J. Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: a genomics perspective. J Neurochem 2017; 141:12-30. [PMID: 28054357 DOI: 10.1111/jnc.13945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
In this review, we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, amyotrophic lateral sclerosis, and spinal muscular atrophy. We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN, and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration. We review reported functional and physical interactions between these four proteins, highlighting their common association with nuclear bodies and small nuclear ribonucleoprotein particle biogenesis and function. We discuss how these interactions are turning out to be particularly relevant for the control of transcription and chromatin homeostasis, including the recent identification of an association between SMN and Senataxin required to ensure the resolution of DNA-RNA hybrid formation and proper termination by RNA polymerase II. These connections strongly support the existence of common pathways underlying the spinal muscular atrophy and amyotrophic lateral sclerosis phenotype. We also discuss the potential of genome-wide expression profiling, in particular RNA sequencing derived data, to contribute to unravelling the underlying mechanisms. We provide a review of publicly available datasets that have addressed both diseases using these approaches, and highlight the value of investing in cross-disease studies to promote our understanding of the pathways leading to neurodegeneration.
Collapse
Affiliation(s)
- Margarida Gama-Carvalho
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marina L Garcia-Vaquero
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
75
|
Liu L, Li X, Hu Z, Mao X, Zi X, Xia K, Tang B, Zhang R. IGHMBP2 -related clinical and genetic features in a cohort of Chinese Charcot–Marie–Tooth disease type 2 patients. Neuromuscul Disord 2017; 27:193-199. [DOI: 10.1016/j.nmd.2016.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/12/2016] [Indexed: 02/01/2023]
|
76
|
TBCD may be a causal gene in progressive neurodegenerative encephalopathy with atypical infantile spinal muscular atrophy. J Hum Genet 2016; 62:473-480. [PMID: 27928163 DOI: 10.1038/jhg.2016.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by survival motor neuron gene mutations. Variant forms of SMA accompanied by additional clinical presentations have been classified as atypical SMA and are thought to be caused by variants in as yet unidentified causative genes. Here, we presented the clinical findings of two siblings with an SMA variant followed by progressive cerebral atrophy, and the results of whole-exome sequencing analyses of the family quartet that was performed to identify potential causative variants. We identified two candidate homozygous missense variants, R942Q in the tubulin-folding cofactor D (TBCD) gene and H250Q in the bromo-adjacent homology domain and coiled-coil containing 1 (BAHCC1) gene, located on chromosome 17q25.3 with an interval of 1.4 Mbp. The in silico analysis of both variants suggested that TBCD rather than BAHCC1 was likely the pathogenic gene (TBCD sensitivity, 0.68; specificity, 0.97; BAHCC1 sensitivity, 1.00; specificity, 0.00). Thus, our results show that TBCD is a likely novel candidate gene for atypical SMA with progressive cerebral atrophy. TBCD is predicted to have important functions on tubulin integrity in motor neurons as well as in the central nervous system.
Collapse
|
77
|
Biallelic Loss of Proprioception-Related PIEZO2 Causes Muscular Atrophy with Perinatal Respiratory Distress, Arthrogryposis, and Scoliosis. Am J Hum Genet 2016; 99:1206-1216. [PMID: 27843126 DOI: 10.1016/j.ajhg.2016.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 11/23/2022] Open
Abstract
We report ten individuals of four independent consanguineous families from Turkey, India, Libya, and Pakistan with a variable clinical phenotype that comprises arthrogryposis, spontaneously resolving respiratory insufficiency at birth, muscular atrophy predominantly of the distal lower limbs, scoliosis, and mild distal sensory involvement. Using whole-exome sequencing, SNPchip-based linkage analysis, DNA microarray, and Sanger sequencing, we identified three independent homozygous frameshift mutations and a homozygous deletion of two exons in PIEZO2 that segregated in all affected individuals of the respective family. The mutations are localized in the N-terminal and central region of the gene, leading to nonsense-mediated transcript decay and consequently to lack of PIEZO2 protein. In contrast, heterozygous gain-of-function missense mutations, mainly localized at the C terminus, cause dominant distal arthrogryposis 3 (DA3), distal arthrogryposis 5 (DA5), or Marden-Walker syndrome (MWKS), which encompass contractures of hands and feet, scoliosis, ophthalmoplegia, and ptosis. PIEZO2 encodes a mechanosensitive ion channel that plays a major role in light-touch mechanosensation and has recently been identified as the principal mechanotransduction channel for proprioception. Mice ubiquitously depleted of PIEZO2 are postnatally lethal. However, individuals lacking PIEZO2 develop a not life-threatening, slowly progressive disorder, which is likely due to loss of PIEZO2 protein in afferent neurons leading to disturbed proprioception causing aberrant muscle development and function. Here we report a recessively inherited PIEZO2-related disease and demonstrate that depending on the type of mutation and the mode of inheritance, PIEZO2 causes clinically distinguishable phenotypes.
Collapse
|
78
|
Pedurupillay CRJ, Amundsen SS, Barøy T, Rasmussen M, Blomhoff A, Stadheim BF, Ørstavik K, Holmgren A, Iqbal T, Frengen E, Misceo D, Strømme P. Clinical and molecular characteristics in three families with biallelic mutations in IGHMBP2. Neuromuscul Disord 2016; 26:570-5. [PMID: 27450922 DOI: 10.1016/j.nmd.2016.06.457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
Abstract
Biallelic mutations in IGHMBP2 cause spinal muscular atrophy with respiratory distress type 1 (SMARD1) or Charcot-Marie-Tooth type 2S (CMT2S). We report three families variably affected by IGHMBP2 mutations. Patient 1, an 8-year-old boy with two homozygous variants: c.2T>C and c.861C>G, was wheelchair bound due to sensorimotor axonal neuropathy and chronic respiratory failure. Patient 2 and his younger sister, Patient 3, had compound heterozygous variants: c.983_987delAAGAA and c.1478C>T. However, clinical phenotypes differed markedly as the elder with sensorimotor axonal neuropathy had still unaffected respiratory function at 4.5 years, whereas the younger presented as infantile spinal muscular atrophy and died from relentless respiratory failure at 11 months. Patient 4, a 6-year-old girl homozygous for IGHMBP2 c.449+1G>T documented to result in two aberrant transcripts, was wheelchair dependent due to axonal polyneuropathy. The clinical presentation in Patients 1 and 3 were consistent with SMARD1, whereas Patients 2 and 4 were in agreement with CMT2S.
Collapse
Affiliation(s)
- Christeen Ramane J Pedurupillay
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silja S Amundsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway; Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anne Blomhoff
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Barbro Fossøy Stadheim
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tahir Iqbal
- Molecular Biology laboratory, Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Petter Strømme
- Faculty of Medicine, University of Oslo, Oslo, Norway; Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
79
|
Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent. Mol Ther 2016; 24:855-66. [PMID: 26860981 DOI: 10.1038/mt.2016.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/17/2016] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.
Collapse
|
80
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
81
|
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) Report of a Spanish case with extended clinicopathological follow-up. Clin Neuropathol 2015; 35:58-65. [PMID: 26709713 PMCID: PMC4806405 DOI: 10.5414/np300902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 12/02/2022] Open
Abstract
Background: Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a clinically and genetically distinct and uncommon variant of SMA that results from irreversible degeneration of α-motor neurons in the anterior horns of the spinal cord and in ganglion cells on the spinal root ganglia. Aims: To describe the clinical, electrophysiological, neuropathological, and genetic findings, at different stages from birth to death, of a Spanish child diagnosed with SMARD1. Patient and methods: We report the case of a 3-month-old girl with severe respiratory insufficiency and, later, intense hypotonia. Paraclinical tests included biochemistry, chest X-ray, and electrophysiological studies, among others. Muscle and nerve biopsies were performed at 5 and 10 months and studied under light and electron microscopy. Post-mortem examination and genetic investigations were performed. Results: Pre- and post-mortem histopathological findings demonstrated the disease progression over time. Muscle biopsy at 5 months of age was normal, however a marked neurogenic atrophy was present in post-mortem samples. Peripheral motor and sensory nerves were severely involved likely due to a primary axonal disorder. Automatic sequencing of IGHMBP2 revealed a compound heterozygous mutation. Conclusions: The diagnosis of SMARD1 should be considered in children with early respiratory insufficiency or in cases of atypical SMA. Direct sequencing of the IGHMBP2 gene should be performed.
Collapse
|
82
|
Martin-Tumasz S, Brow DA. Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5'- to 3'-Helicase Activity with a Preference for Translocation on DNA Rather than RNA. J Biol Chem 2015; 290:22880-9. [PMID: 26198638 PMCID: PMC4645616 DOI: 10.1074/jbc.m115.674002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/19/2015] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the essential nuclear helicase Sen1 is required for efficient termination of transcription of short noncoding RNA genes by RNA polymerase II. However, the mechanism by which Sen1 promotes transcription termination is not known. Prior biochemical studies on the Sen1 homolog from Schizosaccharomyces pombe showed that it can bind and unwind both DNA and RNA, but the S. pombe protein is not essential and has not been demonstrated to function in transcription. Furthermore, Sen1 from either yeast has not previously been expressed as a recombinant protein, due to its large molecular mass (252 kDa in S. cerevisiae). Here, we report the purification and characterization of the 89-kDa S. cerevisiae Sen1 helicase domain (Sen1-HD) produced in Escherichia coli. Sen1-HD binds single-stranded RNA and DNA with similar affinity in the absence of ATP, but it binds RNA more stably than DNA in the presence of ATP, apparently due to a slower translocation rate on RNA. Translocation occurs in the 5' to 3' direction, as for the S. pombe protein. When purified from E. coli at a moderate salt concentration, Sen1-HD was associated with short RNAs that are enriched for the trinucleotide repeat (CAN)4. We propose that Sen1 binds to RNAs and prevents their stable pairing with DNA, consistent with in vivo studies by others showing increased R-loop (RNA/DNA hybrid) formation when Sen1 activity is impaired by mutations. Our results are consistent with a model in which Sen1 promotes transcription termination by resolving R-loops.
Collapse
Affiliation(s)
- Stephen Martin-Tumasz
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - David A Brow
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
83
|
Wagner JD, Huang L, Tetreault M, Majewski J, Boycott KM, Bulman DE, Dyment DA, McMillan HJ. Autosomal recessive axonal polyneuropathy in a sibling pair due to a novel homozygous mutation in IGHMBP2. Neuromuscul Disord 2015; 25:794-9. [PMID: 26298607 DOI: 10.1016/j.nmd.2015.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Abstract
Charcot-Marie-Tooth disease is a group of genetically heterogeneous disorders characterized by a sensorimotor polyneuropathy with subsequent muscle atrophy, areflexia, and sensory loss. More than 60 genes have been linked to Charcot-Marie-Tooth phenotypes, including IGHMBP2. Until recently, mutations in IGHMBP2 were exclusively associated with spinal muscular atrophy with respiratory distress (SMARD1). We present a sibling pair with a novel homozygous truncating mutation in IGHMBP2. The patients presented with childhood-onset distal weakness, wasting in the upper and lower limbs, areflexia and decreased sensation, but no respiratory involvement. Exome sequencing was performed and a homozygous variant was identified (c.2601_2604del; p.Lys868Profs*109). Sanger sequencing confirmed the presence of this variant in a homozygous state in the two affected siblings, while both parents were heterozygous. Further analyses showed decreased mRNA and IGHMBP2 protein in a lymphoblast cell line derived from one of the siblings. We demonstrate the utility of next-generation sequencing in reaching a molecular diagnosis for a heterogeneous condition such as Charcot-Marie-Tooth. Taken together, our data and that from the literature suggest that the spectrum of clinical presentations associated with mutations in IGHMBP2 may be secondary, at least in part, to the amount of residual protein.
Collapse
Affiliation(s)
- Justin D Wagner
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Martine Tetreault
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
84
|
Shi CH, Song B, Luo HY, Mao CY, Shang DD, Cao Y, Sun SL, Wu J, Zhuang ZP, Xu YM. Recessive hereditary motor and sensory neuropathy caused by IGHMBP2 gene mutation. Neurology 2015; 85:383-4. [PMID: 26136520 DOI: 10.1212/wnl.0000000000001747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/26/2015] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chang-He Shi
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Bo Song
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Hai-Yang Luo
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Cheng-Yuan Mao
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Dan-Dan Shang
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Yuan Cao
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Shi-Lei Sun
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Jun Wu
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Zheng-Ping Zhuang
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Yu-Ming Xu
- From the Department of Neurology (C-h.S., B.S., H-y.L., C-y.M., D-d.S., Y.C., S-l.S., J.W., Y-m.X.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; and Surgical Neurology Branch (Z-p.Z.), National Institute of Neurological Disorders and Stroke, Bethesda, MD.
| |
Collapse
|
85
|
Vanoli F, Rinchetti P, Porro F, Parente V, Corti S. Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1. J Cell Mol Med 2015; 19:2058-66. [PMID: 26095024 PMCID: PMC4568910 DOI: 10.1111/jcmm.12606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre-clinical therapeutic strategies in humans.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rinchetti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Porro
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
86
|
Han C, Mai J, Tian T, He Y, Liao J, Wen F, Yi X, Yang Y. Patient with spinal muscular atrophy with respiratory distress type 1 presenting initially with hypertonia. Brain Dev 2015; 37:542-545. [PMID: 25280635 DOI: 10.1016/j.braindev.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/20/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder caused by mutations in the IGHMBP2 gene and characterized by life-threatening respiratory distress due to irreversible diaphragmatic paralysis between 6weeks and 6months of age. In this study, we describe a two-month-old boy who presented with hypertonia at first and developed to hypotonia progressively, which was in contrast to the manifestations reported previously. Bone tissue compromise was also observed as one of the unique symptoms. Muscle biopsy indicated mild myogenic changes. He was misdiagnosed until genetic screening to be confirmed as SMARD1. SMARD1 is a clinical heterogeneous disease and this case broadens our perception of its phenotypes.
Collapse
Affiliation(s)
- Chunxi Han
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jiahui Mai
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | | | - Yanxia He
- Pediatric Intensive Care Unit, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Feiqiu Wen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | | | | |
Collapse
|
87
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
88
|
Madrid Rodríguez A, Martínez Martínez P, Ramos Fernández J, Urda Cardona A, Martínez Antón J. Atrofia muscular espinal: revisión de nuestra casuística en los últimos 25 años. An Pediatr (Barc) 2015; 82:159-65. [DOI: 10.1016/j.anpedi.2014.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/21/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022] Open
|
89
|
Madrid Rodríguez A, Martínez Martínez P, Ramos Fernández J, Urda Cardona A, Martínez Antón J. Infantile spinal atrophy: Our experience in the last 25 years. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.anpede.2014.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
90
|
Nizzardo M, Simone C, Rizzo F, Salani S, Dametti S, Rinchetti P, Del Bo R, Foust K, Kaspar BK, Bresolin N, Comi GP, Corti S. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. SCIENCE ADVANCES 2015; 1:e1500078. [PMID: 26601156 PMCID: PMC4643829 DOI: 10.1126/sciadv.1500078] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 05/12/2023]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease affecting children. It is caused by mutations in the IGHMBP2 gene (11q13) and presently has no cure. Recently, adeno-associated virus serotype 9 (AAV9)-mediated gene therapy has been shown to rescue the phenotype of animal models of another lower motor neuron disorder, spinal muscular atrophy 5q, and a clinical trial with this strategy is ongoing. We report rescue of the disease phenotype in a SMARD1 mouse model after therapeutic delivery via systemic injection of an AAV9 construct encoding the wild-type IGHMBP2 to replace the defective gene. AAV9-IGHMBP2 administration restored protein levels and rescued motor function, neuromuscular physiology, and life span (450% increase), ameliorating pathological features in the central nervous system, muscles, and heart. To test this strategy in a human model, we transferred wild-type IGHMBP2 into human SMARD1-induced pluripotent stem cell-derived motor neurons; these cells exhibited increased survival and axonal length in long-term culture. Our data support the translational potential of AAV-mediated gene therapies for SMARD1, opening the door for AAV9-mediated therapy in human clinical trials.
Collapse
Affiliation(s)
- Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Corresponding author: E-mail:
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sara Dametti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Rinchetti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Kevin Foust
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Brian K. Kaspar
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
91
|
Uchiumi F, Seki M, Furuichi Y. Helicases and human diseases. Front Genet 2015; 6:39. [PMID: 25729389 PMCID: PMC4325929 DOI: 10.3389/fgene.2015.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of ScienceNoda, Japan
| | - Masayuki Seki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical UniversitySendai, Japan
| | | |
Collapse
|
92
|
Growing up with spinal muscular atrophy with respiratory distress (SMARD1). Neuromuscul Disord 2015; 25:169-71. [DOI: 10.1016/j.nmd.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 11/17/2022]
|
93
|
Cottenie E, Kochanski A, Jordanova A, Bansagi B, Zimon M, Horga A, Jaunmuktane Z, Saveri P, Rasic VM, Baets J, Bartsakoulia M, Ploski R, Teterycz P, Nikolic M, Quinlivan R, Laura M, Sweeney MG, Taroni F, Lunn MP, Moroni I, Gonzalez M, Hanna MG, Bettencourt C, Chabrol E, Franke A, von Au K, Schilhabel M, Kabzińska D, Hausmanowa-Petrusewicz I, Brandner S, Lim SC, Song H, Choi BO, Horvath R, Chung KW, Zuchner S, Pareyson D, Harms M, Reilly MM, Houlden H. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2. Am J Hum Genet 2014; 95:590-601. [PMID: 25439726 PMCID: PMC4225647 DOI: 10.1016/j.ajhg.2014.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022] Open
Abstract
Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Collapse
Affiliation(s)
- Ellen Cottenie
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrzej Kochanski
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Albena Jordanova
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Boglarka Bansagi
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Magdalena Zimon
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Vedrana Milic Rasic
- Clinic for Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jonathan Baets
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium; Laboratory of Neurogenetics, University of Antwerp, Antwerpen 2610, Belgium; Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Bartsakoulia
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafal Ploski
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Pawel Teterycz
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Milos Nikolic
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mary G Sweeney
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Disease IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael P Lunn
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Isabella Moroni
- Child Neurology Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael Gonzalez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Conceicao Bettencourt
- Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andre Franke
- Christian-Albrechts-University, 24118 Kiel, Germany
| | - Katja von Au
- SPZ Pediatric Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Irena Hausmanowa-Petrusewicz
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Siew Choo Lim
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673; Life Sciences Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 137-710, Korea
| | - Rita Horvath
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Ki-Wha Chung
- Department of Biological Science, Kongju National University, Chungnam 134-701, Korea
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
94
|
Porro F, Rinchetti P, Magri F, Riboldi G, Nizzardo M, Simone C, Zanetta C, Faravelli I, Corti S. The wide spectrum of clinical phenotypes of spinal muscular atrophy with respiratory distress type 1: A systematic review. J Neurol Sci 2014; 346:35-42. [DOI: 10.1016/j.jns.2014.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022]
|
95
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
96
|
Krieger F, Metzger F, Jablonka S. Differentiation defects in primary motoneurons from a SMARD1 mouse model that are insensitive to treatment with low dose PEGylated IGF1. Rare Dis 2014; 2:e29415. [PMID: 25083343 PMCID: PMC4116388 DOI: 10.4161/rdis.29415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 11/21/2022] Open
Abstract
Muscle atrophy and diaphragmatic palsy are the clinical characteristics of spinal muscular atrophy with respiratory distress type 1 (SMARD1), and are well represented in the neuromuscular degeneration (Nmd2J) mouse, modeling the juvenile form of SMARD1. Both in humans and mice mutations in the IGHMBP2 gene lead to motoneuron degeneration. We could previously demonstrate that treatment with a polyethylene glycol-coupled variant of IGF1 (PEG-IGF1) improves motor functions accompanied by reduced fiber degeneration in the gastrocnemius muscle and the diaphragm, but has no beneficial effect on motoneuron survival. These data raised the question which cell autonomous disease mechanisms contribute to dysfunction and loss of Ighmbp2-deficient motoneurons. An analysis of primary Ighmbp2-deficient motoneurons exhibited differentiation deficits such as reduced spontaneous Ca2+ transients and altered axon elongation, which was not compensated by PEG-IGF1. This points to an IGF1 independent mechanism of motoneuron degeneration that deserves treatment approaches in addition to IGF1.
Collapse
Affiliation(s)
- Frank Krieger
- Institute for Clinical Neurobiology; University of Wuerzburg; Wuerzburg, Germany
| | - Friedrich Metzger
- Roche Pharmaceutical Research and Early Development; Roche Innovation Center Basel; F. Hoffmann-La Roche Ltd.; Basel, Switzerland
| | - Sibylle Jablonka
- Institute for Clinical Neurobiology; University of Wuerzburg; Wuerzburg, Germany
| |
Collapse
|
97
|
Lin X, Zhang QJ, He J, Lin MT, Murong SX, Wang N, Chen WJ. Variations of IGHMBP2 gene was not the major cause of Han Chinese patients with non-5q-spinal muscular atrophies. J Child Neurol 2014; 29:NP35-9. [PMID: 24022109 DOI: 10.1177/0883073813497827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1), a notably common form of non-5q-spinal muscular atrophy, can be confused with infantile spinal muscular atrophy and is characterized by the early onset of diaphragmatic palsy and predominantly distal muscle weakness. The defective gene, immunoglobulin mu-binding protein 2 (IGHMBP2), is located on chromosome 11q13-q21. In this study, we screened the IGHMBP2 gene in 53 unrelated Han Chinese non-5q-spinal muscular atrophy patients and 100 healthy controls. Two novel mutations (c.711+1G>C and c.1817G>A) and 5 nucleotide polymorphisms (c.57T>C, c.1554C>T, c.1914G>A, c.2080C>T, and c.2270G>C) were identified. However, only 1 patient harbored the compound heterozygous mutations (c.711+1G>C, c.1817G>A). Furthermore, the homozygous c.2636C>A (p.T879 K) variation, which has been included as a mutation in the Human Gene Mutation Database, was found both in patients and healthy individuals. In conclusion, the IGHMBP2 gene was not found to be a major causative gene linked to Han Chinese non-5q-spinal muscular atrophy patients.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Qi-Jie Zhang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Shen-Xing Murong
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China Center of Neuroscience, Fujian Medical University, Fujian Province, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fujian Province, China Center of Neuroscience, Fujian Medical University, Fujian Province, China
| |
Collapse
|
98
|
Simone C, Nizzardo M, Rizzo F, Ruggieri M, Riboldi G, Salani S, Bucchia M, Bresolin N, Comi GP, Corti S. iPSC-Derived neural stem cells act via kinase inhibition to exert neuroprotective effects in spinal muscular atrophy with respiratory distress type 1. Stem Cell Reports 2014; 3:297-311. [PMID: 25254343 PMCID: PMC4176534 DOI: 10.1016/j.stemcr.2014.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/01/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a motor neuron disease caused by mutations in the IGHMBP2 gene, without a cure. Here, we demonstrate that neural stem cells (NSCs) from human-induced pluripotent stem cells (iPSCs) have therapeutic potential in the context of SMARD1. We show that upon transplantation NSCs can appropriately engraft and differentiate in the spinal cord of SMARD1 animals, ameliorating their phenotype, by protecting their endogenous motor neurons. To evaluate the effect of NSCs in the context of human disease, we generated human SMARD1-iPSCs motor neurons that had a significantly reduced survival and axon length. Notably, the coculture with NSCs ameliorate these disease features, an effect attributable to the production of neurotrophic factors and their dual inhibition of GSK-3 and HGK kinases. Our data support the role of iPSC as SMARD1 disease model and their translational potential for therapies in motor neuron disorders.
Collapse
Affiliation(s)
- Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Ruggieri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Bucchia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
99
|
Peeters K, Chamova T, Jordanova A. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies. ACTA ACUST UNITED AC 2014; 137:2879-96. [PMID: 24970098 PMCID: PMC4208460 DOI: 10.1093/brain/awu169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peeters et al. review current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies (SMA). They describe the molecular and cellular functions enriched among causative genes, and discuss the challenges facing the post-genomics era of SMA research. Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research.
Collapse
Affiliation(s)
- Kristien Peeters
- 1 Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerpen 2610, Belgium 2 Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium
| | - Teodora Chamova
- 3 Department of Neurology, Medical University-Sofia, Sofia 1000, Bulgaria
| | - Albena Jordanova
- 1 Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerpen 2610, Belgium 2 Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 4 Department of Medical Chemistry and Biochemistry, Molecular Medicine Centre, Medical University-Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
100
|
Litvinenko I, Kirov AV, Georgieva R, Todorov T, Malinova Z, Mitev V, Todorova A. One novel and one recurrent mutation in IGHMBP2 gene, causing severe spinal muscular atrophy respiratory distress 1 with onset soon after birth. J Child Neurol 2014; 29:799-802. [PMID: 23449687 DOI: 10.1177/0883073813477203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/07/2013] [Indexed: 01/21/2023]
Abstract
A family with 2 siblings with severe spinal muscular atrophy with respiratory distress 1 (SMARD1) was genetically proved to be caused by mutations in IGHMBP2 gene. Both patients developed progressive muscular weakness and respiratory distress and died before 6 months of age. One novel deletion, c.780delG;p.(Gln260Hisfs*24), inherited from the father and a nonsense mutation, c.1488C>A;p.(Cys496*), inherited from the mother were detected. An attempt was made to correlate the genetic-clinical data available in the literature. The clinical case presented in this study might be considered as the most severe form of spinal muscular atrophy respiratory distress 1 reported so far, presumably because of the total absence of IGHMBP2 enzyme activity.
Collapse
Affiliation(s)
- Ivan Litvinenko
- University Pediatric Hospital, Sofia Medical University, Sofia, Bulgaria Both authors contributed equally to this work
| | - Andrey Ventsislavov Kirov
- Department of Medical Chemistry and Biochemistry, Sofia Medical University Genetic Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria Both authors contributed equally to this work.
| | - Ralitsa Georgieva
- University Pediatric Hospital, Sofia Medical University, Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria
| | - Zornitsa Malinova
- University Pediatric Hospital, Sofia Medical University, Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Sofia Medical University
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Sofia Medical University Genetic Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria
| |
Collapse
|