51
|
Stewart A, Harrison JS, Regula LK, Lai JR. Side chain requirements for affinity and specificity in D5, an HIV-1 antibody derived from the VH1-69 germline segment. BMC BIOCHEMISTRY 2013; 14:9. [PMID: 23566198 PMCID: PMC3626704 DOI: 10.1186/1471-2091-14-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
Background Analysis of factors contributing to high affinity antibody-protein interactions provides insight into natural antibody evolution, and guides the design of antibodies with new or enhanced function. We previously studied the interaction between antibody D5 and its target, a designed protein based on HIV-1 gp41 known as 5-Helix, as a model system [Da Silva, G. F.; Harrison, J. S.; Lai, J. R., Biochemistry, 2010, 49, 5464–5472]. Antibody D5 represents an interesting case study because it is derived from the VH1-69 germline segment; this germline segment is characterized by a hydrophobic second heavy chain complementarity determining region (HCDR2) that constitutes the major functional paratope in D5 and several antibodies derived from the same progenitor. Results Here we explore side chain requirements for affinity and specificity in D5 using phage display. Two D5-based libraries were prepared that contained diversity in all three light chain complementarity determining regions (LCDRs 1–3), and in the third HCDR (HCDR3). The first library allowed residues to vary among a restricted set of six amino acids (Tyr/Ala/Asp/Ser/His/Pro; D5-Lib-I). The second library was designed based on a survey of existing VH1-69 antibody structures (D5-Lib-II). Both libraries were subjected to multiple rounds of selection against 5-Helix, and individual clones characterized. We found that selectants from D5-Lib-I generally had moderate affinity and specificity, while many clones from D5-Lib-II exhibited D5-like properties. Additional analysis of the D5-Lib-II functional population revealed position-specific biases for particular amino acids, many that differed from the identity of those side chains in D5. Conclusions Together these results suggest that there is some permissiveness for alternative side chains in the LCDRs and HCDR3 of D5, but that replacement with a minimal set of residues is not tolerated in this scaffold for 5-Helix recognition. This work provides novel information about this high-affinity interaction involving an antibody from the VH1-69 germline segment.
Collapse
Affiliation(s)
- Alex Stewart
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
52
|
Isik G, van Montfort T, Boot M, Cobos Jiménez V, Kootstra NA, Sanders RW. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity. PLoS One 2013; 8:e60126. [PMID: 23565193 PMCID: PMC3615126 DOI: 10.1371/journal.pone.0060126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF) chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF) proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF) should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maikel Boot
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Viviana Cobos Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, United States of America
| |
Collapse
|
53
|
Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proc Natl Acad Sci U S A 2013; 110:6470-5. [PMID: 23536288 DOI: 10.1073/pnas.1219320110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy- and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.
Collapse
|
54
|
Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R. A Blueprint for HIV Vaccine Discovery. Cell Host Microbe 2013; 12:396-407. [PMID: 23084910 DOI: 10.1016/j.chom.2012.09.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models, and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Julien JP, Lee PS, Wilson IA. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 2013; 250:180-98. [PMID: 23046130 DOI: 10.1111/imr.12005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) envelope protein (Env) and influenza hemagglutinin (HA) are the surface glycoproteins responsible for viral entry into host cells, the first step in the virus life cycle necessary to initiate infection. These glycoproteins exhibit a high degree of sequence variability and glycosylation, which are used as strategies to escape host immune responses. Nonetheless, antibodies with broadly neutralizing activity against these viruses have been isolated that have managed to overcome these barriers. Here, we review recent advances in the structural characterization of these antibodies with their viral antigens that defines a few sites of vulnerability on these viral spikes. These broadly neutralizing antibodies tend to focus their recognition on the sites of similar function between the two viruses: the receptor-binding site and membrane fusion machinery. However, some sites of recognition are unique to the virus neutralized, such as the dense shield of oligomannose carbohydrates on HIV-1 Env. These observations are discussed in the context of structure-based design strategies to aid in vaccine design or development of antivirals.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
56
|
Peri C, Gagni P, Combi F, Gori A, Chiari M, Longhi R, Cretich M, Colombo G. Rational epitope design for protein targeting. ACS Chem Biol 2013; 8:397-404. [PMID: 23138758 DOI: 10.1021/cb300487u] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a new multidisciplinary strategy integrating computational biology with high-throughput microarray analysis aimed to translate molecular understanding of protein-antibody recognition into the design of efficient and selective protein-based analytical and diagnostic tools. The structures of two proteins with different folds and secondary structure contents, namely, the beta-barrel FABP and the α-helical S100B, were used as the basis for the prediction and design of potential antibody-binding epitopes using the recently developed MLCE computational method. Starting from the idea that the structure, dynamics, and stability of a protein-antigen play a key role in the interaction with antibodies, MLCE integrates the analysis of the dynamical and energetic properties of proteins to identify nonoptimized, low-intensity energetic interaction-networks on the surface of the isolated antigens, which correspond to substructures that can aptly be recognized by a binding partner. The identified epitopes were next synthesized as free peptides and used to elicit specific antibodies in rabbits. Importantly, the resulting antibodies were proven to specifically and selectively recognize the original, full-length proteins in microarray-based tests. Competition experiments further demonstrated the specificity of the molecular recognition between the target immobilized proteins and the generated antibodies. Our integrated computational and microarray-based results demonstrate the possibility to rationally discover and design synthetic epitopes able to elicit antibodies specific for full-length proteins starting only from three-dimensional structural information on the target. We discuss implications for diagnosis and vaccine development purposes.
Collapse
Affiliation(s)
- Claudio Peri
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Paola Gagni
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Fabio Combi
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Alessandro Gori
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Marcella Chiari
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Renato Longhi
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Marina Cretich
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
57
|
The highly conserved layer-3 component of the HIV-1 gp120 inner domain is critical for CD4-required conformational transitions. J Virol 2012; 87:2549-62. [PMID: 23255784 DOI: 10.1128/jvi.03104-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers (layers 1, 2, and 3). Structural rearrangements between layer 1 and layer 2 have been shown to facilitate the transition of the envelope glycoprotein trimer from the unliganded to the CD4-bound state and to stabilize gp120-CD4 interaction. However, our understanding of CD4-induced conformational changes in the gp120 inner domain remains incomplete. Here, we report that a highly conserved element of the gp120 inner domain, layer 3, plays a pivot-like role in these allosteric changes. In the unliganded state, layer 3 modulates the association of gp120 with the Env trimer, probably by influencing the relationship of the gp120 inner and outer domains. Importantly, layer 3 governs the efficiency of the initial gp120 interaction with CD4, a function that can also be fulfilled by filling the Phe43 cavity. This work defines the functional importance of layer 3 and completes a picture detailing the role of the gp120 inner domain in CD4-induced conformational transitions in the HIV-1 Env trimer.
Collapse
|
58
|
Abstract
The natural human antibody response is a rich source of highly specific, neutralizing and self-tolerant therapeutic reagents. Recent advances have been made in isolating and characterizing monoclonal antibodies that are generated in response to natural infection or vaccination. Studies of the human antibody response have led to the discovery of crucial epitopes that could serve as new targets in vaccine design and in the creation of potentially powerful immunotherapies. With a focus on influenza virus and HIV, herein we summarize the technological tools used to identify and characterize human monoclonal antibodies and describe how these tools might be used to fight infectious diseases.
Collapse
|
59
|
Kong L, Giang E, Nieusma T, Robbins JB, Deller MC, Stanfield RL, Wilson IA, Law M. Structure of hepatitis C virus envelope glycoprotein E2 antigenic site 412 to 423 in complex with antibody AP33. J Virol 2012; 86:13085-8. [PMID: 22973046 PMCID: PMC3497658 DOI: 10.1128/jvi.01939-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022] Open
Abstract
We have determined the crystal structure of the broadly neutralizing antibody (bnAb) AP33, bound to a peptide corresponding to hepatitis C virus (HCV) E2 envelope glycoprotein antigenic site 412 to 423. Comparison with bnAb HCV1 bound to the same epitope reveals a different angle of approach to the antigen by bnAb AP33 and slight variation in its β-hairpin conformation of the epitope. These structures establish two different modes of binding to E2 that antibodies adopt to neutralize diverse HCV.
Collapse
Affiliation(s)
| | | | | | | | - Marc C. Deller
- Departments of Molecular Biology
- Joint Center for Structural Genomics, La Jolla, California, USA
| | | | - Ian A. Wilson
- Departments of Molecular Biology
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
- Joint Center for Structural Genomics, La Jolla, California, USA
| | | |
Collapse
|
60
|
Abstract
Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930-946, 2012; R. Kong, et al., J. Virol. 86:947-960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961-971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-2(7312A) and HIV-2(ST). Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2(UC1). The median 50% inhibitory concentrations (IC(50)s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.
Collapse
|
61
|
Abstract
INTRODUCTION An effective vaccine that can protect people against infection of the human immunodeficiency virus type 1 (HIV-1) remains elusive. HIV-1 vaccine research has encountered several false starts and a few causes for hope over the last 28 years, but no real success stories. Thus, it is time to think out of the box and design and test unorthodox vaccination strategies. AREAS COVERED Recent studies in mice and monkeys have revealed the potential of a gene therapy that provides vaccine-like protection against HIV-1 infection by producing a potent vector-encoded antibody that neutralizes the invading viruses. This novel strategy is called Vectored Immuno Prophylaxis or VIP, and it circumvents the sometimes difficult phases of regular vaccination protocols, that is, antigen design and induction of protective immune responses. EXPERT OPINION VIP is a prolonged form of passive immunization by means of a gene therapy. We will discuss the ins and outs of VIP and the therapeutic possibilities and challenges.
Collapse
Affiliation(s)
- Ben Berkhout
- University of Amsterdam, Center for Infection and Immunity Amsterdam, Academic Medical Center, Department of Medical Microbiology, Laboratory of Experimental Virology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
62
|
Broader neutralizing antibodies against H5N1 viruses using prime-boost immunization of hyperglycosylated hemagglutinin DNA and virus-like particles. PLoS One 2012; 7:e39075. [PMID: 22720032 PMCID: PMC3374787 DOI: 10.1371/journal.pone.0039075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza (HPAI) H5N1 viruses and their transmission capability from birds to humans have raised global concerns about a potential human pandemic. The inherent nature of antigenic changes in influenza viruses has not been sufficiently taken into account in immunogen designs for broadly protective HPAI H5N1 vaccines. METHODS We designed a hyperglycosylated HA vaccine using N-linked glycan masking on highly variable sequences in the HA1 globular head. Immunization of these hyperglycosylated HA DNA vaccines followed by a flagellin-containing virus-like particle booster in mice was conducted to evaluate neutralizing antibody responses against various clades of HPAI H5N1 viruses. RESULTS We introduced nine N-X-S/T motifs in five HA1 regions: 83NNT, 86NNT, 94NFT, 127NSS, 138NRT, 156NTT, 161NRS, 182NDT, and 252NAT according to sequence alignment analyses from 163 HPAI H5N1 human isolates. Although no significant differences of anti-HA total IgG titers were found with these hyperglycosyalted HA compared to the wild-type control, the 83NNT and 127NSS mutants elicited significantly potent cross-clade neutralizing antibodies against HPAI H5N1 viruses. CONCLUSIONS This finding may have value in terms of novel immunogen design for developing cross-protective H5N1 vaccines.
Collapse
|
63
|
Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc Natl Acad Sci U S A 2012; 109:9499-504. [PMID: 22623528 DOI: 10.1073/pnas.1202924109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-Å resolution reveal that the epitope is a β-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu(413) and Trp(420) on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn(415) on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.
Collapse
|
64
|
Design and characterization of a peptide mimotope of the HIV-1 gp120 bridging sheet. Int J Mol Sci 2012; 13:5674-5699. [PMID: 22754323 PMCID: PMC3382813 DOI: 10.3390/ijms13055674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 01/02/2023] Open
Abstract
The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV(+) broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.
Collapse
|
65
|
Multiple antigenic sites are involved in blocking the interaction of GII.4 norovirus capsid with ABH histo-blood group antigens. J Virol 2012; 86:7414-26. [PMID: 22532688 DOI: 10.1128/jvi.06729-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes.
Collapse
|
66
|
Ekiert DC, Wilson IA. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr Opin Virol 2012; 2:134-41. [PMID: 22482710 DOI: 10.1016/j.coviro.2012.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Vaccines are the gold standard for the control and prevention of infectious diseases, but a number of important human diseases remain challenging targets for vaccine development. An influenza vaccine that confers broad spectrum, long-term protection remains elusive. Several broadly neutralizing antibodies have been identified that protect against multiple subtypes of influenza A viruses, and crystal structures of several neutralizing antibodies in complex with the major influenza surface antigen, hemagglutinin, have revealed at least 3 highly conserved epitopes. Our understanding of the molecular details of these antibody-antigen interactions has suggested new strategies for the rational design of improved influenza vaccines, and has inspired the development of new antivirals for the treatment of influenza infections.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
67
|
|
68
|
Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses. J Virol 2011; 86:2488-500. [PMID: 22205734 DOI: 10.1128/jvi.06259-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The Env-APRIL, Env-BAFF, and Env-CD40L gp140 trimers all enhanced the expression of activation-induced cytidine deaminase (AID), the enzyme responsible for inducing somatic hypermutation, antibody affinity maturation, and antibody class switching. They also triggered IgM, IgG, and IgA secretion from human B cells in vitro. The Env-APRIL trimers induced higher anti-Env antibody responses in rabbits, including neutralizing antibodies against tier 1 viruses. The enhanced Env-specific responses were not associated with a general increase in total plasma antibody concentrations, indicating that the effect of APRIL was specific for Env. All the rabbit sera raised against gp140 trimers, irrespective of the presence of CD40L, BAFF, or APRIL, recognized trimeric Env efficiently, whereas sera raised against gp120 monomers did not. The levels of trimer-binding and virus-neutralizing antibodies were strongly correlated, suggesting that gp140 trimers are superior to gp120 monomers as immunogens. Targeting and activating B cells with a trimeric HIV-1 Env-APRIL fusion protein may therefore improve the induction of humoral immunity against HIV-1.
Collapse
|
69
|
Networks link antigenic and receptor-binding sites of influenza hemagglutinin: mechanistic insight into fitter strain propagation. Sci Rep 2011; 1:200. [PMID: 22355715 PMCID: PMC3242012 DOI: 10.1038/srep00200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/09/2011] [Indexed: 11/23/2022] Open
Abstract
Influenza viral passaging through pre-vaccinated mice shows that emergent antigenic site mutations on the viral hemagglutinin (HA) impact host receptor-binding affinity and, therefore, the evolution of fitter influenza strains. To understand this phenomenon, we computed the Significant Interactions Network (SIN) for each residue and mapped the networks of antigenic site residues on a representative H1N1 HA. Specific antigenic site residues are ‘linked’ to receptor-binding site (RBS) residues via their SIN and mutations within “RBS-linked” antigenic residues can significantly influence receptor-binding affinity by impacting the SIN of key RBS residues. In contrast, other antigenic site residues do not have such “RBS-links” and do not impact receptor-binding affinity upon mutation. Thus, a potential mechanism emerges for how immunologic pressure on RBS-linked antigenic residues can contribute to evolution of fitter influenza strains by modulating the host receptor-binding affinity.
Collapse
|
70
|
Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus. J Virol 2011; 86:2809-16. [PMID: 22171276 DOI: 10.1128/jvi.05549-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics.
Collapse
|
71
|
Liu L, Cimbro R, Lusso P, Berger EA. Intraprotomer masking of third variable loop (V3) epitopes by the first and second variable loops (V1V2) within the native HIV-1 envelope glycoprotein trimer. Proc Natl Acad Sci U S A 2011; 108:20148-53. [PMID: 22128330 PMCID: PMC3250183 DOI: 10.1073/pnas.1104840108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the trimeric HIV-1 envelope (Env) spike, the first and second variable loops (V1V2 region) and the third variable loop (V3) of the gp120 subunit play dual roles in antibody recognition, because they contain neutralization epitopes and also participate in epitope masking. The spatial relationships between V1V2 and V3 and the associated mechanisms of epitope masking remain unclear. Here we investigated interactions between these domains using two monoclonal antibodies recognizing distinct conserved linear epitopes that are subject to masking in the functional trimer, which limits their neutralizing activities. Using Env pseudotype virus infection assays, we found that deleting the V1V2 region greatly enhanced neutralization by both antibodies, leading us to consider two alternative models: V1V2 on one gp120 protomer masks V3 on the same protomer (intraprotomer or cis masking) versus on an adjacent protomer (interprotomer or trans masking). Our experimental approach exploited a previously described complementation system wherein two variant Envs harboring different inactivating mutations (one in gp120, the other in gp41) are coexpressed in the same cell; functional Env results only from cooperative interactions within mixed trimers, thereby enabling selective examination of mixed trimer activity. We introduced additional mutations that either promoted (V1V2 deletion, i.e., unmasking) or prevented (GPGR to GPGQ mutation, i.e., epitope destruction) interaction with the antibodies. The observed neutralization sensitivities of mixed trimers produced from various combinations of constructs support the intraprotomer (cis) model of V1V2 masking of V3 epitopes.
Collapse
Affiliation(s)
- Li Liu
- Laboratories of Viral Diseases and
| | - Raffaello Cimbro
- Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paolo Lusso
- Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
72
|
Stanfield RL, Julien JP, Pejchal R, Gach JS, Zwick MB, Wilson IA. Structure-based design of a protein immunogen that displays an HIV-1 gp41 neutralizing epitope. J Mol Biol 2011; 414:460-76. [PMID: 22033480 PMCID: PMC3245871 DOI: 10.1016/j.jmb.2011.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a K(d) of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.
Collapse
Affiliation(s)
- Robyn L Stanfield
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2011; 481:81-4. [PMID: 22139420 PMCID: PMC3253190 DOI: 10.1038/nature10660] [Citation(s) in RCA: 433] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/21/2011] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts, development of an effective vaccine against human immunodeficiency virus (HIV) has proved an elusive goal. Recently, however, numerous antibodies have been identified that are capable of neutralizing most circulating HIV strains. These antibodies all exhibit an unusually high level of somatic mutation, presumably owing to extensive affinity maturation over the course of continuous exposure to an evolving antigen. Although substantial effort has focused on the design of immunogens capable of eliciting antibodies de novo that would target similar epitopes, it remains uncertain whether a conventional vaccine will be able to elicit analogues of the existing broadly neutralizing antibodies. As an alternative to immunization, vector-mediated gene transfer could be used to engineer secretion of the existing broadly neutralizing antibodies into the circulation. Here we describe a practical implementation of this approach, which we call vectored immunoprophylaxis (VIP), which in mice induces lifelong expression of these monoclonal antibodies at high concentrations from a single intramuscular injection. This is achieved using a specialized adeno-associated virus vector optimized for the production of full-length antibody from muscle tissue. We show that humanized mice receiving VIP appear to be fully protected from HIV infection, even when challenged intravenously with very high doses of replication-competent virus. Our results suggest that successful translation of this approach to humans may produce effective prophylaxis against HIV.
Collapse
Affiliation(s)
- Alejandro B Balazs
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
74
|
Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477:466-70. [PMID: 21849977 PMCID: PMC3393110 DOI: 10.1038/nature10373] [Citation(s) in RCA: 1232] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/22/2011] [Accepted: 07/14/2011] [Indexed: 01/11/2023]
Abstract
Broadly neutralizing antibodies (bnAbs) against highly variable viral pathogens are much sought-after to treat or protect against global circulating viruses. We have probed the neutralizing antibody repertoires of four HIV-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies (MAbs) that neutralize broadly across clades. Many of the new MAbs are almost 10-fold more potent than the recently described PG9, PG16, and VRC01 bnMAbs and 100-fold more potent than the original prototype HIV bnMAbs1–3. The MAbs largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV bnMAbs now available reveals that certain combinations of antibodies provide significantly more favorable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV bnMAbs, from several donors, that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
Collapse
|
75
|
Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection. J Virol 2011; 86:947-60. [PMID: 22031948 DOI: 10.1128/jvi.06155-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compared with human immunodeficiency virus type 1 (HIV-1), little is known about the susceptibility of HIV-2 to antibody neutralization. We characterized the potency and breadth of neutralizing antibody (NAb) responses in 64 subjects chronically infected with HIV-2 against three primary HIV-2 strains: HIV-2(7312A), HIV-2(ST), and HIV-2(UC1). Surprisingly, we observed in a single-cycle JC53bl-13/TZM-bl virus entry assay median reciprocal 50% inhibitory concentration (IC(50)) NAb titers of 1.7 × 10(5), 2.8 × 10(4), and 3.3 × 10(4), respectively. A subset of 5 patient plasma samples tested against a larger panel of 17 HIV-2 strains where the extracellular gp160 domain was substituted into the HIV-2(7312A) proviral backbone showed potent neutralization of all but 4 viruses. The specificity of antibody neutralization was confirmed using IgG purified from patient plasma, HIV-2 Envs cloned by single-genome amplification, viruses grown in human CD4(+) T cells and tested for neutralization sensitivity on human CD4(+) T target cells, and, as negative controls, env-minus viruses pseudotyped with HIV-1, vesicular stomatitis virus, or murine leukemia virus Env glycoproteins. Human monoclonal antibodies (MAbs) specific for HIV-2 V3 (6.10F), V4 (1.7A), CD4 binding site (CD4bs; 6.10B), CD4 induced (CD4i; 1.4H), and membrane-proximal external region (MPER; 4E10) epitopes potently neutralized the majority of 32 HIV-2 strains bearing Envs from 13 subjects. Patient antibodies competed with V3, V4, and CD4bs MAbs for binding to monomeric HIV-2 gp120 at titers that correlated significantly with NAb titers. HIV-2 MPER antibodies did not contribute to neutralization breadth or potency. These findings indicate that HIV-2 Env is highly immunogenic in natural infection, that high-titer broadly neutralizing antibodies are commonly elicited, and that unlike HIV-1, native HIV-2 Env trimers expose multiple broadly cross-reactive epitopes readily accessible to NAbs.
Collapse
|
76
|
Moody MA, Zhang R, Walter EB, Woods CW, Ginsburg GS, McClain MT, Denny TN, Chen X, Munshaw S, Marshall DJ, Whitesides JF, Drinker MS, Amos JD, Gurley TC, Eudailey JA, Foulger A, DeRosa KR, Parks R, Meyerhoff RR, Yu JS, Kozink DM, Barefoot BE, Ramsburg EA, Khurana S, Golding H, Vandergrift NA, Alam SM, Tomaras GD, Kepler TB, Kelsoe G, Liao HX, Haynes BF. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS One 2011; 6:e25797. [PMID: 22039424 PMCID: PMC3198447 DOI: 10.1371/journal.pone.0025797] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. Methods and Findings To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. Conclusion The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.
Collapse
Affiliation(s)
- M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Antigenic variability of immunodominant antigens is a common mechanism used by pathogens to escape the immune response. Frequently, the proposed solution is a universal vaccine based on conserved antigens present on all strains of the pathogen. Indeed, a lot of progress has been made in the development of vaccines that induce broad immune responses. However, truly universal vaccines are not easy to produce and still face many challenges, mostly because in those pathogens that use antigenic variability to escape the immune response, conserved antigens have been selected by evolution to be poorly immunogenic. This review describes the progress made towards the development of vaccines inducing broad protection against Neisseria meningitidis, influenza, HIV, and Candida and the challenges of developing truly universal vaccines.
Collapse
Affiliation(s)
- Rino Rappuoli
- Novartis Vaccines and Diagnostics Via Fiorentina 1, 53100 Siena Italy
| |
Collapse
|
78
|
HIV microbicides: state-of-the-art and new perspectives on the development of entry inhibitors. Future Med Chem 2011; 2:1141-59. [PMID: 21426161 DOI: 10.4155/fmc.10.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of HIV at the beginning of the 1980s, numerous efforts have been devoted to the search of an efficient vaccine. There are at least 25 drugs available for HIV treatment, but no cure is available. The observation that therapy for HIV disease is life long and that these drugs are associated with a number of side effects underlines the need for approaches aimed at preventing rather than treating infection. Additionally, the economic burden of treatment for the HIV infection occupies an increasing share of healthcare expenditure, making current practices likely to become difficult to sustain in the long run. Unfortunately, no effective vaccine for this disease is foreseeable in the near future. Microbicides could be an alternate way to build preventative approaches to HIV infection. Strategies based on preventing the virus from reaching its target cells seem to have some room for development and application. In this review we explore the state-of-the-art of available microbicides, focusing on HIV entry inhibitors. In addition, we discuss new compounds that show anti-HIV activity, which could be effective candidates.
Collapse
|
79
|
Du SX, Xu L, Zhang W, Tang S, Boenig RI, Chen H, Mariano EB, Zwick MB, Parren PWHI, Burton DR, Wrin T, Petropoulos CJ, Ballantyne JA, Chambers M, Whalen RG. A directed molecular evolution approach to improved immunogenicity of the HIV-1 envelope glycoprotein. PLoS One 2011; 6:e20927. [PMID: 21738594 PMCID: PMC3126809 DOI: 10.1371/journal.pone.0020927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/12/2011] [Indexed: 12/14/2022] Open
Abstract
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences.
Collapse
Affiliation(s)
- Sean X. Du
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Li Xu
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Wenge Zhang
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Susan Tang
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Rebecca I. Boenig
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Helen Chen
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Ellaine B. Mariano
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul W. H. I. Parren
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| | - Terri Wrin
- Monogram Biosciences, San Francisco, California, United States of America
| | | | | | | | - Robert G. Whalen
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| |
Collapse
|
80
|
Melchers M, Matthews K, de Vries RP, Eggink D, van Montfort T, Bontjer I, van de Sandt C, David K, Berkhout B, Moore JP, Sanders RW. A stabilized HIV-1 envelope glycoprotein trimer fused to CD40 ligand targets and activates dendritic cells. Retrovirology 2011; 8:48. [PMID: 21689404 PMCID: PMC3141652 DOI: 10.1186/1742-4690-8-48] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 06/20/2011] [Indexed: 12/22/2022] Open
Abstract
Background One reason why subunit protein and DNA vaccines are often less immunogenic than live-attenuated and whole-inactivated virus vaccines is that they lack the co-stimulatory signals provided by various components of the more complex vaccines. The HIV-1 envelope glycoprotein complex (Env) is no exception to this rule. Other factors that limit the induction of neutralizing antibodies against HIV-1 lie in the structure and instability of Env. We have previously stabilized soluble trimeric mimics of Env by introducing a disulfide bond between gp120 and gp41 and adding a trimer stabilizing mutation in gp41 (SOSIP.R6 gp140). Results We further stabilized the SOSIP.R6 gp140 using a GCN4-based isoleucine zipper motif, creating SOSIP.R6-IZ gp140. In order to target SOSIP.R6-IZ to immune cells, including dendritic cells, while at the same time activating these cells, we fused SOSIP.R6-IZ to the active domain of CD40 ligand (CD40L), which may serve as a 'cis-adjuvant'. The Env component of the SOSIP.R6-IZ-CD40L fusion construct bound to CD4 and neutralizing antibodies, while the CD40L moiety interacted with CD40. Furthermore, the chimeric molecule was able to signal efficiently through CD40 and induce maturation of human dendritic cells. Dendritic cells secreted IL-6, IL-10 and IL-12 in response to stimulation by SOSIP.R6-IZ-CD40L and were able to activate naïve T cells. Conclusions Chimeric HIV-1 gp140 - CD40L trimers can target and activate dendritic cells. Targeting and activating immune cells using CD40L and other 'cis-adjuvants' may improve subunit protein vaccine immunogenicity for HIV-1 and other infectious diseases.
Collapse
Affiliation(s)
- Mark Melchers
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Dimitrov JD, Kazatchkine MD, Kaveri SV, Lacroix-Desmazes S. "Rational vaccine design" for HIV should take into account the adaptive potential of polyreactive antibodies. PLoS Pathog 2011; 7:e1002095. [PMID: 21698229 PMCID: PMC3116824 DOI: 10.1371/journal.ppat.1002095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jordan D. Dimitrov
- INSERM U872, Paris, France
- Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S 872, Paris, France
- * E-mail: (JDD); (SLD)
| | - Michel D. Kazatchkine
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, WHO, Vernier – Geneva, Switzerland
| | - Srinivas V. Kaveri
- INSERM U872, Paris, France
- Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S 872, Paris, France
| | - Sebastien Lacroix-Desmazes
- INSERM U872, Paris, France
- Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S 872, Paris, France
- * E-mail: (JDD); (SLD)
| |
Collapse
|
82
|
Wang W, Anderson CM, De Feo CJ, Zhuang M, Yang H, Vassell R, Xie H, Ye Z, Scott D, Weiss CD. Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2. PLoS Pathog 2011; 7:e1002081. [PMID: 21695241 PMCID: PMC3111540 DOI: 10.1371/journal.ppat.1002081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022] Open
Abstract
Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure. Influenza A viruses mutate to escape neutralization by antibodies. These mutations predominantly occur in the globular head of the hemagglutinin protein, while the stalk is more conserved. Pandemic 2009 H1N1 influenza virus differs from seasonal H1N1 strains that circulated in the past 50 years and resembles a strain that did not circulate but was used in the 1976 swine influenza vaccine. We investigated whether persons immunized with either the 1976 swine influenza or recent seasonal influenza vaccines, or both, have antibodies that cross-neutralize pandemic 2009 H1N1. Sera from 1976 swine influenza vaccine trials cross-neutralized pandemic 2009 H1N1 and to a lesser extent the A/New Caledonia/20/1999 H1N1 strain that was used in vaccines during the 2000/01–2006/07 influenza seasons. Sera from persons who received several seasonal influenza vaccines containing A/New Caledonia/20/1999 H1N1 cross-neutralized pandemic 2009 H1N1, regardless of whether they received the 1976 swine influenza vaccine. We found that cross-neutralization between 2009 H1N1 and A/New Caledonia/20/1999 frequently mapped to the hemagglutinin stalk. A mutation in the stalk of strains circulating during the 2007/08–2008/09 seasons abrogates this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in the hemagglutinin stalk and suggest that the stalk may be evolving under direct or indirect immune pressure.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christine M. Anderson
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christopher J. De Feo
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Min Zhuang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Hong Yang
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Russell Vassell
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Zhiping Ye
- Laboratory of Pediatric and Respiratory Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Dorothy Scott
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Carol D. Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
83
|
Lynch GW, Selleck P, Church WB, Sullivan JS. Seasoned adaptive antibody immunity for highly pathogenic pandemic influenza in humans. Immunol Cell Biol 2011; 90:149-58. [PMID: 21647170 DOI: 10.1038/icb.2011.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fundamentally new approaches are required for the development of vaccines to pre-empt and protect against emerging and pandemic influenzas. Current strategies involve post-emergent homotypic vaccines that are modelled upon select circulating 'seasonal' influenzas, but cannot induce cross-strain protection against newly evolved or zoonotically introduced highly pathogenic influenza (HPI). Avian H5N1 and the less-lethal 2009 H1N1 and their reassortants loom as candidates to seed a future HPI pandemic. Therefore, more universal 'seasoned' vaccine approaches are urgently needed for heterotypic protection ahead of time. Pivotal to this is the need to understand mechanisms that can deliver broad strain protection. Heterotypic and heterosubtypic humoral immunities have largely been overlooked for influenza cross-protection, with most 'seasoned' vaccine efforts for humans focussed on heterotypic cellular immunity. However, 5 years ago we began to identify direct and indirect indicators of humoral-herd immunity to protein sites preserved among H1N1, H3N2 and H5N1 influenzas. Since then the evidence for cross-protective antibodies in humans has been accumulating. Now proposed is a rationale to stimulate and enhance pre-existing heterotypic humoral responses that, together with cell-mediated initiatives, will deliver pre-emptive and universal human protection against emerging epidemic and pandemic influenzas.
Collapse
Affiliation(s)
- Garry W Lynch
- Biosafety, Immunobiology, Global Health and Pandemic Infections Research, Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | |
Collapse
|
84
|
Gift SK, McFadden K, Zentner IJ, Rajagopal S, Zhang MY, Dimitrov DS, Chaiken IM. Monoclonal Antibody m18 Paratope Leading to Dual Receptor Antagonism of HIV-1 gp120. Biochemistry 2011; 50:2769-79. [DOI: 10.1021/bi101161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Mei-Yun Zhang
- AIDS Institute, Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Dimiter S. Dimitrov
- Center for Cancer Research Nanobiology Program, CCR, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | | |
Collapse
|
85
|
Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat Med 2011; 16:1389-91. [PMID: 21135852 DOI: 10.1038/nm1210-1389] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune system normally responds to influenza virus by making neutralizing antibodies to regions of the viral spike, the hemagglutinin, that vary year to year. This natural response protects against circulating subtypes but necessitates production of new vaccines annually. Newer vaccine approaches have succeeded in eliciting broadly neutralizing antibodies to highly conserved yet vulnerable regions of the hemagglutinin and suggest potential pathways for the development of universal influenza vaccines.
Collapse
|
86
|
Graham BS. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 2011; 239:149-66. [PMID: 21198670 PMCID: PMC3023887 DOI: 10.1111/j.1600-065x.2010.00972.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Respiratory syncytial virus (RSV) is an important cause of respiratory disease causing high rates of hospitalizations in infants, significant morbidity in children and adults, and excess mortality in the elderly. Major barriers to vaccine development include early age of RSV infection, capacity of RSV to evade innate immunity, failure of RSV-induced adaptive immunity to prevent reinfection, history of RSV vaccine-enhanced disease, and lack of an animal model fully permissive to human RSV infection. These biological challenges, safety concerns, and practical issues have significantly prolonged the RSV vaccine development process. One great advantage compared to other difficult viral vaccine targets is that passively administered neutralizing monoclonal antibody is known to protect infants from severe RSV disease. Therefore, the immunological goals for vaccine development are to induce effective neutralizing antibody to prevent infection and to avoid inducing T-cell response patterns associated with enhanced disease. Live-attenuated RSV and replication-competent chimeric viruses are in advanced clinical trials. Gene-based strategies, which can control the specificity and phenotypic properties of RSV-specific T-cell responses utilizing replication-defective vectors and which may improve on immunity from natural infection, are progressing through preclinical testing. Atomic level structural information on RSV envelope glycoproteins in complex with neutralizing antibodies is guiding design of new vaccine antigens that may be able to elicit RSV-specific antibody responses without induction of RSV-specific T-cell responses. These new technologies may allow development of vaccines that can protect against RSV-mediated disease in infants and establish a new immunological paradigm in the host to achieve more durable protection against reinfection.
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| |
Collapse
|
87
|
|
88
|
Abstract
In this issue of Immunity, a collection of detailed reviews summarizes needs, opportunities, and roadblocks to the development of new vaccines, all in the context of our current knowledge and understanding of key aspects of immune function and microbial interactions with the host. This Perspective is designed to provide a broad overview that discusses our present limitations in designing effective novel vaccines for diseases that do not typically induce robust resistance in infected individuals and how the addition of a systems-level, multiplexed approach to the analysis of the human immune system can complement traditional highly focused research efforts to accelerate our progress toward this goal and the improvement of human health.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section and Program in Systems Immunology and Infectious Disease Modeling, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
89
|
|
90
|
Abstract
Noroviruses are the principal cause of epidemic gastroenteritis worldwide. Multiple reports have concluded that the major capsid proteins of GII.4 strains, which cause 80% of norovirus infections worldwide, are evolving rapidly, resulting in new epidemic strains. Surrogate neutralization assays using sera from outbreaks and from immunized mice suggest that, as with influenza virus, antigenic variation maintains GII.4 persistence in the face of human population herd immunity. To test this hypothesis, mice were hyperimmunized with virus-like particles (VLPs) representing an early (GII.4-1987) and a contemporary (GII.4-2006) GII.4 strain. Anti-GII.4-1987 IgG monoclonal antibodies (MAbs) strongly reacted with GII.4 VLPs derived between only 1987 and 2002. Ligand binding blockade was more efficient with GII.4-1987 and GII.4-1997 VLPs than with GII.4-2002. Anti-GII.4-2006 IgG MAbs recognized either a broad panel of GII.4 VLPs (1987 to 2006) or a subset of contemporary (2004 to 2006) VLPs. Most 2006 antibodies did not recognize or only poorly recognized GII.4 VLPs of 2007 or 2008, documenting rapid antigenic evolution of GII.4 capsids. Generally, 2006 MAbs blocked homotypic VLP-ligand binding but were unable to block VLPs representing strains primarily circulating during or earlier than 2002. These analyses demonstrate that both subtle and significant evolutionary change has occurred within antibody epitopes between epidemic strains, providing direct evidence that the GII.4 noroviruses are undergoing antigenic variation, likely in response to herd immunity. As with influenza virus, HIV, and hepatitis C virus, norovirus antigenic variation will significantly influence the design of efficacious vaccines and immunotherapeutics against these important human pathogens.
Collapse
|
91
|
Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A 2010; 107:18979-84. [PMID: 20956293 DOI: 10.1073/pnas.1013387107] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current influenza virus vaccines protect mostly against homologous virus strains; thus, regular immunization with updated vaccine formulations is necessary to guard against the virus' hallmark remodeling of regions that mediate neutralization. Development of a broadly protective influenza vaccine would mark a significant advance in human infectious diseases research. Antibodies with broad neutralizing activity (nAbs) against multiple influenza virus strains or subtypes have been reported to bind the stalk of the viral hemagglutinin, suggesting that a vaccine based on this region could elicit a broadly protective immune response. Here we describe a hemagglutinin subunit 2 protein (HA2)-based synthetic peptide vaccine that provides protection in mice against influenza viruses of the structurally divergent subtypes H3N2, H1N1, and H5N1. The immunogen is based on the binding site of the recently described nAb 12D1, which neutralizes H3 subtype viruses, demonstrates protective activity in vivo, and, in contrast to a majority of described nAbs, appears to bind to residues within a single α-helical portion of the HA2 protein. Our data further demonstrate that the specific design of our immunogen is integral in the induction of broadly active anti-hemagglutinin antibodies. These results provide proof of concept for an HA2-based influenza vaccine that could diminish the threat of pandemic influenza disease and generally reduce the significance of influenza viruses as human pathogens.
Collapse
|
92
|
Wen M, Arora R, Wang H, Liu L, Kimata JT, Zhou P. GPI-anchored single chain Fv--an effective way to capture transiently-exposed neutralization epitopes on HIV-1 envelope spike. Retrovirology 2010; 7:79. [PMID: 20923574 PMCID: PMC2959034 DOI: 10.1186/1742-4690-7-79] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/06/2010] [Indexed: 12/22/2022] Open
Abstract
Background Identification of broad neutralization epitopes in HIV-1 envelope spikes is paramount for HIV-1 vaccine development. A few broad neutralization epitopes identified so far are present on the surface of native HIV-1 envelope spikes whose recognition by antibodies does not depend on conformational changes of the envelope spikes. However, HIV-1 envelope spikes also contain transiently-exposed neutralization epitopes, which are more difficult to identify. Results In this study, we constructed single chain Fvs (scFvs) derived from seven human monoclonal antibodies and genetically linked them with or without a glycosyl-phosphatidylinositol (GPI) attachment signal. We show that with a GPI attachment signal the scFvs are targeted to lipid rafts of plasma membranes. In addition, we demonstrate that four of the GPI-anchored scFvs, but not their secreted counterparts, neutralize HIV-1 with various degrees of breadth and potency. Among them, GPI-anchored scFv (X5) exhibits extremely potent and broad neutralization activity against multiple clades of HIV-1 strains tested. Moreover, we show that GPI-anchored scFv (4E10) also exhibited more potent neutralization activity than its secretory counterpart. Finally, we demonstrate that expression of GPI-anchored scFv (X5) in the lipid raft of plasma membrane of human CD4+ T cells confers long-term resistance to HIV-1 infection, HIV-1 envelope-mediated cell-cell fusion, and the infection of HIV-1 captured and transferred by human DCs. Conclusions Thus GPI-anchored scFv could be used as a general and effective way to identify antibodies that react with transiently-exposed neutralization epitopes in envelope proteins of HIV-1 and other enveloped viruses. The GPI-anchored scFv (X5), because of its breadth and potency, should have a great potential to be developed into anti-viral agent for HIV-1 prevention and therapy.
Collapse
Affiliation(s)
- Michael Wen
- The Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | | | | | | |
Collapse
|
93
|
Rouse BT, Lukacher AE. Some unmet challenges in the immunology of viral infections. DISCOVERY MEDICINE 2010; 10:363-370. [PMID: 21034678 PMCID: PMC3884557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Viral immunology is a rapidly evolving field. Major strides have been made in our understanding of innate and adaptive immune responses to viruses, largely based on highly reductionistic animal infection models, but more recently in humans, with validation that fundamental immunological concepts do in fact translate into clinical science well. From these studies there has emerged an appreciation of the enormous complexity of the immune response to viral infections as well as the diverse array of strategies developed by viruses to deal with immune detection. In this review, we highlight some of the major challenges we face in unraveling this complexity and summarize current efforts under way to improve the efficacy of viral vaccines.
Collapse
Affiliation(s)
- Barry T. Rouse
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Aron E. Lukacher
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
94
|
Ahlers JD, Belyakov IM. Molecular pathways regulating CD4+ T cell differentiation, anergy and memory with implications for vaccines. Trends Mol Med 2010; 16:478-91. [DOI: 10.1016/j.molmed.2010.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 12/23/2022]
|
95
|
A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci U S A 2010; 107:17107-12. [PMID: 20852065 DOI: 10.1073/pnas.1002717107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.
Collapse
|
96
|
Affiliation(s)
- Robert W Doms
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
97
|
B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 2010; 116:5571-9. [PMID: 20837780 DOI: 10.1182/blood-2010-05-285528] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Characterization of lymphocytes including B cells during early versus chronic HIV infection is important for understanding the impact of chronic viremia on immune cell function. In this setting, we investigated B cells before and after reduction of HIV plasma viremia by antiretroviral therapy (ART). At baseline, peripheral blood B-cell counts were significantly lower in both early and chronic HIV-infected individuals compared with uninfected controls. Similar to CD4(+) but not CD8(+) T cells, B-cell numbers in both groups increased significantly after ART. At baseline, B cells of early HIV-infected individuals were composed of a higher percentage of plasmablasts and resting memory B cells compared with chronic HIV-infected individuals whose B cells were composed of a higher percentage of immature/transitional and exhausted B cells compared with their early infection counterparts. At 1 year after ART, the percentage of resting memory B cells remained higher in early compared with chronic HIV-infected individuals. This difference translated into a better functional profile in that memory B-cell responses to HIV and non-HIV antigens were superior in early- compared with chronic-treated HIV infected individuals. These findings provide new insights on B cells in HIV infection and how early initiation of ART may prevent irreversible immune system damage.
Collapse
|
98
|
Hearty S, Conroy PJ, Ayyar BV, Byrne B, O'Kennedy R. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev Vaccines 2010; 9:645-64. [PMID: 20518719 DOI: 10.1586/erv.10.52] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lack of a clear correlation between design and protection continues to present a barrier to progress in vaccine research. In this article, we outline how surface plasmon resonance (SPR) biosensors are emerging as tools to help resolve some of the key biophysical determinants of protection and, thereby, facilitate more rational vaccine design campaigns. SPR technology has contributed significantly to our understanding of the complex biophysical determinants of HIV neutralization and offers a platform for preclinical evaluation of vaccine candidates. In particular, the concept of reverse-engineering HIV vaccine targets based on known broadly neutralizing antibody modalities is explored and extended to include other infectious diseases, such as malaria and influenza, and other diseases such as cancer. The analytical capacity afforded by SPR includes serum screening to monitor immune responses and highly efficient quality-control surveillance measures. These are discussed alongside key technological advances, such as developments in sample throughput, and a perspective predicting continued growth and diversification of the role of SPR in vaccine development is proposed.
Collapse
Affiliation(s)
- Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
99
|
Da Silva GF, Harrison JS, Lai JR. Contribution of light chain residues to high affinity binding in an HIV-1 antibody explored by combinatorial scanning mutagenesis. Biochemistry 2010; 49:5464-72. [PMID: 20518570 DOI: 10.1021/bi100293q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detailed analysis of factors governing high affinity antibody-antigen interactions yields important insight into molecular recognition and facilitates the design of functional antibody libraries. Here we describe comprehensive mutagenesis of the light chain complementarity determining regions (CDRs) of HIV-1 antibody D5 (which binds its target, "5-Helix", with a reported K(D) of 50 pM). Combinatorial scanning mutagenesis libraries were prepared in which CDR residues on the D5 light chain were varied among WT side chain identity or alanine. Selection of these libraries against 5-Helix and then sequence analysis of the resulting population were used to quantify energetic consequences of mutation from wild-type to alanine (DeltaDeltaG(Ala-WT)) at each position. This analysis revealed several hotspot residues (DeltaDeltaG(Ala-WT) >or= 1 kcal/mol) that formed combining site features critical to the affinity of the interaction. Tolerance of D5 light chain residues to alternative mutations was explored with a second library. We found that light chain residues located at the center and at the periphery of the D5 combining site contribute to shape complementarity and electrostatic characteristics. Thus, the affinity of D5 for 5-Helix arises from extended interactions involving both the heavy and light chains of D5. These results provide significant insight for future antibody engineering efforts.
Collapse
Affiliation(s)
- Gustavo F Da Silva
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
100
|
Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, Andersen H, Rao S, Tumpey TM, Yang ZY, Nabel GJ. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 2010; 329:1060-4. [PMID: 20647428 DOI: 10.1126/science.1192517] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The rapid dissemination of the 2009 pandemic influenza virus underscores the need for universal influenza vaccines that elicit protective immunity to diverse viral strains. Here, we show that vaccination with plasmid DNA encoding H1N1 influenza hemagglutinin (HA) and boosting with seasonal vaccine or replication-defective adenovirus 5 vector encoding HA stimulated the production of broadly neutralizing influenza antibodies. This prime/boost combination increased the neutralization of diverse H1N1 strains dating from 1934 to 2007 as compared to either component alone and conferred protection against divergent H1N1 viruses in mice and ferrets. These antibodies were directed to the conserved stem region of HA and were also elicited in nonhuman primates. Cross-neutralization of H1N1 subtypes elicited by this approach provides a basis for the development of a universal influenza vaccine for humans.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892-3005, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|