51
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 952] [Impact Index Per Article: 190.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
52
|
Kim S, Lee SY, Bae S, Lee JK, Hwang K, Go H, Lee CW. Pellino1 promotes chronic inflammatory skin disease via keratinocyte hyperproliferation and induction of the T helper 17 response. Exp Mol Med 2020; 52:1537-1549. [PMID: 32873845 PMCID: PMC8080721 DOI: 10.1038/s12276-020-00489-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Psoriasis is one of the most common immune-mediated chronic inflammatory skin diseases. However, little is known about the molecular mechanism underlying the immunological circuits that maintain innate and adaptive immune responses in established psoriasis. In this study, we found that the Pellino1 (Peli1) ubiquitin E3 ligase is activated by innate pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), and is highly upregulated in human psoriatic skin lesions and murine psoriasis-like models. Increased Peli1 expression is strongly correlated with the immunopathogenesis of psoriasis by activating hyperproliferation of keratinocytes in the S and G2/M phases of the cell cycle and promoting chronic skin inflammation. Furthermore, Peli1-induced psoriasis-like lesions showed significant changes in the expression levels of several T helper 17 (Th17)-related cytokines, such as IL-17a, IL-21, IL-22, IL-23, and IL-24, indicating that overexpression of Peli1 resulted in the sequential engagement of the Th17 cell response. However, the overexpression of Peli1 in T cells was insufficient to trigger psoriasis, while T cells were indispensable for disease manifestation. In summary, our findings demonstrate that Peli1 is a critical cell cycle activator of innate immunity, which subsequently links Th17 cell immune responses to the psoriatic microenvironment. An immune-regulating protein that mediates chronic inflammation in the skin offers a new therapeutic target for the autoimmune disorder psoriasis. A research team from South Korea led by Chang-Woo Lee from Sungkyunkwan University School of Medicine in Suwon and Heounjeong Go from the University of Ulsan College of Medicine in Seoul have discovered that Pellino1, a protein known to modulate immune responses to pathogens, is also found in abundance in the skin lesions of people with psoriasis. Using mouse models, the researchers showed how Pellino1 induces the proliferation of certain skin cells and triggers an inflammatory state through the activation of small proteins and immune cells normally involved in defense against infection. Targeting strategy that inactivate Pellino1 could help blunt the inflammatory signaling in the skin that drives the development of psoriatic lesions.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Si-Yeon Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Seoyoon Bae
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Kyungrim Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
53
|
SIRT5 Contributes to Colorectal Cancer Growth by Regulating T Cell Activity. J Immunol Res 2020; 2020:3792409. [PMID: 32953892 PMCID: PMC7481950 DOI: 10.1155/2020/3792409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past several years, SIRT5 has attracted considerable attention in metabolic regulation. However, the function of SIRT5 in tumorigenesis by regulating tumor microenvironment is poorly understood. In this work, we found that Sirt5 knockout mice were resistant to AOM and DSS-induced colitis-associated colorectal tumorigenesis and the level of IFN-γ in their tumor microenvironment was higher. Additionally, proteome and network analysis revealed that SIRT5 was important in the T cell receptor signaling pathway. Furthermore, we determined that a deficiency of Sirt5 induced stronger T cell activation and demonstrated that SIRT5 played a pivotal role in regulating the differentiation of CD4+ regulatory T (Treg) cells and T helper 1 (Th1) cells. An imbalance in the lineages of immunosuppressive Treg cells and the inflammatory Th1 subsets of helper T cells leads to the development of colon cancer. Our results revealed a regulatory role of SIRT5 in T cell activation and colorectal tumorigenesis.
Collapse
|
54
|
Marsh EK, Prestwich EC, Williams L, Hart AR, Muir CF, Parker LC, Jonker MR, Heijink IH, Timens W, Fife M, Hussell T, Hershenson MB, Bentley JK, Sun SC, Barksby BS, Borthwick LA, Stewart JP, Sabroe I, Dockrell DH, Marriott HM. Pellino-1 Regulates the Responses of the Airway to Viral Infection. Front Cell Infect Microbiol 2020; 10:456. [PMID: 32984077 PMCID: PMC7488214 DOI: 10.3389/fcimb.2020.00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 01/02/2023] Open
Abstract
Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFα upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.
Collapse
Affiliation(s)
- Elizabeth K. Marsh
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom,Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, United Kingdom
| | - Elizabeth C. Prestwich
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Lynne Williams
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Amber R. Hart
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Clare F. Muir
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Lisa C. Parker
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Marnix R. Jonker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Mark Fife
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J. Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ben S. Barksby
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lee A. Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James P. Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom,MRC/UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Marriott
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom,*Correspondence: Helen M. Marriott
| |
Collapse
|
55
|
Nejatbakhsh Samimi L, Farhadi E, Tahmasebi MN, Jamshidi A, Sharafat Vaziri A, Mahmoudi M. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. AUTOIMMUNITY HIGHLIGHTS 2020. [PMCID: PMC7414649 DOI: 10.1186/s13317-020-00135-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway regulates multiple processes in innate and adaptive immune cells. This pathway is involved in inflammation through the regulation of cytokines, chemokines, and adhesion molecules expression. The NF-κB transcription factor also participates in the survival, proliferation, and differentiation of cells. Therefore, deregulated NF-κB activation contributes to the pathogenesis of inflammatory diseases. Rheumatoid arthritis (RA) is classified as a heterogeneous and complex autoimmune inflammatory disease. Although different immune and non-immune cells contribute to the RA pathogenesis, fibroblast-like synoviocytes (FLSs) play a crucial role in disease progression. These cells are altered during the disease and produce inflammatory mediators, including inflammatory cytokines and matrix metalloproteinases, which result in joint and cartilage erosion. Among different cell signaling pathways, it seems that deregulated NF-κB activation is associated with the inflammatory picture of RA. NF-κB activation can also promote the proliferation of RA-FLSs as well as the inhibition of FLS apoptosis that results in hyperplasia in RA synovium. In this review, the role of NF-κB transcription factor in immune and non-immune cells (especially FLSs) that are involved in RA pathogenesis are discussed.
Collapse
|
56
|
Taheri F, Ebrahimi SO, Shareef S, Reiisi S. Regulatory and immunomodulatory role of miR-34a in T cell immunity. Life Sci 2020; 262:118209. [PMID: 32763292 DOI: 10.1016/j.lfs.2020.118209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
miRNAs are a class of non-coding RNAs and very conserve molecules that negatively regulate the expression of many genes by targeting the 3' UTR of mRNAs. miRNAs are involved in the modulation of T-cell biology during the earliest and last stages and key controllers of T-cell differentiation and function. The miR-34a, as a major hub of the regulatory network of T cells, plays an important role in T cell activation. miR-34a is widely expressed in immune cells (dendritic cells, macrophages, mast cells, B cells, and T cells) and regulates their development, function, and survival. This miRNA, by targeting over 30 genes across different cellular pathways controls immune response. miR-34a expression is controlled by p53 in transcription level. As well as, miR-34a by activating dendritic cells mediates innate immune response and increases tumor-infiltrating CD8 expression T lymphocytes. In various types of cancers and autoimmune diseases, miR-34a can regulate T cell function and become a possible significant target of microRNA-based therapy. Therefore, in this review, we focus on miR-34a-related regulatory mechanisms in T cell function and understanding mechanisms and molecules involved in this network.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of medical laboratory science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
57
|
Mitxitorena I, Somma D, Mitchell JP, Lepistö M, Tyrchan C, Smith EL, Kiely PA, Walden H, Keeshan K, Carmody RJ. The deubiquitinase USP7 uses a distinct ubiquitin-like domain to deubiquitinate NF-ĸB subunits. J Biol Chem 2020; 295:11754-11763. [PMID: 32587091 PMCID: PMC7450122 DOI: 10.1074/jbc.ra120.014113] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
The transcription factor NF-ĸB is a master regulator of the innate immune response and plays a central role in inflammatory diseases by mediating the expression of pro-inflammatory cytokines. Ubiquitination-triggered proteasomal degradation of DNA-bound NF-ĸB strongly limits the expression of its target genes. Conversely, USP7 (deubiquitinase ubiquitin-specific peptidase 7) opposes the activities of E3 ligases, stabilizes DNA-bound NF-ĸB, and thereby promotes NF-ĸB-mediated transcription. Using gene expression and synthetic peptide arrays on membrane support and overlay analyses, we found here that inhibiting USP7 increases NF-ĸB ubiquitination and degradation, prevents Toll-like receptor-induced pro-inflammatory cytokine expression, and represents an effective strategy for controlling inflammation. However, the broad regulatory roles of USP7 in cell death pathways, chromatin, and DNA damage responses limit the use of catalytic inhibitors of USP7 as anti-inflammatory agents. To this end, we identified an NF-ĸB-binding site in USP7, ubiquitin-like domain 2, that selectively mediates interactions of USP7 with NF-ĸB subunits but is dispensable for interactions with other proteins. Moreover, we found that the amino acids 757LDEL760 in USP7 critically contribute to the interaction with the p65 subunit of NF-ĸB. Our findings support the notion that USP7 activity could be potentially targeted in a substrate-selective manner through the development of noncatalytic inhibitors of this deubiquitinase to abrogate NF-ĸB activity.
Collapse
Affiliation(s)
- Izaskun Mitxitorena
- GLAZgo Discovery Centre, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Domenico Somma
- Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Matti Lepistö
- Innovative Medicines and Early Development, Respiratory, Inflammation and Autoimmunity, AstraZeneca AB, Gothenburg, Sweden
| | - Christian Tyrchan
- Innovative Medicines and Early Development, Respiratory, Inflammation and Autoimmunity, AstraZeneca AB, Gothenburg, Sweden
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick A Kiely
- Graduate Entry Medical School, Health Research Institute and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karen Keeshan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
58
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
59
|
Qiu R, Yu X, Wang L, Han Z, Yao C, Cui Y, Hou G, Dai D, Jin W, Shen N. Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR-21–Peli1–c-Rel Pathway Prevents Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:3160-3170. [DOI: 10.4049/jimmunol.2000060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
|
60
|
Li D, Li X, Duan M, Dou Y, Feng Y, Nan N, Zhang W. MiR-153-3p induces immune dysregulation by inhibiting PELI1 expression in umbilical cord-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Autoimmunity 2020; 53:201-209. [PMID: 32321315 DOI: 10.1080/08916934.2020.1750011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are identified as a promising tool for the treatment of autoimmune diseases, and several microRNAs (miRNAs) are shown to exhibit vital roles in immune diseases. However, their function and mechanism in systemic lupus erythematosus (SLE) is still unclear. The qRT-PCR analysis was employed to investigate level of miR-153-3p. Subsequently, western blot and luciferase reporter assays were carried out to determine miR-153-3p targets. Cell proliferation and migration were determined using EdU proliferation assays and transwell migration assays. Apoptosis levels were evaluated by annexin V staining and flow cytometry. We used human umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation to treat MRL/lpr mice. It was observed that miR-153-3p was upregulated in patients with SLE, and was closely related to SLE disease activity. Overexpression of miR-153-3p decreased UC-MSCs proliferation and migration, and weakened UC-MSCs-mediated decrease of follicular T helper (Tfh) cells and increase of regulatory T (Treg) cells through repressing PELI1 in vitro. We also found that PELI1 overexpression abolished the function of miR-153-3p on UC-MSCs. Furthermore, miR-153-3p overexpression weakened the therapeutic effect of UC-MSCs in MRL/lpr mice in vivo. Taken together, all data suggested that miR-153-3p is a mediator of SLE UC-MSCs regulation and may function as a new therapeutic target for the treatment of lupus.
Collapse
Affiliation(s)
- Dan Li
- Department of Hematopathology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China.,Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoqing Li
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, China
| | - Mingyue Duan
- Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Yufeng Dou
- Integrated Traditional and Western Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Yuan Feng
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, China
| | - Nan Nan
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, China
| | - Wanggang Zhang
- Department of Hematopathology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China
| |
Collapse
|
61
|
miR-21 and Pellino-1 Expression Profiling in Autoimmune Premature Ovarian Insufficiency. J Immunol Res 2020; 2020:3582648. [PMID: 32352018 PMCID: PMC7174929 DOI: 10.1155/2020/3582648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) represents the hypergonadotropic hypoestrogenic symptoms that result in the loss of ovarian follicles. 5-30% POI cases are suggested to be involved in autoimmune etiology. MicroRNA-21 (miR-21) plays a vital role in ovarian folliculogenesis via regulating and interacting with multiple target genes. Here, we conduct the target prediction of miR-21, identify the expression and correlation of miR-21 and its putative target Pellino-1 (Peli1), and confirm their relationship with clinical characteristics in autoimmune POI. Methods Bioinformatic analysis was conducted to screen the miR-21 putative target gene. Autoimmune POI mouse models were established by ZP3 immunization. Serum miR-21, Peli1 mRNA of peripheral blood mononuclear cells (PBMCs) and regulatory T cells (Tregs), general status, spleen Tregs ratio, inflammatory factors, ovarian endocrine function, and ovarian structure were evaluated. For autoimmune POI patients, serum miR-21, PBMCs Peli1 mRNA levels, general data, immune parameters, hormone levels, and ultrasound examinations were obtained. The correlations of miR-21 with Peli1 and clinical characteristics in patients were analyzed. Results Peli1 was selected based on four microRNA prediction databases and literature retrieval. In mouse models, serum miR-21 level, PBMCs and Tregs Peli1 mRNA, and spleen Tregs ratio were 0.61 ± 0.09, 0.12 ± 0.12, 0.27±0.23 and 4.82 ± 0.58, respectively, lower than those in the control group. In patients, miR-21 level (0.60 ± 0.14) and Peli1 mRNA (0.30 ± 0.14) were lower than those in the control group (1.01 ± 0.07 and 1.63 ± 0.54); miR-21 was positively related with Peli1, AMH, E2, the size of the uterus, and ovarian volume and negatively related with FSH, LH, and the number of positive immune parameters (AOAb, EMAb, ACL, ANA, ds-DNA, ACA, IgG, IgA, IgM, IgE, C3, and C4). Conclusions Low expressions of miR-21 and Peli1 were detected in autoimmune POI mice and patients. Positive correlation between miR-21 and Peli1 was observed in autoimmune POI patients, suggesting that miR-21 and Peli1 might be associated with the pathogenesis of autoimmune POI.
Collapse
|
62
|
|
63
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
64
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
65
|
Kim D, Koh J, Ko JS, Kim HY, Lee H, Chung DH. Ubiquitin E3 Ligase Pellino-1 Inhibits IL-10-mediated M2c Polarization of Macrophages, Thereby Suppressing Tumor Growth. Immune Netw 2019; 19:e32. [PMID: 31720043 PMCID: PMC6829073 DOI: 10.4110/in.2019.19.e32] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Pellino-1 is a ubiquitin (Ub) E3 ligase that plays a role in M1, but not M2a polarization of macrophages. However, it is unknown whether Pellino-1 regulates IL-10-mediated M2c polarization of macrophages. Here, we found that Pellino-1 attenuated tumor growth by inhibiting M2c polarization of macrophages. Upon IL-10 stimulation, Pellino-1-deificient bone marrow-derived macrophages (BMDMs) showed higher expression of M2c markers, but not M2a, and M2b markers than wild-type (WT) BMDMs, indicating that Pellino-1 inhibits M2c polarization of macrophages. Pellino-1-deficient BMDMs exhibited a defect in mitochondria respiration, but enhancement of glycolysis during M2c polarization. During M2c polarization of macrophages, Pellino-1 increased STAT1 phosphorylation via K63-linked ubiquitination of IL-1 receptor associated kinase 1 (IRAK1). Furthermore, Lysm-CrePellino-1 fl/fl mice showed enhancement of tumor growth via regulating M2c polarization of tumor-associated macrophages. These results demonstrate that Pellino-1 inhibits IL-10-induced M2c macrophage polarization via K63-linked ubiquitination of IRAK1 and activation of STAT1, thereby inhibiting tumor growth in vivo.
Collapse
Affiliation(s)
- Donghyun Kim
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Sung Ko
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
66
|
Hughes BM, Burton CS, Reese A, Jabeen MF, Wright C, Willis J, Khoshaein N, Marsh EK, Peachell P, Sun SC, Dockrell DH, Marriott HM, Sabroe I, Condliffe AM, Prince LR. Pellino-1 Regulates Immune Responses to Haemophilus influenzae in Models of Inflammatory Lung Disease. Front Immunol 2019; 10:1721. [PMID: 31417543 PMCID: PMC6685348 DOI: 10.3389/fimmu.2019.01721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/09/2019] [Indexed: 11/24/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a frequent cause of lower respiratory tract infection in people with chronic obstructive pulmonary disease (COPD). Pellino proteins are a family of E3 ubiquitin ligases that are critical regulators of TLR signaling and inflammation. The aim of this study was to identify a role for Pellino-1 in airway defense against NTHi in the context of COPD. Pellino-1 is rapidly upregulated by LPS and NTHi in monocyte-derived macrophages (MDMs) isolated from individuals with COPD and healthy control subjects, in a TLR4 dependent manner. C57BL/6 Peli1−/− and wild-type (WT) mice were subjected to acute (single LPS challenge) or chronic (repeated LPS and elastase challenge) airway inflammation followed by NTHi infection. Both WT and Peli1−/− mice develop airway inflammation in acute and chronic airway inflammation models. Peli1−/− animals recruit significantly more neutrophils to the airway following NTHi infection which is associated with an increase in the neutrophil chemokine, KC, in bronchoalveolar lavage fluid as well as enhanced clearance of NTHi from the lung. These data suggest that therapeutic inhibition of Pellino-1 may augment immune responses in the airway and enhance bacterial clearance in individuals with COPD.
Collapse
Affiliation(s)
- Bethany M Hughes
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Charlotte S Burton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Abigail Reese
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Maisha F Jabeen
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Carl Wright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jessica Willis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Nika Khoshaein
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth K Marsh
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Peter Peachell
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Shao C Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David H Dockrell
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Lynne R Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
67
|
The Unsolved Puzzle of c-Rel in B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11070941. [PMID: 31277480 PMCID: PMC6678315 DOI: 10.3390/cancers11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.
Collapse
|
68
|
Petrillo MG, Oakley RH, Cidlowski JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. J Biol Chem 2019; 294:11225-11239. [PMID: 31167788 DOI: 10.1074/jbc.ra118.007150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids are among the most widely used drugs to treat many autoimmune and inflammatory diseases. Although much research has been focused on investigating glucocorticoid activity, it remains unclear how glucocorticoids regulate distinct processes in different cells. Glucocorticoids exert their effects through the glucocorticoid receptor (GR), which, upon glucocorticoid binding, interacts with regulatory proteins, affecting its activity and function. These protein-protein interactions are necessary for the resolution of glucocorticoid-dependent physiological and pharmacological processes. In this study, we discovered a novel protein interaction between the glucocorticoid receptor and β-arrestin-1, a scaffold protein with a well-established role in G protein-coupled receptor signaling. Using co-immunoprecipitation and in situ proximity ligation assays in A549 cells, we observed that β-arrestin-1 and unliganded GR interact in the cytoplasm and that, following glucocorticoid binding, the protein complex is found in the nucleus. We show that siRNA-mediated β-arrestin-1 knockdown alters GR protein turnover by up-regulating the E3 ubiquitin ligase Pellino-1, which catalyzes GR ubiquitination and thereby marks the receptor for proteasomal degradation. The enhanced GR turnover observed in β-arrestin-1-deficient cells limits the duration of the glucocorticoid response on GR target genes. These results demonstrate that β-arrestin-1 is a crucial player for the stability of the glucocorticoid receptor. The GR/β-arrestin-1 interaction uncovered here may help unravel mechanisms that contribute to the cell type-specific activities of glucocorticoids.
Collapse
Affiliation(s)
- Maria G Petrillo
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robert H Oakley
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
69
|
Dai D, Yuan J, Wang Y, Xu J, Mao C, Xiao Y. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci Rep 2019; 9:8034. [PMID: 31142803 PMCID: PMC6541652 DOI: 10.1038/s41598-019-44573-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic neuroinflammation is known to contributes to the toxicity of neurodegeneration of Parkinson’s disease (PD). However, the molecular and cellular mechanisms controlling inflammatory responses in the central nervous system remain poorly understood. Here we found that a E3 ubiquitin ligase Peli1 is dramatically induced only in the substantia nigra (SN) of the human and mouse PD brains. The ablation of Peli1 significantly suppressed LPS-induced production of neurotoxic mediators and proinflammatory cytokines in SN and in primary microglia, whereas Peli1 is dispensable for the inflammatory responses in astrocyte. Accordingly, Peli1 deficiency markedly inhibited neuron death induced by the conditioned medium from LPS-stimulated microglia. Mechanistical study suggested that Peli1 acts as a positive regulator of inflammatory response in microglia through activation of NF-κB and MAP kinase. Our results established Peli1 as a critical mediator in the regulation of microglial activation and neuroinflammation-induced death of dopaminergic neurons during PD pathogenesis, suggesting that targeting Peli1 may have therapeutic effect in neuroinflammation.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jia Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chaoming Mao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yichuan Xiao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
70
|
MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: Role of the target protein Peli1. Toxicol Appl Pharmacol 2019; 370:145-153. [DOI: 10.1016/j.taap.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 11/20/2022]
|
71
|
Dai L, Lin J, Said AB, Yau YH, Shochat SG, Ruiz-Carrillo D, Sun K, Chandrasekaran R, Sze SK, Lescar J, Cheung PC. Pellino1 specifically binds to phospho-Thr18 of p53 and is recruited to sites of DNA damage. Biochem Biophys Res Commun 2019; 513:714-720. [PMID: 30987826 DOI: 10.1016/j.bbrc.2019.03.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 12/23/2022]
Abstract
Pellino1 is an E3 ubiquitin ligase that plays a key role in positive regulation of innate immunity signaling, specifically required for the production of interferon when induced by viral double-stranded RNA. We report the identification of the tumor suppressor protein, p53, as a binding partner of Pellino1. Their interaction has a Kd of 42 ± 2 μM and requires phosphorylation of Thr18 within p53 and association with the forkhead-associated (FHA) domain of Pellino1. We employed laser micro-irradiation and live cell microscopy to show that Pellino1 is recruited to newly occurring DNA damage sites, via its FHA domain. Mutation of a hitherto unidentified nuclear localization signal within the N-terminus of Pellino1 led to its exclusion from the nucleus. This study provides evidence that Pellino1 translocates to damaged DNA in the nucleus and has a functional role in p53 signaling and the DNA damage response.
Collapse
Affiliation(s)
- Liang Dai
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technological University, Singapore; Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore
| | | | - Yin Hoe Yau
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | - Kang Sun
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore; Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore.
| | - Peter Cf Cheung
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
72
|
Ha GH, Ji JH, Chae S, Park J, Kim S, Lee JK, Kim Y, Min S, Park JM, Kang TH, Lee H, Cho H, Lee CW. Pellino1 regulates reversible ATM activation via NBS1 ubiquitination at DNA double-strand breaks. Nat Commun 2019; 10:1577. [PMID: 30952868 PMCID: PMC6450972 DOI: 10.1038/s41467-019-09641-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair. Peli1 is activated by ATM-mediated phosphorylation. It is recruited to DSB sites in ATM- and γH2AX-dependent manners. Interaction of Peli1 with phosphorylated histone H2AX enables it to bind to and mediate the formation of K63-linked ubiquitination of NBS1, which subsequently results in feedback activation of ATM and promotes HR repair. Collectively, these results provide a DSB-responsive factor underlying the connection between ATM kinase and DSB-induced ubiquitination. Occurrence of DNA double-strand break (DSB) repair is important for genome integrity. Here, the authors reveal that Pellino1 is a DSB-responsive ubiquitin ligase required for promoting the accumulation of ATM and MRN complex at DSB sites via NBS1 ubiquitination.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Suhyeon Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sunwoo Min
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Min Park
- Department of Biological Science, Dong-A University, Pusan, 49201, Republic of Korea
| | - Tae-Hong Kang
- Department of Biological Science, Dong-A University, Pusan, 49201, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea. .,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
73
|
Mahendra A, Yang X, Abnouf S, Adolacion JRT, Park D, Soomro S, Roszik J, Coarfa C, Romain G, Wanzeck K, Bridges SL, Aggarwal A, Qiu P, Agarwal SK, Mohan C, Varadarajan N. Beyond Autoantibodies: Biologic Roles of Human Autoreactive B Cells in Rheumatoid Arthritis Revealed by RNA-Sequencing. Arthritis Rheumatol 2019; 71:529-541. [PMID: 30407753 PMCID: PMC6741783 DOI: 10.1002/art.40772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To obtain the comprehensive transcriptome profile of human citrulline-specific B cells from patients with rheumatoid arthritis (RA). METHODS Citrulline- and hemagglutinin-specific B cells were sorted by flow cytometry using peptide-streptavidin conjugates from the peripheral blood of RA patients and healthy individuals. The transcriptome profile of the sorted cells was obtained by RNA-sequencing, and expression of key protein molecules was evaluated by aptamer-based SOMAscan assay and flow cytometry. The ability of these proteins to effect differentiation of osteoclasts and proliferation and migration of synoviocytes was examined by in vitro functional assays. RESULTS Citrulline-specific B cells, in comparison to citrulline-negative B cells, from patients with RA differentially expressed the interleukin-15 receptor α (IL-15Rα) gene as well as genes related to protein citrullination and cyclic AMP signaling. In analyses of an independent cohort of cyclic citrullinated peptide-seropositive RA patients, the expression of IL-15Rα protein was enriched in citrulline-specific B cells from the patients' peripheral blood, and surprisingly, all B cells from RA patients were capable of producing the epidermal growth factor ligand amphiregulin (AREG). Production of AREG directly led to increased migration and proliferation of fibroblast-like synoviocytes, and, in combination with anti-citrullinated protein antibodies, led to the increased differentiation of osteoclasts. CONCLUSION To the best of our knowledge, this is the first study to document the whole transcriptome profile of autoreactive B cells in any autoimmune disease. These data identify several genes and pathways that may be targeted by repurposing several US Food and Drug Administration-approved drugs, and could serve as the foundation for the comparative assessment of B cell profiles in other autoimmune diseases.
Collapse
Affiliation(s)
- Ankit Mahendra
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX
| | - Xingyu Yang
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Shaza Abnouf
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX
| | - Jay R T Adolacion
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX
| | - Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Republic of Korea
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, TX
| | - Jason Roszik
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX
| | - Gabrielle Romain
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX
| | - Keith Wanzeck
- Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL
| | - S. Louis Bridges
- Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Immunology, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX
| | - Navin Varadarajan
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX
| |
Collapse
|
74
|
Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med 2019; 25:428-443. [PMID: 30898473 DOI: 10.1016/j.molmed.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert exquisite spatial and temporal control over protein stability and function, and are thus crucial for the regulation of both innate and adaptive immunity. Given that immune responses can be both detrimental (autoimmunity) and beneficial (antitumor immunity), it is vital to understand how ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel mechanisms underlying immune regulation and identify new therapeutic approaches to enhance antitumor immunity and safeguard against autoimmunity.
Collapse
Affiliation(s)
- Yu Fujita
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Present address: Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yan Li
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ze'ev A Ronai
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
75
|
Tu E, Chia CPZ, Chen W, Zhang D, Park SA, Jin W, Wang D, Alegre ML, Zhang YE, Sun L, Chen W. T Cell Receptor-Regulated TGF-β Type I Receptor Expression Determines T Cell Quiescence and Activation. Immunity 2019; 48:745-759.e6. [PMID: 29669252 DOI: 10.1016/j.immuni.2018.03.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
It is unclear how quiescence is enforced in naive T cells, but activation by foreign antigens and self-antigens is allowed, despite the presence of inhibitory signals. We showed that active transforming growth factor β (TGF-β) signaling was present in naive T cells, and T cell receptor (TCR) engagement reduced TGF-β signaling during T cell activation by downregulating TGF-β type 1 receptor (TβRI) through activation of caspase recruitment domain-containing protein 11 (CARD11) and nuclear factor κB (NF-κB). TGF-β prevented TCR-mediated TβRI downregulation, but this was abrogated by interleukin-6 (IL-6). Mitigation of TCR-mediated TβRI downregulation through overexpression of TβRI in naive and activated T cells rendered T cells less responsive and suppressed autoimmunity. Naive T cells in autoimmune patients exhibited reduced TβRI expression and increased TCR-driven proliferation compared to healthy subjects. Thus, TCR-mediated regulation of TβRI-TGF-β signaling acts as a crucial criterion to determine T cell quiescence and activation.
Collapse
Affiliation(s)
- Eric Tu
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Cheryl P Z Chia
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dunfang Zhang
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sang A Park
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Wenwen Jin
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
76
|
Lork M, Staal J, Beyaert R. Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cell Immunol 2018; 340:103877. [PMID: 30514565 DOI: 10.1016/j.cellimm.2018.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Antigen receptor-induced signaling plays an important role in inflammation and immunity. Formation of a CARD11-BCL10-MALT1 (CBM) signaling complex is a key event in T- and B cell receptor-induced gene expression by regulating NF-κB activation and mRNA stability. Deregulated CARD11, BCL10 or MALT1 expression or CBM signaling have been associated with immunodeficiency, autoimmunity and cancer, indicating that CBM formation and function have to be tightly regulated. Over the past years great progress has been made in deciphering the molecular mechanisms of assembly and disassembly of the CBM complex. In this context, several posttranslational modifications play an indispensable role in regulating CBM function and downstream signal transduction. In this review we summarize how the different CBM components as well as their interplay are regulated by protein ubiquitination and phosphorylation in the context of T cell receptor signaling.
Collapse
Affiliation(s)
- Marie Lork
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.
| |
Collapse
|
77
|
Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, Gao J, Peng BH, Bopp NE, Cromer C, Shan C, Xie G, Li G, Tesh R, Popov VL, Shi PY, Sun SC, Wu P, Klein RS, Tang SJ, Zhang W, Aguilar PV, Wang T. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest 2018; 128:4980-4991. [PMID: 30247157 PMCID: PMC6205407 DOI: 10.1172/jci99902] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Pellino 1 (Peli1) is a microglia-specific mediator of autoimmune encephalomyelitis. Its role in neurotropic flavivirus infection is largely unknown. Here, we report that mice deficient in Peli1 (Peli1-/-) were more resistant to lethal West Nile virus (WNV) infection and exhibited reduced viral loads in tissues and attenuated brain inflammation. Peli1 mediates chemokine and proinflammatory cytokine production in microglia and promotes T cell and macrophage infiltration into the CNS. Unexpectedly, Peli1 was required for WNV entry and replication in mouse macrophages and mouse and human neurons and microglia. It was also highly expressed on WNV-infected neurons and adjacent inflammatory cells from postmortem patients who died of acute WNV encephalitis. WNV passaged in Peli1-/- macrophages or neurons induced a lower viral load and impaired activation in WT microglia and thereby reduced lethality in mice. Smaducin-6, which blocks interactions between Peli1 and IRAK1, RIP1, and IKKε, did not inhibit WNV-triggered microglia activation. Collectively, our findings suggest a nonimmune regulatory role for Peli1 in promoting microglia activation during WNV infection and identify a potentially novel host factor for flavivirus cell entry and replication.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology and Immunology
| | | | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences
| | - Wenjuan Ru
- Department of Neuroscience, Cell Biology and Anatomy, and
| | | | - Jesus A. Silvas
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Lauren L. Vollmer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Courtney Cromer
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, and
| | - Guorui Xie
- Department of Microbiology and Immunology
| | - Guangyu Li
- Department of Microbiology and Immunology
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shao-Jun Tang
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences,,Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology and Immunology,,Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| |
Collapse
|
78
|
Harshan S, Dey P, Ragunathan S. Effects of rheumatoid arthritis associated transcriptional changes on osteoclast differentiation network in the synovium. PeerJ 2018; 6:e5743. [PMID: 30324023 PMCID: PMC6186409 DOI: 10.7717/peerj.5743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Osteoclast differentiation in the inflamed synovium of rheumatoid arthritis (RA) affected joints leads to the formation of bone lesions. Reconstruction and analysis of protein interaction networks underlying specific disease phenotypes are essential for designing therapeutic interventions. In this study, we have created a network that captures signal flow leading to osteoclast differentiation. Based on transcriptome analysis, we have indicated the potential mechanisms responsible for the phenotype in the RA affected synovium. Method We collected information on gene expression, pathways and protein interactions related to RA from literature and databases namely Gene Expression Omnibus, Kyoto Encyclopedia of Genes and Genomes pathway and STRING. Based on these information, we created a network for the differentiation of osteoclasts. We identified the differentially regulated network genes and reported the signaling that are responsible for the process in the RA affected synovium. Result Our network reveals the mechanisms underlying the activation of the neutrophil cytosolic factor complex in connection to osteoclastogenesis in RA. Additionally, the study reports the predominance of the canonical pathway of NF-κB activation in the diseased synovium. The network also confirms that the upregulation of T cell receptor signaling and downregulation of transforming growth factor beta signaling pathway favor osteoclastogenesis in RA. To the best of our knowledge, this is the first comprehensive protein–protein interaction network describing RA driven osteoclastogenesis in the synovium. Discussion This study provides information that can be used to build models of the signal flow involved in the process of osteoclast differentiation. The models can further be used to design therapies to ameliorate bone destruction in the RA affected joints.
Collapse
Affiliation(s)
- Shilpa Harshan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srivatsan Ragunathan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
79
|
Fan K, Wang F, Li Y, Chen L, Gao Z, Zhang Y, Duan JY, Huang T, Zhong J, Liu RB, Mao X, Fan H, Guo X, Jin J. CRL4 DCAF2 is required for mature T-cell expansion via Aurora B-regulated proteasome activity. J Autoimmun 2018; 96:74-85. [PMID: 30245026 DOI: 10.1016/j.jaut.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
The proliferation of T cells in peripheral lymphoid tissues requires T cell receptor (TCR)-mediated cell cycle entry. However, the underlying mechanism regulating cell cycle progression in mature T cells is incompletely understood. Here, we have identified an E3 ubiquitin ligase, CRL4DCAF2, as a critical mediator controlling M phase exit in activated T cells. DCAF2 expression is induced upon TCR stimulation and its deficiency attenuates T cell expansion. Additionally, DCAF2 T cell-specific knockout mice display impaired peripheral T cell maintenance and reduced severity of various autoimmune diseases. Continuous H4K20me1 modification caused by DCAF2 deficiency inhibits the induction of Aurkb expression, which regulates 26S proteasome activity during G2/M phase. CRL4DCAF2 deficiency causes M phase arrest through proteasome-dependent mechanisms in peripheral T cells. Our findings establish DCAF2 as a novel target for T cell-mediated autoimmunity or inflammatory diseases.
Collapse
Affiliation(s)
- Keqi Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yiyuan Li
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lu Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhengjun Gao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Jin-Yuan Duan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tao Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiangyan Zhong
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Rong-Bei Liu
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Xintao Mao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hengyu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Jin Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
80
|
Wang Y, Yuan J, Dai D, Liu J, Xu J, Miao X, Wang H, Mao C, Xiao Y. Poly IC pretreatment suppresses B cell-mediated lupus-like autoimmunity through induction of Peli1. Acta Biochim Biophys Sin (Shanghai) 2018; 50:862-868. [PMID: 30032173 DOI: 10.1093/abbs/gmy082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Noncanonical NF-κB pathway is essential for the B cell activation and antibody production, which centralize the critical role of B cells in regulating the pathogenesis of systemic lupus erythematosus (SLE). We have previously demonstrated that Pellino1 (Peli1) negatively regulates noncanonical NF-κB activation and lupus autoimmunity. Here, we showed that poly IC is a potent inducer of Peli1 protein in mouse splenic B cells in dose- and time-dependent manners, and poly IC-induced Peli1 protein dramatically suppressed the activation of noncanonical NF-κB pathway. In addition, poly IC-pretreated B cells failed to induce lupus-like disease in BM12 CD4+ T cell-immunized mice. Accordingly, the induction of antibody-producing plasma cells and germinal center B cells, as well as the production of autoantibodies were significantly impaired in immunized μMT mice that were transferred with poly IC-pretreated B cells. Our findings demonstrate that poly IC-induced Peli1 negatively regulates the noncanonical NF-κB pathway in the context of restraining the pathogenesis of lupus-like disease.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Yuan
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongfang Dai
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Junli Liu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jing Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Miao
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huan Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Chaoming Mao
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yichuan Xiao
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
81
|
Yu X, Lao Y, Teng XL, Li S, Zhou Y, Wang F, Guo X, Deng S, Chang Y, Wu X, Liu Z, Chen L, Lu LM, Cheng J, Li B, Su B, Jiang J, Li HB, Huang C, Yi J, Zou Q. SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nat Commun 2018; 9:3157. [PMID: 30089837 PMCID: PMC6082899 DOI: 10.1038/s41467-018-05676-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining immune homeostasis and tolerance, but the mechanisms regulating the stability and function of Treg cells have not been fully elucidated. Here we show SUMO-specific protease 3 (SENP3) is a pivotal regulator of Treg cells that functions by controlling the SUMOylation and nuclear localization of BACH2. Treg cell-specific deletion of Senp3 results in T cell activation, autoimmune symptoms and enhanced antitumor T cell responses. SENP3-mediated BACH2 deSUMOylation prevents the nuclear export of BACH2, thereby repressing the genes associated with CD4+ T effector cell differentiation and stabilizing Treg cell-specific gene signatures. Notably, SENP3 accumulation triggered by reactive oxygen species (ROS) is involved in Treg cell-mediated tumor immunosuppression. Our results not only establish the role of SENP3 in the maintenance of Treg cell stability and function via BACH2 deSUMOylation but also clarify the function of SENP3 in the regulation of ROS-induced immune tolerance.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yimin Lao
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiao-Lu Teng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yan Zhou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Feixiang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xinwei Guo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Siyu Deng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yuzhou Chang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhiduo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jinke Cheng
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
82
|
Pellino-1 Protects Periodontal Ligament Stem Cells Against H2O2-Induced Apoptosis via Activation of NF-κB Signaling. Mol Biotechnol 2018; 60:533-538. [DOI: 10.1007/s12033-018-0067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
83
|
Choi SW, Park HH, Kim S, Chung JM, Noh HJ, Kim SK, Song HK, Lee CW, Morgan MJ, Kang HC, Kim YS. PELI1 Selectively Targets Kinase-Active RIP3 for Ubiquitylation-Dependent Proteasomal Degradation. Mol Cell 2018; 70:920-935.e7. [DOI: 10.1016/j.molcel.2018.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
|
84
|
Rednam CK, Wilson RL, Selvaraju V, Rishi MT, Thirunavukkarasu M, Coca-Soliz V, Lakshmanan R, Palesty JA, McFadden DW, Maulik N. Increased survivability of ischemic skin flap tissue in Flk-1 +/- mice by Pellino-1 intervention. Microcirculation 2018; 24. [PMID: 28177171 DOI: 10.1111/micc.12362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Reduced skin flap survival due to ischemia is a serious concern during reconstructive cosmetic surgery. The absence of VEGF and its receptors during ischemia may lead to flap failure. We identified Peli1, a 46-kDa protein, as a proangiogenic molecule and is directly regulated by VEGF. Therefore, we hypothesized that Peli1 acts downstream of Flk-1/VEGFR2 and aids in skin flap survival during ischemia. METHODS Scratch and matrigel assays were performed to observe cell proliferation, migration, and tube formation in vitro. Western blot analysis was carried out to detect the phosphorylation of Akt (p-Akt) and MAPKAPK2 (p-MK2) in HUVECs. The translational potential of Peli1 pretreatment in the rescue of skin flap tissue was studied in vivo using Flk-1+/- mice. Animals underwent dorsal ischemic skin flap surgery, and the tissue was collected on day 12 for analysis. RESULTS Western blot analysis revealed a direct relationship between Peli1 and VEGF, as demonstrated by loss-of-function and gain-of-function studies. In addition, pretreatment with Ad.Peli1 restored the phosphorylation of Akt and MK2 and improved the migration potential of Flk-1-knockdown cells. Ad.Peli1 pretreatment salvaged the ischemic skin flap of Flk-1+/- mice by increasing blood perfusion and reducing the inflammatory response and the extent of necrosis. CONCLUSION Our findings reveal that Peli1 is a proangiogenic molecule that acts downstream of VEGF-Flk-1 and restores angiogenesis and enhances skin flap survivability.
Collapse
Affiliation(s)
- Chandra K Rednam
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| | - Rickesha L Wilson
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| | - Vaithinathan Selvaraju
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| | - Muhammad T Rishi
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA.,Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury, CT, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| | - Vladimir Coca-Soliz
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA.,Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury, CT, USA
| | - Rajesh Lakshmanan
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| | - John A Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury, CT, USA
| | - David W McFadden
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
85
|
Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity. Cell Rep 2018; 20:832-845. [PMID: 28746869 DOI: 10.1016/j.celrep.2017.06.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/09/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
IRF5 is a signature transcription factor that induces M1 macrophage polarization. However, little is known regarding cytosolic proteins that induce IRF5 activation for M1 polarization. Here, we report the interaction between ubiquitin E3 ligase Pellino-1 and IRF5 in the cytoplasm, which increased nuclear translocation of IRF5 by K63-linked ubiquitination in human and mouse M1 macrophages. LPS and/or IFN-γ increased Pellino-1 expression, and M1 polarization was attenuated in Pellino-1-deficient macrophages in vitro and in vivo. Defective M1 polarization in Pellino-1-deficient macrophages improved glucose intolerance in mice fed a high-fat diet. Furthermore, macrophages in adipose tissues from obese humans exhibited increased Pellino-1 expression and IRF5 nuclear translocation compared with nonobese subjects, and these changes are associated with insulin resistance index. This study demonstrates that cytosolic Pellino-1-mediated K63-linked ubiquitination of IRF5 in M1 macrophages regulates glucose intolerance in obesity, suggesting a cytosolic mediator function of Pellino-1 in TLR4/IFN-γ receptor-IRF5 axis during M1 polarization.
Collapse
|
86
|
The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nat Commun 2018; 9:1560. [PMID: 29674674 PMCID: PMC5908787 DOI: 10.1038/s41467-018-03669-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/03/2018] [Indexed: 12/30/2022] Open
Abstract
The NLRP3 inflammasome has an important function in inflammation by promoting the processing of pro-IL-1β and pro-IL-18 to their mature bioactive forms, and by inducing cell death via pyroptosis. Here we show a critical function of the E3 ubiquitin ligase Pellino2 in facilitating activation of the NLRP3 inflammasome. Pellino2-deficient mice and myeloid cells have impaired activation of NLRP3 in response to toll-like receptor priming, NLRP3 stimuli and bacterial challenge. These functions of Pellino2 in the NLRP3 pathway are dependent on Pellino2 FHA and RING-like domains, with Pellino2 promoting the ubiquitination of NLRP3 during the priming phase of activation. We also identify a negative function of IRAK1 in the NLRP3 inflammasome, and describe a counter-regulatory relationship between IRAK1 and Pellino2. Our findings reveal a Pellino2-mediated regulatory signaling system that controls activation of the NLRP3 inflammasome. The NLRP3 inflammasome is important for inducing IL-1β and IL-18 inflammatory responses. Here the authors show, by generating and characterizing Peli2 deficient mice and immune cells, that an E3 ubiquitin ligase Pellino2 promotes inflammasome priming by inducing NLRP3 ubiquitination and by targeting IRAK1.
Collapse
|
87
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
88
|
Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, Zhang X, Yu T, Gan S, Dai D, Luo X, Lu Q, Mao C, Zhang Y, Shen N, Li B, Huang M, Zhu X, Jin J, Cheng X, Sun SC, Xiao Y. Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nat Commun 2018; 9:1136. [PMID: 29555915 PMCID: PMC5859150 DOI: 10.1038/s41467-018-03530-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/18/2018] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by uncontrolled secretion of autoantibodies by plasma cells. Although the functional importance of plasma cells and autoantibodies in SLE has been well established, the underlying molecular mechanisms of controlling autoantibody production remain poorly understood. Here we show that Peli1 has a B cell-intrinsic function to protect against lupus-like autoimmunity in mice. Peli1 deficiency in B cells induces autoantibody production via noncanonical NF-κB signaling. Mechanically, Peli1 functions as an E3 ligase to associate with NF-κB inducing kinase (NIK) and mediates NIK Lys48 ubiquitination and degradation. Overexpression of Peli1 inhibits noncanonical NF-κB activation and alleviates lupus-like disease. In humans, PELI1 levels negatively correlate with disease severity in SLE patients. Our findings establish Peli1 as a negative regulator of the noncanonical NF-κB pathway in the context of restraining the pathogenesis of lupus-like disease.
Collapse
Affiliation(s)
- Junli Liu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinfang Huang
- Department of Nephrology and Rheumatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Shumeng Hao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yan Wang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Manman Liu
- Department of Nephrology and Rheumatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xingli Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Tao Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shucheng Gan
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Dongfang Dai
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Qingyan Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Yanyun Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Nan Shen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Jin
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xuhong Cheng
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Yichuan Xiao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
89
|
Park J, Park HY, Kim S, Kim HS, Park JY, Go H, Lee CW. Pellino 1 inactivates mitotic spindle checkpoint by targeting BubR1 for ubiquitinational degradation. Oncotarget 2018; 8:32055-32067. [PMID: 28410192 PMCID: PMC5458268 DOI: 10.18632/oncotarget.16762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/22/2017] [Indexed: 02/01/2023] Open
Abstract
Aberrant constitutive activation of receptor-mediated downstream signalling plays an active role in the deregulation of cell cycle control. The mitotic spindle checkpoint is important in preventing abnormal mitotic cell cycle with chromosome missegregation from achieving neoplastic aneuploidy. However, mechanisms coupling receptor-mediated signalling to mitotic spindle checkpoint regulation remain unclear. Pellino 1 is a receptor signal-responsive E3 ubiquitin ligase, and the application of certain receptor-mediated signalling regulates the expression and activity of Pellino 1. In the present study, Pellino 1 expression induced extensive chromosome aneuploidy and allowed abnormal mitotic cells to adapt and become aneuploid in vitro and in vivo. Pellino 1 directly interacted with BubR1, a key component of mitotic spindle checkpoint, in a mitotic cell-cycle dependent manner, and down-regulated the stability of BubR1 by ubiquitination-mediated degradation and induced mitotic dysfunction. In summary, Pellino 1 expression acts as an inhibitory signal of the homeostatic regulation of mitotic cell cycle and checkpoint, and thus contributes to the initiation and progression of neoplastic chromosome aneuploidy.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Hye-Young Park
- MOGAM Institute for Biomedical Research, Yongin 16924, Republic of Korea
| | - Suhyeon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Soo Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ji Y Park
- Department of Pathology, Daegu Catholic University Medical Center, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Chang-Woo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
90
|
Lee J, Park H, Eom J, Kang SG. MicroRNA-mediated Regulation of the Development and Functions of Follicular Helper T cells. Immune Netw 2018; 18:e7. [PMID: 29732234 PMCID: PMC5928420 DOI: 10.4110/in.2018.18.e7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023] Open
Abstract
The germinal center reaction is a key event of humoral immunity, providing long-lived immunological memory. Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells located in the follicles, which help B cells and thus control the germinal center reaction. TFH cell development is achieved by multi-step processes of interactions with dendritic cells and B cells along with the coordination of various transcription factors. Since the T helper cell fate decision program is determined by subtle changes in regulatory molecules, fine tuning of these dynamic interactions is crucial for the generation functional TFH cells. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulatory molecules for gene expression, which consequently modulate diverse biological functions. In the last decade, the miRNA-mediated regulation network for the germinal center reaction has been extensively explored in T cells and B cells, resulting in the identification of several key miRNA species and their target genes. Here, we review the current knowledge of the miRNA-mediated control of the germinal center reaction, focusing on the aspect of T cell regulation in particular. In addition, we highlight the most important issues related to defining the functional target genes of the relevant miRNAs. We believe that the studies that uncover the miRNA-mediated regulatory axis of TFH cell generation and functions by defining their functional target genes might provide additional opportunities to understand germinal center reactions.
Collapse
Affiliation(s)
- Jeonghyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyosung Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jiyoung Eom
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
91
|
Jeon YK, Kim CK, Koh J, Chung DH, Ha GH. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination. Oncotarget 2018; 7:41811-41824. [PMID: 27248820 PMCID: PMC5173098 DOI: 10.18632/oncotarget.9619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chung Kwon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
92
|
Huang XP, Peng JH, Pang JW, Tian XC, Li XS, Wu Y, Li Y, Jiang Y, Sun XC. Peli1 Contributions in Microglial Activation, Neuroinflammatory Responses and Neurological Deficits Following Experimental Subarachnoid Hemorrhage. Front Mol Neurosci 2017; 10:398. [PMID: 29249938 PMCID: PMC5714869 DOI: 10.3389/fnmol.2017.00398] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is closely associated with neuroinflammation. Microglial activation is an early event that leads to neuroinflammation after SAH. Peli1 is an E3 ubiquitin ligase that mediates the induction of pro-inflammatory cytokines in microglia. Here we report Peli1 contributions in SAH mediated brain pathology. An SAH model was induced by endovascular perforation in adult male C57BL/6J mice. Peli1 was markedly induced in mice brains in a time-dependent manner and was predominantly expressed in CD16/32-positive microglia after SAH. Using genetic approaches, we demonstrated that decreased Peli1 significantly improved neurological deficits, attenuated brain edema, reduced over-expression of pro-inflammatory cytokine IL-6 and modified apoptotic/antiapoptotic biomarkers. In addition, Peli1 downregulation suppressed ERK and JNK phosphorylation levels via the downregulation of cIAP1/2 expression, subsequently reducing inducible nitric oxide synthase (iNOS) expression after SAH. Therefore, these findings demonstrate that Peli1 contributes to microglia-mediated neuroinflammation in EBI by mediating cIAP1/2 activation, thus promoting the activation of MyD88-dependent MAPK pathway after experimental SAH. Our findings also showed that Peli1 could promote the expression of M1 microglia polarization biomarker CD16/32 and iNOS after SAH. Targeting Peli1 exerts neuroprotective effects during EBI after SAH, thus could provide potential option for prevention-therapy in high-risk individuals.
Collapse
Affiliation(s)
- Xue-Ping Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Hua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jin-Wei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Cui Tian
- Department of Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin-Shen Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
93
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
94
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
95
|
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.
Collapse
|
96
|
Petersen F, Yue X, Riemekasten G, Yu X. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity. Autoimmun Rev 2017; 16:602-611. [PMID: 28411168 DOI: 10.1016/j.autrev.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 01/22/2023]
Abstract
Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens.
Collapse
Affiliation(s)
- Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Department of Rheumatology, University of Lübeck, 23538 Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Xiamen-Borstel Joint Laboratory of Autoimmunity, Medical College of Xiamen University, Xiamen 361102, China.
| |
Collapse
|
97
|
Liao Q, Wang J, Pei Z, Xu J, Zhang X. Identification of miRNA-mRNA crosstalk in CD4 + T cells during HIV-1 infection by integrating transcriptome analyses. J Transl Med 2017; 15:41. [PMID: 28222782 PMCID: PMC5319073 DOI: 10.1186/s12967-017-1130-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
Abstract
Background HIV-1-infected long-term nonprogressors (LTNPs) are characterized by infection with HIV-1 more than 7–10 years, but keeping high CD4+ T cell counts and low viral load in the absence of antiretroviral treatment, while loss of CD4+ T cells and high viral load were observed in the most of HIV-1-infected individuals with chronic progressors (CPs) However, the mechanisms of different clinical outcomes in HIV-1 infection needs to be further resolved. Methods To identify microRNAs (miRNAs) and their target genes related to distinct clinical outcomes in HIV-1 infection, we performed the integrative transcriptome analyses in two series GSE24022 and GSE6740 by GEO2R, R, TargetScan, miRDB, and Cytoscape softwares. The functional pathways of these differentially expressed miRNAs (DEMs) targeting genes were further analyzed with DAVID. Results We identified that 7 and 19 DEMs in CD4+ T cells of LTNPs and CPs, respectively, compared with uninfected controls (UCs), but only miR-630 was higher in CPs than that in LTNPs. Further, 478 and 799 differentially expressed genes (DEGs) were identified in the group of LTNPs and CPs, respectively, compared with UCs. Compared to CPs, four hundred and twenty-four DEGs were identified in LTNPs. Functional pathway analyses revealed that a close connection with miRNA-mRNA in HIV-1 infection that DEGs were involved in response to virus and immune system process, and RIG-I-like receptor signaling pathway, whose DEMs or DEGs will be novel biomarkers for prediction of clinical outcomes and therapeutic targets for HIV-1. Conclusions Integrative transcriptome analyses showed that distinct transcriptional profiles in CD4+ T cells are associated with different clinical outcomes during HIV-1 infection, and we identified a circulating miR-630 with potential to predict disease progression, which is necessary to further confirm our findings in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qibin Liao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zenglin Pei
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China.
| |
Collapse
|
98
|
Pellino-1 promotes lung carcinogenesis via the stabilization of Slug and Snail through K63-mediated polyubiquitination. Cell Death Differ 2016; 24:469-480. [PMID: 28009353 PMCID: PMC5457685 DOI: 10.1038/cdd.2016.143] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
Pellino-1 is an E3 ubiquitin ligase acting as a critical mediator for a variety of immune receptor signaling pathways, including Toll-like receptors, interleukin-1 receptor and T-cell receptors. We recently showed that the Pellino-1-transgenic (Tg) mice developed multiple tumors with different subtypes in hematolymphoid and solid organs. However, the molecular mechanism underlying the oncogenic role of Pellino-1 in solid tumors remains unknown. Pellino-1-Tg mice developed adenocarcinoma in the lungs, and Pellino-1 expression was higher in human lung adenocarcinoma cell lines compared with non-neoplastic bronchial epithelial cell lines. Pellino-1 overexpression increased the cell proliferation, survival, colony formation, invasion and migration of lung adenocarcinoma cells, whereas Pellino-1 knock-down showed the opposite effect. Pellino-1 overexpression activated PI3K/Akt and ERK signaling pathways and elicited an epithelial–mesenchymal transition (EMT) phenotype of lung adenocarcinoma cells. Pellino-1-mediated EMT was demonstrated through morphology, the upregulation of Vimentin, Slug and Snail expression and the downregulation of E-cadherin and β-catenin expression. Notably, Pellino-1 had a direct effect on the overexpression of Snail and Slug through Lys63-mediated polyubiquitination and the subsequent stabilization of these proteins. Pellino-1 expression level was significantly correlated with Snail and Slug expression in human lung adenocarcinoma tissues, and lung tumors from Pellino-1-Tg mice showed Snail and Slug overexpression. The Pellino-1-mediated increase in the migration of lung adenocarcinoma cells was mediated by Snail and Slug expression. Taken together, these results show that Pellino-1 contributes to lung tumorigenesis by inducing overexpression of Snail and Slug and promoting EMT. Pellino-1 might be a potential therapeutic target for lung cancer.
Collapse
|
99
|
Gao SF, Zhong B, Lin D. Regulation of T helper cell differentiation by E3 ubiquitin ligases and deubiquitinating enzymes. Int Immunopharmacol 2016; 42:150-156. [PMID: 27914308 DOI: 10.1016/j.intimp.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
CD4 T cells are essential components of adaptive immunity and play a critical role in anti-pathogenic or anti-tumor responses as well as autoimmune and allergic diseases. Naive CD4 T cells differentiate into distinct subsets of T helper (Th) cells by various signals including TCR, costimulatory and cytokine signals. Accumulating evidence suggests that these signaling pathways are critically regulated by ubiquitination and deubiquitination, two reversible posttranslational modifications mediated by E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), respectively. In this review, we briefly introduce the signaling pathways that control the differentiation of Th cells and then focused on the roles of E3s- and DUBs-mediated ubiquitin modification or demodification in regulating Th cell differentiation.
Collapse
Affiliation(s)
- Si-Fa Gao
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
100
|
PELI1 expression is correlated with MYC and BCL6 expression and associated with poor prognosis in diffuse large B-cell lymphoma. Mod Pathol 2016; 29:1313-1323. [PMID: 27469333 DOI: 10.1038/modpathol.2016.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 01/06/2023]
Abstract
PELI is a family of E3 ubiquitin ligases that regulate protein activity through a post-translational modification, ubiquitination. While PELI1 has been found to play a pivotal role in inflammatory processes through the activation of Toll-like receptor signaling and the NF-kB pathway, the role of PELI1 in oncogenesis has not been the subject of much investigation. We aimed to explore PELI1 expression in various malignant lymphomas and identify clinicopathologic significance. Immunohistochemistry for PELI1 was performed on a total of 502 cases, including 406 B-cell, 76 T or NK-cell, and 20 Hodgkin lymphomas. High expression of PELI1 was found in high-grade B-cell lymphoma cases such as diffuse large B-cell lymphoma, Burkitt lymphoma, and plasmablastic lymphoma, whereas low-grade B-cell lymphoma, T/NK-cell lymphoma, and Hodgkin lymphoma cases showed very low levels of expression. In vitro cell line studies, the results of western blot, and RT-PCR were concordant with those of the immunohistochemical results; RL7, Pfeiffer, SUDHL-2, DOHH2, and Ramos cell lines showed high levels of PELI1 protein and mRNA expression. In 182 diffuse large B-cell lymphoma, PELI1 expression was positively correlated with the expression of MYC, BCL6, BCL2, and MUM1 (Spearman's ρ=0.427, 0.507, 0.246, and 0.137, respectively; P<0.001, <0.001, 0.001, and 0.066, respectively). In diffuse large B-cell lymphoma, high expression of PELI1 was associated with frequent bone marrow involvement (P=0.013) and shorter relapse-free survival (P=0.002). Our results suggest that PELI1 might participate in B-cell maturation or oncogenic activation of aggressive B-cell lymphomas, both during and after germinal center stages.
Collapse
|