51
|
Newman DM, Voss AK, Thomas T, Allan RS. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. J Leukoc Biol 2016; 101:887-892. [PMID: 27733580 DOI: 10.1189/jlb.1ma0816-338r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation has an important role in gene regulation, DNA replication, and repair. Because these processes are central to the development of the immune system, we investigated the role of a previously unstudied histone acetyltransferase named KAT7 (also known as Myst2 or HBO1) in the regulation of thymopoiesis and observed a critical role in the regulation of conventional and innate-like T cell development. We found that KAT7-deficient thymocytes displayed normal, positive selection and development into mature single-positive αβ thymocytes; however, we observed few peripheral CD4+ or CD8+ T cells. The observed effects did not appear to arise from alterations to DNA replication, the TCR repertoire, or a block in thymocyte maturation and, more likely, was linked to survival defects related to gene deregulation because KAT7 deficiency led to an almost complete and specific loss of global histone-H3 lysine 14 acetylation (H3K14ac). Overall, we demonstrated a nonredundant role for KAT7 in the maintenance of H3K14ac, which is intimately linked with the ability to develop a normal immune system.
Collapse
Affiliation(s)
- Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
52
|
Philips RL, Chen MW, McWilliams DC, Belmonte PJ, Constans MM, Shapiro VS. HDAC3 Is Required for the Downregulation of RORγt during Thymocyte Positive Selection. THE JOURNAL OF IMMUNOLOGY 2016; 197:541-54. [PMID: 27279370 DOI: 10.4049/jimmunol.1502529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
To generate functional peripheral T cells, proper gene regulation during T cell development is critical. In this study, we found that histone deacetylase (HDAC) 3 is required for T cell development. T cell development in CD2-icre HDAC3 conditional knockout (cKO) mice (HDAC3-cKO) was blocked at positive selection, resulting in few CD4 and CD8 T cells, and it could not be rescued by a TCR transgene. These single-positive thymocytes failed to upregulate Bcl-2, leading to increased apoptosis. HDAC3-cKO mice failed to downregulate retinoic acid-related orphan receptor (ROR) γt during positive selection, similar to the block in positive selection in RORγt transgenic mice. In the absence of HDAC3, the RORC promoter was hyperacetylated. In the periphery, the few CD4 T cells present were skewed toward RORγt(+) IL-17-producing Th17 cells, leading to inflammatory bowel disease. Positive selection of CD8 single-positive thymocytes was restored in RORγt-KO Bcl-xL transgenic HDAC3-cKO mice, demonstrating that HDAC3 is required at positive selection to downregulate RORγt.
Collapse
Affiliation(s)
| | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | | | | |
Collapse
|
53
|
Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips FC, Maina PK, Qi HH, Liu C, Zhu J, Pope RM, Musselman CA, Zeng C, Peng W, Xue HH. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol 2016; 17:695-703. [PMID: 27111144 PMCID: PMC4873337 DOI: 10.1038/ni.3456] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
The CD4+ and CD8+ T cell dichotomy is essential for effective cellular immunity. How the individual T cell identity is established remains poorly understood. Here we show that the high mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4+ lineage-associated genes including Cd4, Foxp3 and Rorc in CD8+ T cells. Tcf1- and Lef1-deficient CD8+ T cells exhibit histone hyperacetylation, which is ascribed to an unexpected intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutating five conserved amino acids in the Tcf1 HDAC domain diminishes the HDAC activity and the ability to suppress CD4+ lineage genes in CD8+ T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Fengyin Li
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Yunjie Zhao
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yalan Li
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Farrah C Phillips
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Peterson K Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
54
|
Xiao H, Jiao J, Wang L, O'Brien S, Newick K, Wang LCS, Falkensammer E, Liu Y, Han R, Kapoor V, Hansen FK, Kurz T, Hancock WW, Beier UH. HDAC5 controls the functions of Foxp3(+) T-regulatory and CD8(+) T cells. Int J Cancer 2016; 138:2477-86. [PMID: 26704363 DOI: 10.1002/ijc.29979] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
Histone/protein deacetylases (HDACs) are frequently upregulated in human malignancies and have therefore become therapeutic targets in cancer therapy. However, inhibiting certain HDAC isoforms can have protolerogenic effects on the immune system, which could make it easier for tumor cells to evade the host immune system. Therefore, a better understanding of how each HDAC isoform affects immune biology is needed to develop targeted cancer therapy. Here, we studied the immune phenotype of HDAC5(-/-) mice on a C57BL/6 background. While HDAC5(-/-) mice replicate at expected Mendelian ratios and do not develop overt autoimmune disease, their T-regulatory (Treg) cells show reduced suppressive function in vitro and in vivo. Likewise, CD4(+) T-cells lacking HDAC5 convert poorly to Tregs under appropriately polarizing conditions. To test if this attenuated Treg formation and suppressive function translated into improved anticancer immunity, we inoculated HDAC5(-/-) mice and littermate controls with a lung adenocarcinoma cell line. Cumulatively, lack of HDAC5 did not lead to better anticancer immunity. We found that CD8(+) T cells missing HDAC5 had a reduced ability to produce the cytokine, IFN-γ, in vitro and in vivo, which may offset the benefit of weakened Treg function and formation. Taken together, targeting HDAC5 weakens suppressive function and de-novo induction of Tregs, but also reduces the ability of CD8(+) T cells to produce IFN-γ.
Collapse
Affiliation(s)
- Haiyan Xiao
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Jing Jiao
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Liqing Wang
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Shaun O'Brien
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kheng Newick
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang-Chuan S Wang
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Eva Falkensammer
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Yujie Liu
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Rongxiang Han
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Veena Kapoor
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Wayne W Hancock
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
55
|
Nakashima H, Nguyen T, Chiocca EA. Combining HDAC inhibitors with oncolytic virotherapy for cancer therapy. Oncolytic Virother 2015; 4:183-91. [PMID: 27512681 PMCID: PMC4918398 DOI: 10.2147/ov.s66081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) enzymes play a critical role in the epigenetic regulation of cellular functions and signaling pathways in many cancers. HDAC inhibitors (HDACi) have been validated for single use or in combination with other drugs in oncologic therapeutics. An even more novel combination therapy with HDACi is to use them with an oncolytic virus. HDACi may lead to an amplification of tumor-specific lytic effects by facilitating increased cycles of viral replication, but there may also be direct anticancer effects of the drug by itself. Here, we review the molecular mechanisms of anti-cancer effects of the combination of oncolytic viruses with HDACi.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tran Nguyen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | |
Collapse
|
56
|
Hodge G, Jersmann H, Tran HB, Roscioli E, Holmes M, Reynolds PN, Hodge S. Lymphocyte senescence in COPD is associated with decreased histone deacetylase 2 expression by pro-inflammatory lymphocytes. Respir Res 2015; 16:130. [PMID: 26498345 PMCID: PMC4619495 DOI: 10.1186/s12931-015-0287-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/02/2015] [Indexed: 01/16/2023] Open
Abstract
Background Histone acetyltransferases (HAT) and histone deacetylases (HDAC) are enzymes that upregulate and down-regulate pro-inflammatory gene transcription respectively. HDAC2 is required by corticosteroids to switch off activated inflammatory genes and is reduced in lung macrophages in COPD. We have shown that COPD patients have increased steroid resistant CD28null (senescent) pro-inflammatory T and NKT-like peripheral blood cells (particularly CD8+ subsets) and we hypothesized that these changes would be associated with a loss of HDAC2 from these senescent pro-inflammatory lymphocytes. Methods Blood was collected from 10 COPD and 10 aged-matched controls. Intracellular pro-inflammatory cytokines, IFNγ and TNFα, and expression of CD28, HDAC2 and HAT, were determined in lymphocyte subsets in the presence of ± 5 mg/ml theophylline (HDAC2 activator), 10 μM prednisolone and 2.5 ng/ml cyclosporine A (immunosuppressant), using flow cytometry. Results There was a loss of HDAC2 from CD28null CD8+ T and NKT-like cells in COPD. There was a significant negative correlation between HDAC2 expression and the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = −.763, p < 0.001 for T-cell IFNγ). There was a synergistic upregulation of HDAC2 and associated decrease in pro-inflammatory cytokine production in CD28nullCD8+ T and NKT-like cells in the presence of 5 mg/L theophylline + 10−6 M prednisolone or 2.5 ng/mL cyclosporine A (CsA). Conclusions Lymphocyte senescence in COPD is associated with loss of HDAC2 in CD28nullCD8+ T and NKT-like cells. Alternative treatment options such as combined theophylline with low-dose CsA, that inhibit these pro-inflammatory cells, may reduce systemic inflammation in COPD.
Collapse
Affiliation(s)
- Greg Hodge
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia. .,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Hubertus Jersmann
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia. .,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Hai B Tran
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | - Eugene Roscioli
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | - Mark Holmes
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia. .,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Paul N Reynolds
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia. .,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Sandra Hodge
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia. .,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
57
|
Ellmeier W. Molecular control of CD4+ T cell lineage plasticity and integrity. Int Immunopharmacol 2015; 28:813-7. [DOI: 10.1016/j.intimp.2015.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
|
58
|
Feng Y, Rudensky AY. DNA methylation secures CD4(+) and CD8(+) T cell lineage borders. Nat Immunol 2015; 16:681-3. [PMID: 26086134 DOI: 10.1038/ni.3207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yongqiang Feng
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
59
|
Yiew KH, Chatterjee TK, Hui DY, Weintraub NL. Histone Deacetylases and Cardiometabolic Diseases. Arterioscler Thromb Vasc Biol 2015; 35:1914-9. [PMID: 26183616 DOI: 10.1161/atvbaha.115.305046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Cardiometabolic disease, emerging as a worldwide epidemic, is a combination of metabolic derangements leading to type 2 diabetes mellitus and cardiovascular disease. Genetic and environmental factors are linked through epigenetic mechanisms to the pathogenesis of cardiometabolic disease. Post-translational modifications of histone tails, including acetylation and deacetylation, epigenetically alter chromatin structure and dictate cell-specific gene expression patterns. The histone deacetylase family comprises 18 members that regulate gene expression by altering the acetylation status of nucleosomal histones and by functioning as nuclear transcriptional corepressors. Histone deacetylases regulate key aspects of metabolism, inflammation, and vascular function pertinent to cardiometabolic disease in a cell- and tissue-specific manner. Histone deacetylases also likely play a role in the metabolic memory of diabetes mellitus, an important clinical aspect of the disease. Understanding the molecular, cellular, and physiological functions of histone deacetylases in cardiometabolic disease is expected to provide insight into disease pathogenesis, risk factor control, and therapeutic development.
Collapse
Affiliation(s)
- Kan Hui Yiew
- From the Department of Pharmacology and Toxicology (K.H.Y.) and Vascular Biology Center, Department of Medicine (K.H.Y., T.K.C., N.L.W.), Medical College of Georgia/Georgia Regents University, Augusta; and Department of Pathology, Institute for Metabolic Diseases, University of Cincinnati, OH (D.Y.H.)
| | - Tapan K Chatterjee
- From the Department of Pharmacology and Toxicology (K.H.Y.) and Vascular Biology Center, Department of Medicine (K.H.Y., T.K.C., N.L.W.), Medical College of Georgia/Georgia Regents University, Augusta; and Department of Pathology, Institute for Metabolic Diseases, University of Cincinnati, OH (D.Y.H.)
| | - David Y Hui
- From the Department of Pharmacology and Toxicology (K.H.Y.) and Vascular Biology Center, Department of Medicine (K.H.Y., T.K.C., N.L.W.), Medical College of Georgia/Georgia Regents University, Augusta; and Department of Pathology, Institute for Metabolic Diseases, University of Cincinnati, OH (D.Y.H.)
| | - Neal L Weintraub
- From the Department of Pharmacology and Toxicology (K.H.Y.) and Vascular Biology Center, Department of Medicine (K.H.Y., T.K.C., N.L.W.), Medical College of Georgia/Georgia Regents University, Augusta; and Department of Pathology, Institute for Metabolic Diseases, University of Cincinnati, OH (D.Y.H.).
| |
Collapse
|
60
|
The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding. PLoS Genet 2015; 11:e1005251. [PMID: 26107960 PMCID: PMC4480970 DOI: 10.1371/journal.pgen.1005251] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022] Open
Abstract
The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3’s function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression. The suppressive activity of regulatory T cells provides the immune system with a mechanism to prevent detrimental immune responses, such as autoimmunity, attack of the beneficial commensal microbiota and rejection of the fetus. Intriguingly, expression of a single lineage factor Foxp3 is sufficient to completely reprogram T cells from a pro-inflammatory to a suppressive phenotype. Here, we show that Foxp3 alters the expression of thousands of genes through several independent mechanisms. In many cases, its own ability to bind to DNA appears to be dispensable, but rather it binds indirectly to the DNA by interaction with other transcription factors. Foxp3 then in turn recruits other proteins that affect gene expression through chromatin modification. For example, Foxp3 indirectly binds to the IL-2 promoter via interaction with the transcriptional activators c-Rel, AML-1 and NFAT. This leads to the Foxp3 mediated recruitment of class I histone deacetylases HDAC1, 2 and 3, which in turn counteracts the activation-induced hyper-acetylation of the promoter, thereby switching the gene off. In a way, Foxp3 hijacks pre-existing regulatory mechanism to reverse the transcriptional expression status of the target gene. By dissecting Foxp3 on a molecular level, we also show that this is only one of several independent mechanism utilised by Foxp3.
Collapse
|
61
|
Abstract
The multiple lineages and differentiation states that constitute the T-cell compartment all derive from a common thymic precursor. These distinct transcriptional states are maintained both in time and after multiple rounds of cell division by the concerted actions of a small set of lineage-defining transcription factors that act in conjunction with a suite of chromatin-modifying enzymes to activate, repress, and fine-tune gene expression. These chromatin modifications collectively provide an epigenetic code that allows the stable and heritable maintenance of the T-cell phenotype. Recently, it has become apparent that the epigenetic code represents a therapeutic target for a variety of immune cell disorders, including lymphoma and acute and chronic inflammatory diseases. Here, we review the recent advances in epigenetic regulation of gene expression, particularly as it relates to the T-cell differentiation and function.
Collapse
Affiliation(s)
- Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
62
|
[MUW researcher of the month]. Wien Klin Wochenschr 2015; 127:314-5. [PMID: 25895573 DOI: 10.1007/s00508-015-0790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, Bilic I, Moser MA, Hainberger D, Mayer H, Seiser C, Bergthaler A, Taniuchi I, Ellmeier W. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol 2014; 97:635-44. [PMID: 25548254 DOI: 10.1189/jlb.1hi1113-597rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD8 coreceptor expression is dynamically regulated during thymocyte development and is tightly controlled by the activity of at least 5 different cis-regulatory elements. Despite the detailed characterization of the Cd8 loci, the regulation of the complex expression pattern of CD8 cannot be fully explained by the activity of the known Cd8 enhancers. In this study, we revisited the Cd8ab gene complex with bioinformatics and transgenic reporter gene expression approaches to search for additional Cd8 cis-regulatory elements. This led to the identification of an ECR (ECR-4), which in transgenic reporter gene expression assays, directed expression preferentially in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like CD8(+) T cells. ECR-4, designated as Cd8 enhancer E8VI, was bound by Runx/CBFβ complexes and Bcl11b, indicating that E8VI is part of the cis-regulatory network that recruits transcription factors to the Cd8ab gene complex in CD8(+) T cells. Transgenic reporter expression was maintained in LCMV-specific CD8(+) T cells upon infection, although short-term, in vitro activation led to a down-regulation of E8VI activity. Finally, E8VI directed transgene expression also in CD8αα(+) DCs but not in CD8αα-expressing IELs. Taken together, we have identified a novel Cd8 enhancer that directs expression in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like and antigen-specific effector/memory CD8(+) T cells and in CD8αα(+) DCs, and thus, our data provide further insight into the cis-regulatory networks that control CD8 expression.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Hombauer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hammad Hassan
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hirokazu Tanaka
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nighat Yasmin
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yoshinori Naoe
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mirjam A Moser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Hainberger
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Mayer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Seiser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ichiro Taniuchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wilfried Ellmeier
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
64
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
65
|
Boucheron N, Tschismarov R, Goeschl L, A Moser M, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser FP, Müller L, Hassan H, Bennett KL, Colinge J, Schreiner W, Egawa T, Taniuchi I, Matthias P, Seiser C, Ellmeier W. Erratum: Corrigendum: CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 2014. [DOI: 10.1038/ni0914-894e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
66
|
Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:524-38. [PMID: 25072962 DOI: 10.1016/j.bbcan.2014.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.
Collapse
|