51
|
5-Lipoxygenase negatively regulates Th1 response during Brucella abortus infection in mice. Infect Immun 2015; 83:1210-6. [PMID: 25583526 DOI: 10.1128/iai.02592-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucella abortus is a Gram-negative bacterium that infects humans and cattle, causing a chronic inflammatory disease known as brucellosis. A Th1-mediated immune response plays a critical role in host control of this pathogen. Recent findings indicate contrasting roles for lipid mediators in host responses against infections. 5-Lipoxygenase (5-LO) is an enzyme required for the production of the lipid mediators leukotrienes and lipoxins. To determine the involvement of 5-LO in host responses to B. abortus infection, we intraperitoneally infected wild-type and 5-LO-deficient mice and evaluated the progression of infection and concomitant expression of immune mediators. Here, we demonstrate that B. abortus induced the upregulation of 5-LO mRNA in wild-type mice. Moreover, this pathogen upregulated the production of the lipid mediators leukotriene B4 and lipoxin A4 in a 5-LO-dependent manner. 5-LO-deficient mice displayed lower bacterial burdens in the spleen and liver and less severe liver pathology, demonstrating an enhanced resistance to infection. Host resistance paralleled an increased expression of the proinflammatory mediators interleukin-12 (IL-12), gamma interferon (IFN-γ), and inducible nitric oxide synthase (iNOS) during the course of infection. Moreover, we demonstrated that 5-LO downregulated the expression of IL-12 in macrophages during B. abortus infection. Our results suggest that 5-LO has a major involvement in B. abortus infection, by functioning as a negative regulator of the protective Th1 immune responses against this pathogen.
Collapse
|
52
|
Abstract
Mast cells have been demonstrated to have critical roles in host defense against a number of types of pathogens. In order to better understand how mast cells participate in effective immune responses, it is important to evaluate their ability to respond directly to pathogens and their products. In the current chapter we provide a methodology to evaluate human mast cell responses to a number of bacterial and fungal pathogen products and to mammalian reovirus as a model of acute viral infection. These methods should provide key information necessary to aid in the effective design of experiments to evaluate human mast cell responses to a number of other organisms. However, it is important to carefully consider the biology of the mast cell subsets and pathogens involved and the optimal experimental conditions necessary to evaluate mediators of interest.
Collapse
Affiliation(s)
- Ian D Haidl
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | | |
Collapse
|
53
|
Zhang H, Wu H, Gao L, Qiu Y, Xiao J, Zhang Y. Identification, expression and immunological responses to bacterial challenge following vaccination of BLT1 gene from turbot, Scophthalmus maximus. Gene 2014; 557:229-35. [PMID: 25541026 DOI: 10.1016/j.gene.2014.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Leukotriene B4 (LTB4) is well known as a chemoattractant for leucocytes, recent studies also showed its involvement in adaptive immunity. The purpose of this work is to report the cloning, characterization and gene expression of leukotriene B4 receptor (BLT1) in turbot (Scophthalmus maximus), as well as the immunological response to challenge following vaccination with a live attenuated vaccine Vibrio anguillarum MVAV6203. The full cDNA sequence of turbot BLT1 was cloned. The open reading frame consists of 1119bp nucleotides, which translate into 372 amino acid protein. A high conservation of amino acid sequence was found in the seven transmembrane (TM) domains and intracellular loops. The intracellular loop 3 consisting of a unique cluster of basic amino acid residues might be associated with signal transduction. High amino acid similarity and a phylogenetic tree confirmed it as a leukotriene B4 receptor member. The BLT1 gene is expressed in a wide range of tissues with the highest expression in kidney followed by spleen. The expression of turbot BLT1 was significantly up-regulated in spleen, gut and gill after vaccination and in kidney and skin after challenge. These results suggest a potential role of turbot BLT1 in protection against infection.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Center for Translational Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ying Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
54
|
Lee W, Su Kim H, Lee GR. Leukotrienes induce the migration of Th17 cells. Immunol Cell Biol 2014; 93:472-9. [PMID: 25512344 DOI: 10.1038/icb.2014.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 12/24/2022]
Abstract
Th17 cell trafficking in response to leukotriene signaling is poorly understood. Here we showed that Th17 cells express high levels of leukotriene B4 receptor 1 (LTB4R1) and cysteinyl leukotriene receptor 1 (CysLTR1). Th17 cells migrated under the guidance of leukotriene B4 and D4. The migration of Th17 cells was more efficient than that of Th1 and Th2 cells, and it was blocked by specific inhibitors of LTB4R1 or CysLTR1. Studies in an animal model of experimental autoimmune encephalomyelitis revealed that treatment with montelukast alleviated disease symptoms and inhibited the recruitment of Th17 cells to the central nervous system. Thus, leukotrienes may act as chemoattractants for Th17 cells.
Collapse
Affiliation(s)
- Wonyong Lee
- Department of Life Science, Sogang University, Seoul, Korea
| | - Hyeong Su Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
55
|
Abstract
Leukotriene B4 (LTB4) is a potent inflammatory mediator derived from arachidonic acid. Two G protein-coupled receptors for LTB4 have been identified: a high-affinity receptor, BLT1, and a low-affinity receptor, BLT2. Both receptors mainly couple to pertussis toxin-sensitive Gi-like G proteins and induce cell migration. 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) was identified to bind BLT2 with higher affinity than LTB4. Expression of BLT1 was confirmed in type 1 helper T cells, type 2 helper T cells, type 17 helper T cells, effector CD8(+) T cells, dendritic cells and osteoclasts in addition to granulocytes, eosinophils and macrophages, and BLT1-deficient mice showed greatly reduced phenotypes in models of various inflammatory diseases, such as peritonitis, bronchial asthma, rheumatoid arthritis, atherosclerosis and osteoporosis. In mice, BLT2 expression is restricted to intestinal epithelial cells and epidermal keratinocytes. BLT2-deficient mice showed enhanced colitis after administration of dextran sulfate, possibly due to reduced intestinal barrier function. An aspirin-dependent reduction in 12-HHT production was responsible for delayed skin wound healing, showing that the 12-HHT/BLT2 axis also plays an important role in skin biology. BLT1 and BLT2 are therefore potential targets for the development of novel drugs.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
56
|
Vasiadi M, Newman J, Theoharides TC. Isoflavones inhibit poly(I:C)-induced serum, brain, and skin inflammatory mediators - relevance to chronic fatigue syndrome. J Neuroinflammation 2014; 11:168. [PMID: 25359293 PMCID: PMC4236420 DOI: 10.1186/s12974-014-0168-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Chronic Fatigue Syndrome (CFS) is a neuroimmunoendocrine disease affecting about 1% of the US population, mostly women. It is characterized by debilitating fatigue for six or more months in the absence of cancer or other systemic diseases. Many CFS patients also have fibromyalgia and skin hypersensitivity that worsen with stress. Corticotropin-releasing hormone (CRH) and neurotensin (NT), secreted under stress, activate mast cells (MC) necessary for allergic reactions to release inflammatory mediators that could contribute to CFS symptoms. Objective To investigate the effect of isoflavones on the action of polyinosinic:polycytidylic acid (poly(I:C)), with or without swim stress, on mouse locomotor activity and inflammatory mediator expression, as well as on human MC activation. Methods Female C57BL/6 mice were randomly divided into four groups: (a) control/no-swim, (b) control/swim, (c) polyinosinic:polycytidylic acid (poly(I:C))/no swim, and (d) polyinosinic:polycytidylic acid (poly(I:C))/swim. Mice were provided with chow low or high in isoflavones for 2 weeks prior to ip injection with 20 mg/kg poly(I:C) followed or not by swim stress for 15 minutes. Locomotor activity was monitored overnight and animals were sacrificed the following day. Brain and skin gene expression, as well as serum levels, of inflammatory mediators were measured. Data were analyzed using the non-parametric Mann-Whitney U-test. Results Poly(I:C)-treated mice had decreased locomotor activity over 24 hours, and increased serum levels of TNF-α, IL-6, KC (IL-8/CXCL8 murine homolog), CCL2,3,4,5, CXCL10, as well as brain and skin gene expression of TNF, IL-6, KC (Cxcl1, IL8 murine homolog), CCL2, CCL4, CCL5 and CXCL10. Histidine decarboxylase (HDC) and NT expression were also increased, but only in the skin, over the same period. High isoflavone diet reversed these effects. Conclusion Poly(I:C) treatment decreased mouse locomotor activity and increased serum levels and brain and skin gene expression of inflammatory mediators. These effects were inhibited by isoflavones that may prove useful in CFS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0168-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalini Vasiadi
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| | - Jennifer Newman
- Department of Neuroscience, Tufts University, School of Medicine, Boston, MA, USA.
| | - Theoharis C Theoharides
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
57
|
Bond G, Nowocin A, Sacks SH, Wong W. Kinetics of mast cell migration during transplantation tolerance. Transpl Immunol 2014; 32:40-5. [PMID: 25460809 DOI: 10.1016/j.trim.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND After inflammatory stimulus, mast cells (MC) migrate to secondary lymphoid organs contributing to adaptive immune response. There is growing evidence that MC also contribute to transplant tolerance, but little is known about MC kinetics in the setting of transplant tolerance and rejection. Likewise it has been demonstrated that complement split products, which are known to act as chemoattractants for MC, are necessary for transplant tolerance. METHODS Naive skin and lymph nodes, skin grafts and draining lymph nodes from wild type and complement deficient mice treated with a tolerogenic protocol were analyzed. RESULTS Early after tolerance induction MC leave the graft and migrate to the draining lymph nodes. After this initial efflux, MC reappear in tolerant skin grafts in numbers exceeding that of naive skin. MC density in draining lymph nodes obtained from tolerant mice also increased post transplant. There was no difference in MC density, migration and degranulation status between wild type and complement deficient mice implicating that chemotaxis is not disturbed in complement deficient mice. CONCLUSION This study gives detailed insight in kinetics of MC migration during transplant tolerance induction and rejection providing further evidence for a role of MC in transplant tolerance.
Collapse
Affiliation(s)
- Gregor Bond
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Anna Nowocin
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Wilson Wong
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK.
| |
Collapse
|
58
|
Sadik CD, Sezin T, Kim ND. Leukotrienes orchestrating allergic skin inflammation. Exp Dermatol 2014; 22:705-9. [PMID: 24433180 DOI: 10.1111/exd.12239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Leukotrienes constitute a group of lipid mediators, which may be subdivided into two groups, with leukotriene B4 on the one hand and cysteinyl leukotrienes on the other. Although leukotrienes are abundantly expressed in skin affected by diverse chronic inflammatory diseases, including atopic dermatitis, psoriasis, pemphigus vulgaris and bullous pemphigoid, their pathological roles in these diseases have remained elusive. Recent data now reveal that both leukotriene B4 and cysteinyl leukotrienes are indispensable in the pathogenesis of atopic dermatitis, with leukotriene B4 initiating the recruitment of inflammatory cells, particularly neutrophils and TH 2 cells into the skin, and cysteinyl leukotrienes later inducing characteristic structural alterations of chronically affected skin, specifically skin fibrosis and keratinocyte proliferation. Thus, these results reveal a sequential cooperation of LTB4 and cysteinyl leukotrienes to initiate and perpetuate allergic skin inflammation. These new insights highlight leukotrienes as promising therapeutic targets in allergic skin inflammation and should encourage more research into the role of leukotrienes in other inflammatory skin diseases.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
59
|
Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol 2014; 63:113-24. [PMID: 24698842 DOI: 10.1016/j.molimm.2014.02.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
Mast cells have historically been studied mainly in the context of allergic disease. In recent years, we have come to understand the critical importance of mast cells in tissue remodeling events and their role as sentinel cells in the induction and development of effective immune responses to infection. Studies of the role of mast cells in tumor immunity are more limited. The pro-tumorigenic role of mast cells has been widely reported. However, mast cell infiltration predicts improved prognosis in some cancers, suggesting that their prognostic value may be dependent on other variables. Such factors may include the nature of local mast cell subsets and the various activation stimuli present within the tumor microenvironment. Experimental models have highlighted the importance of mast cells in orchestrating the anti-tumor events that follow immunotherapies that target innate immunity. Mast cells are long-lived tissue resident cells that are abundant around many solid tumors and are radiation resistant making them unique candidates for combined treatment modalities. This review will examine some of the key roles of mast cells in tumor immunity, with a focus on potential immunotherapeutic interventions that harness the sentinel role of mast cells.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
60
|
Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 2014; 24:225-35. [DOI: 10.3109/14397595.2013.854056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
61
|
Urocortin affects migration of hepatic cancer cell lines via differential regulation of cPLA2 and iPLA2. Cell Signal 2014; 26:1125-34. [PMID: 24518041 DOI: 10.1016/j.cellsig.2014.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/01/2014] [Indexed: 12/14/2022]
Abstract
Urocortin (UCN) is a member of corticotrophin-releasing factor (CRF) family, which has been reported to play a role in many biological processes, including inflammation and cancer development. Growing evidence shows that PLA2 (phospholipase A2) enzymes also participate in inflammation and tumor development. The primary aim of the present study was to identify a novel signaling pathway of CRF receptor activation leading to migration of two kinds of hepatoma carcinoma cell lines, HepG2 and SMMC-7721, linking the stimulation of PLA2 expression by UCN to UCN-induced tumor cell migration. Pharmacological inhibitors and genetic approaches (such as stable transfection and siRNAs) were used in this study. Unlike HepG2 cells which express both CRF receptors themselves, SMMC-7721 cells which hardly express these two CRF receptors needed stable transfection with CRFR1 or CRFR2 to observe the effect of UCN. Two types of PLA2 enzymes, cPLA2 and iPLA2, were found to be regulated by UCN. Our data showed that UCN raised cPLA2 expression but lowered iPLA2 expression. Moreover, UCN was found to act on the certain region of iPLA2 promoter to reduce its transcription. UCN promoted tumor cell migration by up-regulating cPLA2 expression via CRFR1 whereas it suppressed tumor cell migration by down-regulating iPLA2 expression via CRFR2. These results indicate the dual roles for UCN in the hepatoma carcinoma cell migration, which involve the regulation of both cPLA2and iPLA2.
Collapse
|
62
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
The Kaposi's sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol 2013; 88:2131-56. [PMID: 24335295 DOI: 10.1128/jvi.02786-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). KS lesions are characterized by endothelial cells with multiple copies of the latent KSHV episomal genome, lytic replication in a low percentage of infiltrating monocytes, and inflammatory cytokines plus growth factors. We demonstrated that KSHV utilizes inflammatory cyclooxygenase 2/prostaglandin E2 to establish and maintain latency (Sharma-Walia, N., A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog 6:e1000777, 2010 [doi:10.1371/journal.ppat.1000777]). Here, we evaluated the role of 5-lipoxygenase (5LO) and its chemotactic metabolite leukotriene B4 (LTB4) in KSHV biology. Abundant staining of 5LO was detected in human KS tissue sections. We observed elevated levels of 5LO and high levels of secretion of LTB4 during primary KSHV infection of endothelial cells and in PEL B cells (BCBL-1 and BC-3 cells). Blocking the 5LO/LTB4 cascade inhibited viral latent ORF73, immunomodulatory K5, viral macrophage inflammatory protein 1 (MIP-1), and viral MIP-2 gene expression, without much effect on lytic switch ORF50, immediate early lytic K8, and viral interferon-regulatory factor 2 gene expression. 5LO inhibition significantly downregulated latent viral Cyclin and latency-associated nuclear antigen 2 levels in PEL cells. 5LO/LTB4 inhibition downregulated TH2-related cytokine secretion, elevated TH1-related cytokine secretion, and reduced human monocyte recruitment, adhesion, and transendothelial migration. 5LO/LTB4 inhibition reduced fatty acid synthase (FASN) promoter activity and its expression. Since FASN, a key enzyme required in lipogenesis, is important in KSHV latency, these findings collectively suggest that 5LO/LTB4 play important roles in KSHV biology and that effective inhibition of the 5LO/LTB4 pathway could potentially be used in treatment to control KS/PEL.
Collapse
|
64
|
Di Gennaro A, Haeggström JZ. Targeting leukotriene B4 in inflammation. Expert Opin Ther Targets 2013; 18:79-93. [PMID: 24090264 DOI: 10.1517/14728222.2013.843671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Leukotriene (LT) B(4) is a powerful proinflammatory lipid mediator and triggers adherence to the endothelium, activates and recruits leukocytes to the site of injury. When formed in excess, LTB(4) plays a pathogenic role and may sustain chronic inflammation in diseases such as asthma, rheumatoid arthritis, and inflammatory bowel disease. Recent investigations have also indicated that LTB(4) is involved in cardiovascular diseases. AREAS COVERED As the 5-lipoxygenase pathway involves several discrete, tightly coupled, enzymes, which convert the substrate, 'step by step', into bioactive products, several different strategies have been used to target LTB(4) as a means to treat inflammation. Here, we discuss recent findings regarding the development of selective enzyme inhibitors and antagonists for LTB(4) receptors, as well as their application in preclinical and clinical studies. EXPERT OPINION Components of the 5-lipoxygenase pathway have received considerable attention as candidate drug targets resulting in one new class of medications against asthma, that is, the antileukotrienes. However, efforts to specifically target LTB(4) have not yet been fruitful in the clinical setting, in spite of very promising preclinical data. Recently, crystal structures along with hitherto unknown functions of key enzymes in the leukotriene cascade have emerged, offering new opportunities for drug development and, with time, pharmacological intervention in LTB(4)-mediated pathologies.
Collapse
Affiliation(s)
- Antonio Di Gennaro
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Chemistry 2 , Scheeles väg 2, Stockholm, S-171 77 , Sweden
| | | |
Collapse
|
65
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
66
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
67
|
Lone AM, Taskén K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol 2013; 4:130. [PMID: 23760108 PMCID: PMC3671288 DOI: 10.3389/fimmu.2013.00130] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Eicosanoids are inflammatory mediators primarily generated by hydrolysis of membrane phospholipids by phospholipase A2 to ω-3 and ω-6 C20 fatty acids that next are converted to leukotrienes (LTs), prostaglandins (PGs), prostacyclins (PCs), and thromboxanes (TXAs). The rate-limiting and tightly regulated lipoxygenases control synthesis of LTs while the equally well-controlled cyclooxygenases 1 and 2 generate prostanoids, including PGs, PCs, and TXAs. While many of the classical signs of inflammation such as redness, swelling, pain, and heat are caused by eicosanoid species with vasoactive, pyretic, and pain-inducing effects locally, some eicosanoids also regulate T cell functions. Here, we will review eicosanoid production in T cell subsets and the inflammatory and immunoregulatory functions of LTs, PGs, PCs, and TXAs in T cells.
Collapse
Affiliation(s)
- Anna Mari Lone
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital , Oslo , Norway ; Biotechnology Centre, University of Oslo , Oslo , Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo , Oslo , Norway
| | | |
Collapse
|
68
|
Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 2013. [PMID: 23529572 DOI: 10.1007/s10165-013-0861-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder of joints for which there is no strict cure. However, conventional medications can reduce inflammation, relieve pain, and slow joint damage. Leukotrienes are a family of paracrine agents derived from oxidative metabolism of arachidonic acid. Synthesis of lipid mediators and subsequent induction of receptor activity are tightly regulated under normal physiological conditions, so that enzyme and/or receptor dysfunction can lead to a variety of clinical signs and symptoms of disease, such as local pain and tissue edema. In these tissues, immunocompetent cells accumulate at the site of injury, contributing to tissue damage and perpetuation of the disease process. Leukotrienes (often leukotriene B4) as potent chemotactic agents can provoke most signs and symptoms in rheumatoid arthritis by initiating, coordinating, sustaining, and amplifying the inflammatory response, through recruitment of leukocytes. A number of studies have reported that pharmacological modulation in this field can significantly attenuate clinical manifestations associated with different inflammatory pathologies.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Box: 6446, 14155, Tehran, Iran
| | | | | | | | | |
Collapse
|
69
|
Kan-o K, Matsunaga Y, Fukuyama S, Moriwaki A, Hirai-Kitajima H, Yokomizo T, Aritake K, Urade Y, Nakanishi Y, Inoue H, Matsumoto K. Mast cells contribute to double-stranded RNA-induced augmentation of airway eosinophilia in a murine model of asthma. Respir Res 2013; 14:28. [PMID: 23452625 PMCID: PMC3599763 DOI: 10.1186/1465-9921-14-28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clinical studies showed the contribution of viral infection to the development of asthma. Although mast cells have multiple roles in the pathogenesis of allergic asthma, their role of in the virus-associated pathogenesis of asthma remains unknown. Most respiratory viruses generate double-stranded (ds) RNA during their replication. dsRNA provokes innate immune responses. We recently showed that an administration of polyinocinic polycytidilic acid (poly IC), a mimetic of viral dsRNA, during allergen sensitization augments airway eosinophilia and hyperresponsiveness in mice via enhanced production of IL-13. METHODS The effect of poly IC on allergen-induced airway eosinophilia was investigated for mast cell-conserved Kit+/+ mice and -deficient KitW/KitW-v mice. The outcome of mast cell reconstitution was further investigated. RESULTS Airway eosinophilia and IL-13 production were augmented by poly IC in Kit+/+ mice but not in KitW/KitW-v mice. When KitW/KitW-v mice were reconstituted with bone marrow-derived mast cells (BMMCs), the augmentation was restored. The augmentation was not induced in the mice systemically deficient for TIR domain-containing adaptor-inducing IFN-β (TRIF) or interferon regulatory factor (IRF)-3, both mediate dsRNA-triggered innate immune responses. The augmentation was, however, restored in KitW/KitW-v mice reconstituted with TRIF-deficient or IRF-3-deficient BMMCs. Although leukotriene B4 and prostaglandin D2 are major lipid mediators released from activated mast cells, no their contribution was shown to the dsRNA-induced augmentation of airway eosinophilia. CONCLUSIONS We conclude that mast cells contribute to dsRNA-induced augmentation of allergic airway inflammation without requiring direct activation of mast cells with dsRNA or involvement of leukotriene B4 or prostaglandin D2.
Collapse
Affiliation(s)
- Keiko Kan-o
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Matsunaga
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Moriwaki
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Hirai-Kitajima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8431, Japan
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiromasa Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
70
|
Di Gennaro A, Haeggström JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol 2013; 116:51-92. [PMID: 23063073 DOI: 10.1016/b978-0-12-394300-2.00002-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The leukotrienes are important lipid mediators with immune modulatory and proinflammatory properties. Classical bioactions of leukotrienes include chemotaxis, endothelial adherence, and activation of leukocytes, chemokine production, as well as contraction of smooth muscles in the microcirculation and respiratory tract. When formed in excess, these compounds play a pathogenic role in several acute and chronic inflammatory diseases, such as asthma, rheumatoid arthritis, and inflammatory bowel disease. An increasing number of diseases have been linked to inflammation implicating the leukotrienes as potential mediators. For example, recent investigations using genetic, morphological, and biochemical approaches have pointed to the involvement of leukotrienes in cardiovascular diseases including atherosclerosis, myocardial infarction, stroke, and abdominal aortic aneurysm. Moreover, new insights have changed our previous notion of leukotrienes as mediators of inflammatory reactions to molecules that can fine-tune the innate and adaptive immune response. Here, we review the most recent understanding of the leukotriene cascade with emphasis on recently identified roles in immune reactions and pathophysiology.
Collapse
Affiliation(s)
- Antonio Di Gennaro
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
71
|
Abstract
Mast cells are well known as principle effector cells of type I hypersensitivity responses. Beyond this role in allergic disease, these cells are now appreciated as playing an important role in many inflammatory conditions. This review summarizes the support for mast cell involvement in resisting bacterial infection, exacerbating autoimmunity and atherosclerosis, and promoting cancer progression. A commonality in these conditions is the ability of mast cells to elicit migration of many cell types, often through the production of inflammatory cytokines such as tumor necrosis factor. However, recent data also demonstrates that mast cells can suppress the immune response through interleukin-10 production. The data encourage those working in this field to expand their view of how mast cells contribute to immune homeostasis.
Collapse
|
72
|
Oldford SA, Marshall JS. Mast Cell Modulation of the Tumor Microenvironment. THE TUMOR IMMUNOENVIRONMENT 2013:479-509. [DOI: 10.1007/978-94-007-6217-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
73
|
Christy AL, Walker ME, Hessner MJ, Brown MA. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun 2012; 42:50-61. [PMID: 23267561 DOI: 10.1016/j.jaut.2012.11.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023]
Abstract
The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS.
Collapse
Affiliation(s)
- Alison L Christy
- Northwestern University, Feinberg School of Medicine, Department of Microbiology and Immunology, Chicago, IL, USA
| | | | | | | |
Collapse
|
74
|
Tanis VM, Bacani GM, Blevitt JM, Chrovian CC, Crawford S, De Leon A, Fourie AM, Gomez L, Grice CA, Herman K, Kearney AM, Landry-Bayle AM, Lee-Dutra A, Nelson J, Riley JP, Santillán A, Wiener JJ, Xue X, Young AL. Azabenzthiazole inhibitors of leukotriene A4 hydrolase. Bioorg Med Chem Lett 2012; 22:7504-11. [DOI: 10.1016/j.bmcl.2012.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022]
|
75
|
Abstract
Over the past decade, a growing recognition of the importance of neutralizing antibodies in host defense combined with the success of B-cell depletion therapies in treating auto-immune disorders has led to an increased focus on better understanding the pathways underpinning B-cell antibody production. In general, B cells require cognate interaction with T helper cells in the germinal center of lymphoid follicles to generate protective antibodies. However, recent evidence shows that B cells receive additional help from invariant natural killer T cells, dendritic cells, and various granulocytes, including neutrophils, eosinophils, and basophils. These innate immune cells enhance T-cell-dependent antibody responses by delivering B-cell helper signals both in the germinal center and at postgerminal center lymphoid sites such as the bone marrow. In addition to enhancing and complementing the B-cell helper activity of canonical T cells, invariant natural killer T cells, dendritic cells, and granulocytes can deliver T cell-independent B-cell helper signals at the mucosal interface and in the marginal zone of the spleen to initiate rapid innate-like antibody responses. Here, we discuss recent advances in the role of adaptive and innate B-cell helper signals in antibody diversification and production.
Collapse
Affiliation(s)
- Andrea Cerutti
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, Barcelona, Spain.
| | | | | |
Collapse
|
76
|
Paz PB, Vega-Hissi EG, Estrada MR, Garro Martinez JC. In SilicoModeling of the Molecular Structure and Binding of Leukotriene A4 into Leukotriene A4 Hydrolase. Chem Biol Drug Des 2012; 80:902-8. [DOI: 10.1111/cbdd.12037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
77
|
GRICE CHERYLA, FOURIE ANNEM, LEE-DUTRA ALICE. Leukotriene A4 Hydrolase: Biology, Inhibitors and Clinical Applications. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Leukotriene A4 hydrolase is a zinc-containing cytosolic enzyme with both hydrolase and aminopeptidase activity. LTA4H stereospecifically catalyzes the transformation of the unstable epoxide LTA4 to the potent pro-inflammatory mediator LTB4. Variations in the lta4h gene have been linked to susceptibility to multiple diseases including myocardial infarction, stroke and asthma. Pre-clinical animal models and human biomarker data have implicated LTB4 in inflammatory diseases. Several groups have now identified selective inhibitors of LTA4H, many of which were influenced by the disclosure of a protein crystal structure a decade ago. Clinical validation of LTA4H remains elusive despite the progression of inhibitors into pre-clinical and clinical development.
Collapse
Affiliation(s)
- CHERYL A. GRICE
- Johnson & Johnson Pharmaceutical Research & Development, 3210 Merryfield Row, San Diego California 92121 USA
| | - ANNE M. FOURIE
- Johnson & Johnson Pharmaceutical Research & Development, 3210 Merryfield Row, San Diego California 92121 USA
| | - ALICE LEE-DUTRA
- Johnson & Johnson Pharmaceutical Research & Development, 3210 Merryfield Row, San Diego California 92121 USA
| |
Collapse
|
78
|
Gri G, Frossi B, D'Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C. Mast cell: an emerging partner in immune interaction. Front Immunol 2012; 3:120. [PMID: 22654879 PMCID: PMC3360165 DOI: 10.3389/fimmu.2012.00120] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023] Open
Abstract
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Collapse
Affiliation(s)
- Giorgia Gri
- Immunology Laboratory, Department of Medical and Biological Science, University of Udine Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
79
|
McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm 2012; 2012:236345. [PMID: 22665949 PMCID: PMC3362132 DOI: 10.1155/2012/236345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/12/2012] [Indexed: 12/20/2022] Open
Abstract
Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason B. Weinberg
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
80
|
Wei JJ, Song CW, Sun LC, Yuan Y, Li D, Yan B, Liao SJ, Zhu JH, Wang Q, Zhang GM, Feng ZH. SCF and TLR4 ligand cooperate to augment the tumor-promoting potential of mast cells. Cancer Immunol Immunother 2012; 61:303-12. [PMID: 21877248 PMCID: PMC11029793 DOI: 10.1007/s00262-011-1098-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/12/2011] [Indexed: 12/14/2022]
Abstract
Mast cells may have either antitumor or tumor-promoting potential. Nevertheless, mast cells in tumor microenvironment have been found to promote tumor growth. So far the mechanisms underlying the modulation of mast cell function in tumor microenvironment remains to be fully elucidated. Here, we report that tumor-promoting potential of mast cells could be augmented by molecules released from damaged tumor cells through cooperative stimulation of stem cell factor (SCF) and ligand for Toll-like receptor 4 (TLR4). Co-simulation with SCF and TLR4 ligand inhibited mast cell degranulation, but efficiently induced the production and secretion of VEGF, PDGF, and IL-10. Although TLR4 ligand alone may induce IL-12 expression in mast cells, co-stimulation with SCF and TLR4 ligand induced the expression of IL-10, but not IL-12, in mast cells. The phosphorylation of GSK3β was crucial for the effect of SCF and TLR4 ligand. In addition to inducing phosphorylation of GSK3β at Ser9 through PI3K pathway, SCF and TLR4 ligand cooperated to induce phosphorylation of GSK3β at Tyr216 by simultaneous activation of ERK and p38MAPK pathways. Both phospho-Ser9 and phospho-Tyr216 of GSK3β were required for IL-10 expression induced by SCF/TLR4 ligand, whereas suppressive effect of SCF/TLR4 ligand on mast cell degranulation was related to phospho-Tyr216. Importantly, the effect of SCF and TLR4 ligand on mast cells could be abrogated by inhibiting phosphorylation of GSK3β at Tyr216. These findings disclose the mechanisms underlying the modulation of mast cell function in tumor microenvironment, and suggest that inhibiting GSK3β in mast cells will be beneficial to the treatment of cancer.
Collapse
Affiliation(s)
- Jing-Jing Wei
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Chuan-Wang Song
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Ling-Cong Sun
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Ye Yuan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Bin Yan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Sheng-Jun Liao
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Jian-Hua Zhu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Qi Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
81
|
Yeum CE, Park EY, Lee SB, Chun HJ, Chae GT. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing. J Tissue Eng Regen Med 2012; 7:279-91. [PMID: 22278819 DOI: 10.1002/term.521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/04/2011] [Accepted: 09/20/2011] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) are known to be effective in wound healing, but not much has been reported on quantitative correlations between MSCs injected into the wound site and MSCs that actually participate in wound healing. This study traced MSCs participating in wound healing by using small intestinal submucosa (SIS) as a cell carrier, identified their moving path and calculated the number of MSCs involved in wound healing. First, MSCs were isolated from the nude mouse and 1 × 10(6) cells were seeded onto the centre of the SIS. MSC-seeded SIS complexes were injected onto full-thickness skin wounds made on the dorsum of nude mice. Tracing of MSC-seeded SIS complex transplanted to the wound site revealed that 27.6% of the MSCs were migrated to the wound site at the first attempt. Second, repeated injection of additional MSCs did not increase the number of MSCs participating in wound healing beyond a certain constant maximum amount. The number of MSCs present in the wound site remains constant in the range 2-3 × 10(5) from day 1 to day 10. The expression of skin regeneration-related growth factors was confirmed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). MSCs participating in wound healing were found not only to suppress inflammation of the wound but also to increase the skin regeneration-related growth factors that enable the recovery of the skin. An optimal number of about 3 × 10(5) MSCs injected into the site was found to adapt themselves to the skin wound-healing process effectively.
Collapse
Affiliation(s)
- Chung Eun Yeum
- Institute of Hansen's Disease, College of Medicine, Catholic University, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
82
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review.
Collapse
Affiliation(s)
- Colleen S Curran
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Paul J Bertics
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
83
|
Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 2011; 91:207-15. [PMID: 22058421 DOI: 10.1189/jlb.0811402] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoattractants are pivotal mediators of host defense, orchestrating the recruitment of immune cells into sites of infection and inflammation. Chemoattractants display vast chemical diversity and include bioactive lipids, proteolytic fragments of serum proteins, and chemokines (chemotactic cytokines). All chemoattractants induce chemotaxis by activating seven-transmembrane-spanning GPCRs expressed on immune cells, establishing the concept that all chemoattractants are related in function. However, although chemoattractants have overlapping functions in vitro, recent in vivo data have revealed that they function, in many cases, nonredundantly in vivo. The chemically diverse nature of chemoattractants contributes to the fine control of leukocyte trafficking in vivo, with sequential chemoattractant use guiding immune cell recruitment into inflammatory sites. Lipid mediators frequently function as initiators of leukocyte recruitment, attracting the first immune cells into tissues. These initial responding immune cells produce cytokines locally, which in turn, induce the local release of chemokines. Local chemokine production then markedly amplifies subsequent waves of leukocyte recruitment. These new discoveries establish a paradigm for leukocyte recruitment in inflammation--described as lipid-cytokine-chemokine cascades--as a driving force in the effector phase of immune responses.
Collapse
Affiliation(s)
- Christian D Sadik
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
84
|
Ribatti D, Nico B, Finato N, Crivellato E. Tryptase-positive mast cells and CD8-positive T cells in human endometrial cancer. Pathol Int 2011; 61:442-4. [PMID: 21707849 DOI: 10.1111/j.1440-1827.2011.02680.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we correlated the number of tryptase-reactive mast cells with the number of CD8-positive T cells in human endometrial adenocarcinoma biopsy specimens by means of immunohistochemical techniques. Results have shown that CD8-positive T cell counts correlate to tryptase-positive mast cell counts and that these parameters increase in accordance with the tumor progression of human endometrial carcinoma. These data suggest that inhibition of inflammation or manipulation of inflammatory resolution pathways may be a new therapeutic approach for the treatment of endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Italy.
| | | | | | | |
Collapse
|
85
|
Collington SJ, Williams TJ, Weller CL. Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 2011; 32:478-85. [PMID: 21917522 DOI: 10.1016/j.it.2011.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
Mast cells are tissue-resident cells best known for their role in allergy and host defence against helminth parasites. They are involved in responses against other pathogenic infections, wound healing and inflammatory disease. Committed mast cell progenitors are released from the bone marrow into the circulation, from where they are recruited into tissues to complete their maturation under the control of locally produced cytokines and growth factors. Directed migration occurs at distinct stages of the mast cell life-cycle and is associated with successive up- and downregulation of cell surface adhesion molecules and chemoattractant receptors as the cells mature. This article discusses some of the recent advances in our understanding of the mechanisms underlying mast cell recruitment.
Collapse
Affiliation(s)
- Sarah J Collington
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
86
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
87
|
Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, Blank U. Mast cells as cellular sensors in inflammation and immunity. Front Immunol 2011; 2:37. [PMID: 22566827 PMCID: PMC3342044 DOI: 10.3389/fimmu.2011.00037] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 12/28/2022] Open
Abstract
Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.
Collapse
|
88
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 2011; 63:539-84. [PMID: 21771892 DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kashiwakura JI, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:29-46. [PMID: 21713650 DOI: 10.1007/978-1-4419-9533-9_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mast cells play a major role in allergy and anaphylaxis, as well as a protective role in immunity against bacteria and venoms (innate immunity) and T-cell activation (acquired immunity).1,2 It was long thought that two steps are essential to mast cell activation. The first step (sensitization) occurs when antigen-specific IgE binds to its high-affinity IgE receptor (FcεRI) expressed on the surface of mast cells. The second step occurs when antigen (Ag) or anti-IgE binds antigen-specific IgE antibodies bound to FcεRI present on the mast cell surface (this mode of stimulation hereafter referred to as IgE+Ag or IgE+anti-IgE stimulation, respectively).Conventional wisdom has been that monomeric IgE plays only an initial, passive role in mast cell activation. However, recent findings have shown that IgE binding to its receptor FcεRI can mediate mast cell activation events even in the absence of antigen (this mode of stimulation hereafter referred to as IgE(-Ag) stimulation). Different subtypes of monomeric IgEs act via IgE(-Ag) stimulation to elicit varied effects on mast cells function, survival and differentiation. This chapter will describe the role of monomeric IgE molecules in allergic reaction, the various effects and mechanisms of action of IgE(-Ag) stimulation on mast cells and what possible developments may arise from this knowledge in the future. Since mast cells are involved in a variety of pathologic and protective responses, understanding the role that monomeric IgE plays in mast cell function, survival and differentiation will hopefully lead to better understanding and treatment of asthma and other allergic diseases, as well as improved understanding of host response to infections.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
90
|
Reuter S, Taube C. Mast cells and the development of allergic airway disease. J Occup Med Toxicol 2011; 3 Suppl 1:S2. [PMID: 18315833 PMCID: PMC2259396 DOI: 10.1186/1745-6673-3-s1-s2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Murine models have highlighted the importance of T-cells and TH2 cytokines in development of allergen-induced airway disease. In contrast, the role of mast cells for the development of allergic airway disease has been controversial. Recent studies in murine models demonstrate a significant contribution of mast cells during the development of airway hyperresponsiveness and airway inflammation. Furthermore these models have allowed identifying certain mast cell-produced mediators (e.g. histamine and leukotriene B4) to be involved in the recruitment of effector T-cells into the lung. Additionally, mast cell-produced TNF can directly activate TH2 cells and contribute to the development of allergic airway disease. These new findings demonstrate a complex role of mast cells and their mediators, not only as effector cells, but also during sensitization and development of allergic airway disease. Therefore mast cells and certain mast cell-produced mediators might be an interesting target for the prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Sebastian Reuter
- III, Medical Clinic, Dept, of Pulmonary Medicine, Johannes-Gutenberg-University, Langenbeckstr, 1, 55101 Mainz, Germany.
| | | |
Collapse
|
91
|
Thakker P, Marusic S, Stedman NL, Lee KL, McKew JC, Wood A, Goldman SJ, Leach MW, Collins M, Kuchroo VK, Wolf SF, Clark JD, Hassan-Zahraee M. Cytosolic phospholipase A2α blockade abrogates disease during the tissue-damage effector phase of experimental autoimmune encephalomyelitis by its action on APCs. THE JOURNAL OF IMMUNOLOGY 2011; 187:1986-97. [PMID: 21746963 DOI: 10.4049/jimmunol.1002789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic phospholipase A(2)α (cPLA(2)α) is the rate-limiting enzyme for release of arachidonic acid, which is converted primarily to PGs via the cyclooxygenase 1 and 2 pathways and to leukotrienes via the 5-lipoxygenase pathway. We used adoptive transfer and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in two different strains of mice (SJL or C57BL/6) to demonstrate that blockade of cPLA(2)α with a highly specific small-molecule inhibitor during the tissue-damage effector phase abrogates the clinical manifestation of disease. Using the adoptive transfer model in SJL mice, we demonstrated that the blockade of cPLA(2)α during the effector phase of disease was more efficacious in ameliorating the disease pathogenesis than the blockade of each of the downstream enzymes, cyclooxygenase-1/2 and 5-lipooxygenase. Similarly, blockade of cPLA(2)α was highly efficacious in ameliorating disease pathogenesis during the effector phase of EAE in the adoptive transfer model of EAE in C57BL/6 mice. Investigation of the mechanism of action indicates that cPLA(2)α inhibitors act on APCs to diminish their ability to induce Ag-specific effector T cell proliferation and proinflammatory cytokine production. Furthermore, cPLA(2)α inhibitors may prevent activation of CNS-resident microglia and may increase oligodendrocyte survival. Finally, in a relapsing-remitting model of EAE in SJL mice, therapeutic administration of a cPLA(2)α inhibitor, starting from the peak of disease or during remission, completely protected the mice from subsequent relapses.
Collapse
Affiliation(s)
- Paresh Thakker
- Inflammation and Immunology Research Unit, Pfizer Research and Development, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
93
|
Abstract
Leukotrienes are arachidonic acid-derived lipid mediators of inflammation. The initial catalytic step in the formation of leukotrienes is catalyzed by 5-lipoxygenase (5-LOX) in conjunction with its activating partner protein FLAP. The long-awaited crystal structure of 5-LOX--reported in a recent issue of Science--should lead to novel, purpose-designed inhibitors for the treatment of asthma and for probing leukotriene involvement in cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Colin D Funk
- Department of Physiology, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
94
|
Mast Cells and Immunoregulation/Immunomodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:186-211. [DOI: 10.1007/978-1-4419-9533-9_11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
95
|
Nancey S, Boschetti G, Hacini F, Sardi F, Durand PY, Le Borgne M, Furhmann L, Flourie B, Kaiserlian D. Blockade of LTB(4) /BLT(1) pathway improves CD8(+) T-cell-mediated colitis. Inflamm Bowel Dis 2011; 17:279-88. [PMID: 20722054 DOI: 10.1002/ibd.21404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/01/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Leukotriene B4 (LTB(4) ) has chemotactic properties for activated T cells expressing the high-affinity receptor BLT(1) . This study investigated whether the LTB(4) antagonist (CP-105,693), selective for BLT(1) receptor, could protect mice from colitis mediated by specific cytotoxic CD8(+) T lymphocytes (CTL). METHODS Virus-specific colitis was induced in C57Bl/6 mice transferred with lymphoid cells from P14 TcR Tg mice which are specific to class I GP33 peptide of LCMV. Mice were immunized with GP33-pulsed dendritic cells and colitis was elicited by intrarectal administration of the peptide. Colitis was evaluated by body weight loss and macroscopic and histological analysis of colon. In vivo priming of specific CD8(+) CTL was determined using interferon (IFN)-γ ELISPOT and in vivo CTL assays. In some experiments mice were treated with a selective LTB(4) receptor antagonist. RESULTS Immunization with GP33-pulsed dendritic cells (DCs) induced priming of specific CD8(+) CTL, as shown by the presence of IFN-γ-producing CD8(+) T cells in colon draining lymph nodes and in vivo CTL assays. Intrarectal challenge with GP33 induced severe colitis and recruitment of granzyme B(+) P14 CD8(+) cells in colon. Treatment with the specific LTB(4) receptor antagonist before elicitation of colitis reduced the severity of colitis and decreased the frequency of specific effectors. CONCLUSIONS Colitis can be induced by IFN-γ-producing cytotoxic CD8(+) CTL specific for viral antigen. Blockade of the LTB(4) /BLT(1) pathway by a selective BLT(1) receptor antagonist attenuates colitis by inhibiting CD8(+) effectors recruitment in colon. These data illustrate the therapeutic potential of LTB(4) receptor selective antagonists in protection from CD8(+) T-cell-mediated intestinal inflammation.
Collapse
Affiliation(s)
- Stephane Nancey
- INSERM U 851 Immunité et Vaccination, IFR 128, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Affiliation(s)
- Yoshitaka TAKETOMI
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science
| | - Makoto MURAKAMI
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
97
|
Mast cells: Emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol 2010; 48:14-25. [DOI: 10.1016/j.molimm.2010.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 12/31/2022]
|
98
|
Yokomizo T. Leukotriene B4 receptors: novel roles in immunological regulations. ACTA ACUST UNITED AC 2010; 51:59-64. [PMID: 21035496 DOI: 10.1016/j.advenzreg.2010.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 08/24/2010] [Indexed: 02/07/2023]
Abstract
Mammals have at least two receptors for LTB4; high-affinity BLT1 and low-affinity BLT2, both of which are GPCRs. 12-HHT serves as a more potent and abundant ligand for BLT2 than LTB4. BLT1 is expressed in a variety of inflammatory and immune cells including granulocytes, eosinophils, macrophages, differentiated Th1, Th2 and Th17 cells, effecter CD8+ T cells, dendritic cells and osteoclasts. BLT1 antagonists will be beneficial for the treatment of various diseases such as bronchial asthma, multiple sclerosis, contact dermatitis, and postmenopausal osteoporosis. BLT2 plays different roles from BLT1, and one important role of BLT2 is the maintenance of mucosal integrity in the colon.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
99
|
Okamoto F, Saeki K, Sumimoto H, Yamasaki S, Yokomizo T. Leukotriene B4 augments and restores Fc gammaRs-dependent phagocytosis in macrophages. J Biol Chem 2010; 285:41113-21. [PMID: 20959460 DOI: 10.1074/jbc.m110.175497] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phagocytosis by macrophages is essential for host defense, i.e. preventing invasion of pathogens and foreign materials. Macrophages engulf immunoglobulin G (IgG)-opsonized particles through the action of the receptors for the Fc of IgG (FcγRs). Leukotriene B(4) (LTB(4)) is a classical lipid chemoattractant derived from arachidonic acid. Leukotriene B(4) receptor 1 (BLT1), a high affinity LTB(4) receptor, is expressed in a variety of immune cells such as neutrophils, macrophages, and dendritic cells. Although LTB(4) has been shown to enhance macrophage phagocytosis, few studies have investigated the intracellular mechanisms involved in this in detail. Furthermore, there have been no reports of the direct cross-talk between LTB(4)-BLT1 and IgG-FcγRs signaling. Here, we show that FcγRs-dependent phagocytosis was attenuated in BLT1-deficient macrophages as compared with wild-type (WT) cells. Moreover, cross-talk between LTB(4)-BLT1 and IgG-FcγRs signaling was identified at the level of phosphatidylinositol 3-OH kinase (PI3K) and Rac, downstream of Syk. In addition, the trimeric G(i) protein (G(i)) was found to be essential for BLT1-dependent phagocytosis. Surprisingly, we found that LTB(4)-BLT1 signaling restores phagocytosis in the absence of FcγRs signaling. These data indicate that LTB(4)-BLT1 signaling plays a pivotal role in macrophage phagocytosis and innate immunity.
Collapse
Affiliation(s)
- Fuyuki Okamoto
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
100
|
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 2010; 50:35-51. [PMID: 20655950 DOI: 10.1016/j.plipres.2010.07.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023]
Abstract
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|