51
|
Downregulation of renal tubular Wnt/β-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy. Cell Death Dis 2016; 7:e2155. [PMID: 27010856 PMCID: PMC4823961 DOI: 10.1038/cddis.2016.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022]
Abstract
Studies on the role of Wnt/β-catenin signaling in different forms of kidney disease have yielded discrepant results. Here, we report the biphasic change of renal β-catenin expression in mice with overload proteinuria in which β-catenin was upregulated at the early stage (4 weeks after disease induction) but abrogated at the late phase (8 weeks). Acute albuminuria was observed at 1 week after bovine serum albumin injection, followed by partial remission at 4 weeks that coincided with overexpression of renal tubular β-catenin. Interestingly, a rebound in albuminuria at 8 weeks was accompanied by downregulated tubular β-catenin expression and heightened tubular apoptosis. In addition, there was an inverse relationship between Dickkopf-3 (Dkk-3) and renal tubular β-catenin expression at these time points. In vitro, a similar trend in β-catenin expression was observed in human kidney-2 (HK-2) cells with acute (upregulation) and prolonged (downregulation) exposure to albumin. Induction of a proapoptotic phenotype by albumin was significantly enhanced by silencing β-catenin in HK-2 cells. Finally, Dkk-3 expression and secretion was increased after prolonged exposure to albumin, leading to the suppression of intracellular β-catenin signaling pathway. The effect of Dkk-3 on β-catenin signaling was confirmed by incubation with exogenous Dkk-3 in HK-2 cells. Taken together, these data suggest that downregulation of tubular β-catenin signaling induced by Dkk-3 has a detrimental role in chronic proteinuria, partially through the increase in apoptosis.
Collapse
|
52
|
Abstract
Cancer cells are distinguished from normal cells by increased proliferation and metabolism, loss of polarity control, and the potential to invade other tissues of the body. As hubs of signaling transduction, primary cilia have been linked to diverse developmental and degenerative disorders. Interestingly, loss of cilia has been observed in multiple malignant tumors, suggesting a potential suppressive role of cilia in cancer development. More recently, emerging studies began to unveil the bidirectional interaction of cilia and autophagy, a basic cellular clearance and recycling mechanism to regulate cell homeostasis. Here, we summarize the interplay between cilia and autophagy and discuss the roles of cilia in both autophagy and cancer.
Collapse
Affiliation(s)
- Muqing Cao
- Center for Autophagy Research; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Qing Zhong
- Center for Autophagy Research; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
53
|
Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-67. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
|
54
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
55
|
|
56
|
Wang Y, Stokes A, Duan Z, Hui J, Xu Y, Chen Y, Chen HW, Lam K, Zhou CJ. LDL Receptor-Related Protein 6 Modulates Ret Proto-Oncogene Signaling in Renal Development and Cystic Dysplasia. J Am Soc Nephrol 2015; 27:417-27. [PMID: 26047795 DOI: 10.1681/asn.2014100998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 01/15/2023] Open
Abstract
Hypoplastic and/or cystic kidneys have been found in both LDL receptor-related protein 6 (Lrp6)- and β-catenin-mutant mouse embryos, and these proteins are key molecules for Wnt signaling. However, the underlying mechanisms of Lrp6/β-catenin signaling in renal development and cystic formation remain poorly understood. In this study, we found evidence that diminished cell proliferation and increased apoptosis occur before cystic dysplasia in the renal primordia of Lrp6-deficient mouse embryos. The expression of Ret proto-oncogene (Ret), a critical receptor for the growth factor glial cell line-derived neurotrophic factor (GDNF), which is required for early nephrogenesis, was dramatically diminished in the mutant renal primordia. The activities of other representative nephrogenic genes, including Lim1, Pax2, Pax8, GDNF, and Wnt11, were subsequently diminished in the mutant renal primordia. Molecular biology experiments demonstrated that Ret is a novel transcriptional target of Wnt/β-catenin signaling. Wnt agonist lithium promoted Ret expression in vitro and in vivo. Furthermore, Lrp6-knockdown or lithium treatment in vitro led to downregulation or upregulation, respectively, of the phosphorylated mitogen-activated protein kinases 1 and 3, which act downstream of GDNF/Ret signaling. Mice with single and double mutations of Lrp6 and Ret were perinatal lethal and demonstrated gene dosage-dependent effects on the severity of renal hypoplasia during embryogenesis. Taken together, these results suggest that Lrp6-mediated Wnt/β-catenin signaling modulates or interacts with a signaling network consisting of Ret cascades and related nephrogenic factors for renal development, and the disruption of these genes or signaling activities may cause a spectrum of hypoplastic and cystic kidney disorders.
Collapse
Affiliation(s)
- Yongping Wang
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, California; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California and University of California Davis School of Medicine, Sacramento, California
| | - Arjun Stokes
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, California; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California and University of California Davis School of Medicine, Sacramento, California
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, California
| | - Jordan Hui
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California and University of California Davis School of Medicine, Sacramento, California
| | - Ying Xu
- Cambridge-Suda Genome Resource Center, Soochow University, Suzhou, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, California
| | - Kit Lam
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, California
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, California; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California and University of California Davis School of Medicine, Sacramento, California;
| |
Collapse
|
57
|
Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV, Hackett AN, Pohida K, Munasinghe J, Gotoh N, Wickstead B, Fariss RN, Dong L, Li T, Swaroop A. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet 2015; 24:3775-91. [PMID: 25859007 DOI: 10.1093/hmg/ddv123] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeeva Munasinghe
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and
| | | | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
58
|
Kleino I, Järviluoma A, Hepojoki J, Huovila AP, Saksela K. Preferred SH3 domain partners of ADAM metalloproteases include shared and ADAM-specific SH3 interactions. PLoS One 2015; 10:e0121301. [PMID: 25825872 PMCID: PMC4380453 DOI: 10.1371/journal.pone.0121301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/30/2015] [Indexed: 02/02/2023] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3) domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior.
Collapse
Affiliation(s)
- Iivari Kleino
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annika Järviluoma
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Pekka Huovila
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
59
|
Selective dicer suppression in the kidney alters GSK3β/β-catenin pathways promoting a glomerulocystic disease. PLoS One 2015; 10:e0119142. [PMID: 25799508 PMCID: PMC4370407 DOI: 10.1371/journal.pone.0119142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/16/2015] [Indexed: 02/02/2023] Open
Abstract
Dicer is a crucial enzyme for the maturation of miRNAs. Mutations in the Dicer gene are highly associated with Pleuro Pulmonary Blastoma-Family Dysplasia Syndrome (PPB-FDS, OMIM 601200), recently proposed to be renamed Dicer syndrome. Aside from the pulmonary phenotype (blastoma), renal nephroma and thyroid goiter are frequently part of Dicer syndrome. To investigate the renal phenotype, conditional knockout (cKO) mice for Dicer in Pax8 expressing cells were generated. Dicer cKO mice progressively develop a glomerulocystic phenotype coupled with urinary concentration impairment, proteinuria and severe renal failure. Higher cellular turnover of the parietal cells of Bowman's capsule precedes the development of the cysts and the primary cilium progressively disappears with cyst-enlargement. Upregulation of GSK3β precedes the development of the glomerulocystic phenotype. Downregulation of β-catenin in the renal cortex and its cytosolic removal in the cells lining the cysts may be associated with observed accumulation of GSK3β. Alterations of β-catenin regulating pathways could promote cystic degeneration as in other models. Thus, miRNAs are fundamental in preserving renal morphology and function. Alteration of the GSK3β/β-catenin pathway could be a crucial mechanism linking miRNA dysregulation and the development of a glomerulocystic disease.
Collapse
|
60
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
61
|
MUNTEAN BRIANS, JIN XINGJIAN, WILLIAMS FREDERICKE, NAULI SURYAM. Primary cilium regulates CaV1.2 expression through Wnt signaling. J Cell Physiol 2014; 229:1926-34. [PMID: 24700505 PMCID: PMC11036877 DOI: 10.1002/jcp.24642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022]
Abstract
Primary cilia are sensory organelles that provide a feedback mechanism to restrict Wnt signaling in the absence of endogenous Wnt activators. Abnormal Wnt signaling has been shown to result in polycystic kidney disease (PKD) although the exact mechanism has been debated. Previously, we reported that the calcium channel CaV1.2 functions in primary cilia. In this study, we show that CaV1.2 expression level is regulated by Wnt signaling. This occurs through modulation of mitochondrial mass and activity resulting in increased reactive oxygen species which generate oxidative DNA lesions. We found that the subsequent cellular DNA damage response triggers increased CaV1.2 expression. In the absence of primary cilia where Wnt signaling is upregulated, we found that CaV1.2 is overexpressed as a compensatory mechanism. We show for the first time that CaV1.2 knockdown in zebrafish results in classic primary cilia defects including renal cyst formation, hydrocephalus, and left-right asymmetry defects. Our study shows that suppressed Wnt signaling prevents CaV1.2 expression ultimately resulting in PKD phenotypes. Thus, CaV1.2 expression is tightly regulated through Wnt signaling and plays an essential sensory role in primary cilia necessary for cellular homeostasis.
Collapse
Affiliation(s)
- BRIAN S. MUNTEAN
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio
| | - XINGJIAN JIN
- Department of Pharmacology, The University of Toledo, Toledo, Ohio
| | | | - SURYA M. NAULI
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio
- Department of Pharmacology, The University of Toledo, Toledo, Ohio
| |
Collapse
|
62
|
Dere R, Perkins AL, Bawa-Khalfe T, Jonasch D, Walker CL. β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J Am Soc Nephrol 2014; 26:553-64. [PMID: 25313256 DOI: 10.1681/asn.2013090984] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
von Hippel-Lindau (VHL) gene mutations are associated with clear cell renal cell carcinoma (ccRCC). A hallmark of ccRCC is loss of the primary cilium. Loss of this key organelle in ccRCC is caused by loss of VHL and associated with increased Aurora kinase A (AURKA) and histone deacetylase 6 (HDAC6) activities, which drive disassembly of the primary cilium. However, the underlying mechanism by which VHL loss increases AURKA levels has not been clearly elucidated, although it has been suggested that hypoxia-inducible factor-1α (HIF-1α) mediates increased AURKA expression in VHL-null cells. By contrast, we found that elevated AURKA expression is not increased by HIF-1α, suggesting an alternate mechanism for AURKA dysregulation in VHL-null cells. We report here that AURKA expression is driven by β-catenin transcription in VHL-null cells. In a panel of RCC cell lines, we observed nuclear accumulation of β-catenin and increased AURKA signaling to HDAC6. Moreover, HIF-1α inhibited AURKA expression by inhibiting β-catenin transcription. VHL knockdown activated β-catenin and elevated AURKA expression, decreased primary cilia formation, and caused significant shortening of cilia length in cells that did form cilia. The β-catenin responsive transcription inhibitor iCRT14 reduced AURKA levels and rescued ciliary defects, inducing a significant increase in primary cilia formation in VHL-deficient cells. These data define a role for β-catenin in regulating AURKA and formation of primary cilia in the setting of VHL deficiency, opening new avenues for treatment with β-catenin inhibitors to rescue ciliogenesis in ccRCC.
Collapse
Affiliation(s)
- Ruhee Dere
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| | - Ashley Lyn Perkins
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| | - Tasneem Bawa-Khalfe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Darius Jonasch
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| | - Cheryl Lyn Walker
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| |
Collapse
|
63
|
Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci U S A 2014; 111:12438-43. [PMID: 25114218 DOI: 10.1073/pnas.1321425111] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apical domain of embryonic (radial glia) and adult (B1 cells) neural stem cells (NSCs) contains a primary cilium. This organelle has been suggested to function as an antenna for the detection of morphogens or growth factors. In particular, primary cilia are essential for Hedgehog (Hh) signaling, which plays key roles in brain development. Their unique location facing the ventricular lumen suggests that primary cilia in NSCs could play an important role in reception of signals within the cerebrospinal fluid. Surprisingly, ablation of primary cilia using conditional alleles for genes essential for intraflagellar transport [kinesin family member 3A (Kif3a) and intraflagellar transport 88 (Ift88)] and Cre drivers that are activated at early [Nestin; embryonic day 10.5 (E10.5)] and late [human glial fibrillary acidic protein (hGFAP); E13.5] stages of mouse neural development resulted in no apparent developmental defects. Neurogenesis in the ventricular-subventricular zone (V-SVZ) shortly after birth was also largely unaffected, except for a restricted ventral domain previously known to be regulated by Hh signaling. However, Kif3a and Ift88 genetic ablation also disrupts ependymal cilia, resulting in hydrocephalus by postnatal day 4. To directly study the role of B1 cells' primary cilia without the confounding effects of hydrocephalus, we stereotaxically targeted elimination of Kif3a from a subpopulation of radial glia, which resulted in ablation of primary cilia in a subset of B1 cells. Again, this experiment resulted in decreased neurogenesis only in the ventral V-SVZ. Primary cilia ablation led to disruption of Hh signaling in this subdomain. We conclude that primary cilia are required in a specific Hh-regulated subregion of the postnatal V-SVZ.
Collapse
|
64
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
65
|
Lee YL, Santé J, Comerci CJ, Cyge B, Menezes LF, Li FQ, Germino GG, Moerner WE, Takemaru KI, Stearns T. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol Biol Cell 2014; 25:2919-33. [PMID: 25103236 PMCID: PMC4230582 DOI: 10.1091/mbc.e14-02-0735] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cby1 localizes to centrioles and antagonizes canonical Wnt signaling. Cby1−/− mice have cystic kidneys, and Cby1 facilitates primary cilium formation and ciliary recruitment of Arl13b. Cby1 localizes to a distal centriolar domain with Ofd1 and Ahi1, and the amount of Ahi1 at the transition zone is reduced in Cby1−/− cells. Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Cby1, the mammalian orthologue of the Drosophila Chibby protein, localizes to mature centrioles, is important for ciliogenesis in multiciliated airway epithelia in mice, and antagonizes canonical Wnt signaling via direct regulation of β-catenin. We report that deletion of the mouse Cby1 gene results in cystic kidneys, a phenotype common to ciliopathies, and that Cby1 facilitates the formation of primary cilia and ciliary recruitment of the Joubert syndrome protein Arl13b. Localization of Cby1 to the distal end of mature centrioles depends on the centriole protein Ofd1. Superresolution microscopy using both three-dimensional SIM and STED reveals that Cby1 localizes to an ∼250-nm ring at the distal end of the mature centriole, in close proximity to Ofd1 and Ahi1, a component of the transition zone between centriole and cilium. The amount of centriole-localized Ahi1, but not Ofd1, is reduced in Cby1−/− cells. This suggests that Cby1 is required for efficient recruitment of Ahi1, providing a possible molecular mechanism for the ciliogenesis defect in Cby1−/− cells.
Collapse
Affiliation(s)
- Yin Loon Lee
- Department of Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Joshua Santé
- Department of Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Colin J Comerci
- Department of Chemistry, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Benjamin Cyge
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Luis F Menezes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Gregory G Germino
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - W E Moerner
- Department of Chemistry, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Tim Stearns
- Department of Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305 Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
66
|
Guemez-Gamboa A, Coufal NG, Gleeson JG. Primary cilia in the developing and mature brain. Neuron 2014; 82:511-21. [PMID: 24811376 DOI: 10.1016/j.neuron.2014.04.024] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary cilia were the largely neglected nonmotile counterparts of their better-known cousin, the motile cilia. For years these nonmotile cilia were considered evolutionary remnants of little consequence to cellular function. Fast forward 10 years and we now recognize primary cilia as key integrators of extracellular ligand-based signaling and cellular polarity, which regulate neuronal cell fate, migration, differentiation, as well as a host of adult behaviors. Important future questions will focus on structure-function relationships, their roles in signaling and disease and as areas of target for treatments.
Collapse
Affiliation(s)
- Alicia Guemez-Gamboa
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
67
|
Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci U S A 2014; 111:9893-8. [PMID: 24946806 DOI: 10.1073/pnas.1322373111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion. We present a Cep290 gene trap mouse model of JBTS that displays the kidney, eye, and brain abnormalities that define the syndrome. Mutant mice present with cystic kidney disease as neonates. Newborn kidneys contain normal amounts of lymphoid enhancer-binding factor 1 (Lef1) and transcription factor 1 (Tcf1) protein, indicating normal function of the Wnt signaling pathway; however, an increase in the protein Gli3 repressor reveals abnormal Hedgehog (Hh) signaling evident in newborn kidneys. Collecting duct cells from mutant mice have abnormal primary cilia and are unable to form spheroid structures in vitro. Treatment of mutant cells with the Hh agonist purmorphamine restored normal spheroid formation. Renal epithelial cells from a JBTS patient with CEP290 mutations showed similar impairments to spheroid formation that could also be partially rescued by exogenous stimulation of Hh signaling. These data implicate abnormal Hh signaling as the cause of NPHP and suggest that Hh agonists may be exploited therapeutically.
Collapse
|
68
|
Tran PV, Sharma M, Li X, Calvet JP. Developmental signaling: does it bridge the gap between cilia dysfunction and renal cystogenesis? ACTA ACUST UNITED AC 2014; 102:159-73. [PMID: 24861210 DOI: 10.1002/bdrc.21065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
For more than a decade, evidence has accumulated linking dysfunction of primary cilia to renal cystogenesis, yet molecular mechanisms remain undefined. The pathogenesis of renal cysts is complex, involving multiple cellular aberrations and signaling pathways. Adding to this complexity, primary cilia exhibit multiple roles in a context-dependent manner. On renal epithelial cells, primary cilia act as mechanosensors and trigger extracellular Ca(2+) influx in response to laminar fluid flow. During mammalian development, primary cilia mediate the Hedgehog (Hh), Wnt, and Notch pathways, which control cell proliferation and differentiation, and tissue morphogenesis. Further, experimental evidence suggests the developmental state of the kidney strongly influences renal cystic disease. Thus, we review evidence for regulation of Ca(2+) and cAMP, key molecules in renal cystogenesis, at the primary cilium, the role of Hh, Wnt, and Notch signaling in renal cystic disease, and the interplay between these developmental pathways and Ca(2+) signaling. Indeed if these developmental pathways influence renal cystogenesis, these may represent novel therapeutic targets that can be integrated into a combination therapy for renal cystic disease.
Collapse
Affiliation(s)
- Pamela V Tran
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas; The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | | |
Collapse
|
69
|
diIorio P, Rittenhouse AR, Bortell R, Jurczyk A. Role of cilia in normal pancreas function and in diseased states. ACTA ACUST UNITED AC 2014; 102:126-38. [PMID: 24861006 DOI: 10.1002/bdrc.21064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/25/2022]
Abstract
Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β-cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β-cell function, also occurs in primary cilia. Whereas voltage-gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β-cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state.
Collapse
Affiliation(s)
- Philip diIorio
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | |
Collapse
|
70
|
Airik R, Slaats GG, Guo Z, Weiss AC, Khan N, Ghosh A, Hurd TW, Bekker-Jensen S, Schrøder JM, Elledge SJ, Andersen JS, Kispert A, Castelli M, Boletta A, Giles RH, Hildebrandt F. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. J Am Soc Nephrol 2014; 25:2573-83. [PMID: 24722439 DOI: 10.1681/asn.2013050565] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8(gt/gt) mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Rannar Airik
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Gisela G Slaats
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhi Guo
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Naheed Khan
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Amiya Ghosh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Toby W Hurd
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Simon Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob M Schrøder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Steve J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy; and
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy; and
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
71
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
72
|
The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells. Differentiation 2014; 87:134-146. [PMID: 24613594 DOI: 10.1016/j.diff.2014.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/23/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
The dysfunction of the primary cilium, a complex, evolutionarily conserved, organelle playing an important role in sensing and transducing cell signals, is the unifying pathogenetic mechanism of a growing number of diseases collectively termed "ciliopathies", typically characterized by multiorgan involvement. Developmental defects of the central nervous system (CNS) characterize a subset of ciliopathies showing clinical and genetic overlap, such as Joubert syndrome (JS) and Meckel syndrome (MS). Although several knock-out mice lacking a variety of ciliary proteins have shown the importance of primary cilia in the development of the brain and CNS-derived structures, developmental in vitro studies, extremely useful to unravel the role of primary cilia along the course of neural differentiation, are still missing. Mouse embryonic stem cells (mESCs) have been recently proven to mimic brain development, giving the unique opportunity to dissect the CNS differentiation process along its sequential steps. In the present study we show that mESCs express the ciliary proteins Meckelin and Jouberin in a developmentally-regulated manner, and that these proteins co-localize with acetylated tubulin labeled cilia located at the outer embryonic layer. Further, mESCs differentiating along the neuronal lineage activate the cilia-dependent sonic hedgehog signaling machinery, which is impaired in Meckelin knock-out cells but results unaffected in Jouberin-deficient mESCs. However, both lose the ability to acquire a neuronal phenotype. Altogether, these results demonstrate a pivotal role of Meckelin and Jouberin during embryonic neural specification and indicate mESCs as a suitable tool to investigate the developmental impact of ciliary proteins dysfunction.
Collapse
|
73
|
Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S, Fellig Y, Cohen H, Lory O, Goelman G, Lerer B. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19:243-52. [PMID: 24042478 DOI: 10.1038/mp.2013.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- A Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - T Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Slonimsky
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E C Broner
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - L Greenbaum
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Abedat
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beersheba, Israel
| | - O Lory
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - G Goelman
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - B Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
74
|
Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 2013; 10:96-107. [PMID: 24322779 DOI: 10.4161/org.27375] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.
Collapse
Affiliation(s)
- Amy R Barker
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Rhys Thomas
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Helen R Dawe
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| |
Collapse
|
75
|
Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat 2013; 7:29. [PMID: 24027500 PMCID: PMC3759752 DOI: 10.3389/fnana.2013.00029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College London London, UK ; Medical Research Council Centre for Developmental Neurobiology, King's College London London, UK
| | | |
Collapse
|
76
|
Kif3a controls murine nephron number via GLI3 repressor, cell survival, and gene expression in a lineage-specific manner. PLoS One 2013; 8:e65448. [PMID: 23762375 PMCID: PMC3676467 DOI: 10.1371/journal.pone.0065448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3(Δ699/+) ) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms.
Collapse
|
77
|
Basten SG, Giles RH. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2013; 2:6. [PMID: 23628112 PMCID: PMC3662159 DOI: 10.1186/2046-2530-2-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023] Open
Abstract
Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field.
Collapse
Affiliation(s)
- Sander G Basten
- Department of Medical Oncology, UMC Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| |
Collapse
|
78
|
Abstract
Wnt/β-catenin signalling plays essential roles in embryonic development as well as tissue homoeostasis in adults. Thus abnormal regulation of Wnt/β-catenin signalling is linked to a variety of human diseases, including cancer, osteoporosis and Alzheimer's disease. Owing to the importance of Wnt signalling in a wide range of biological fields, a better understanding of its precise mechanisms could provide fundamental insights for therapeutic applications. Although many studies have investigated the regulation of Wnt/β-catenin signalling, our knowledge remains insufficient due to the complexity and diversity of Wnt signalling. It is generally accepted that the identification of novel regulators and their functions is a prerequisite to fully elucidating the regulation of Wnt/β-catenin signalling. Recently, several novel modulators of Wnt signalling have been determined through multiple genetic and proteomic approaches. In the present review, we discuss the mechanistic regulation of Wnt/β-catenin signalling by focusing on the roles of these novel regulators.
Collapse
|
79
|
Tuz K, Hsiao YC, Juárez O, Shi B, Harmon EY, Phelps IG, Lennartz MR, Glass IA, Doherty D, Ferland RJ. The Joubert syndrome-associated missense mutation (V443D) in the Abelson-helper integration site 1 (AHI1) protein alters its localization and protein-protein interactions. J Biol Chem 2013; 288:13676-94. [PMID: 23532844 DOI: 10.1074/jbc.m112.420786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. RESULTS Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. CONCLUSION Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. SIGNIFICANCE This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome. Mutations in AHI1 cause Joubert syndrome (JBTS), a neurodevelopmental ciliopathy, characterized by midbrain-hindbrain malformations and motor/cognitive deficits. Here, we show that primary cilia (PC) formation is decreased in fibroblasts from individuals with JBTS and AHI1 mutations. Most missense mutations in AHI1, causing JBTS, occur in known protein domains, however, a common V443D mutation in AHI1 is found in a region with no known protein motifs. We show that cells transfected with AHI1-V443D, or a new JBTS-causing mutation, AHI1-R351L, have aberrant localization of AHI1 at the basal bodies of PC and at cell-cell junctions, likely through decreased binding of mutant AHI1 to NPHP1 (another JBTS-causing protein). The AHI1-V443D mutation causes decreased AHI1 stability because there is a 50% reduction in AHI1-V443D protein levels compared with wild type AHI1. Huntingtin-associated protein-1 (Hap1) is a regulatory protein that binds Ahi1, and Hap1 knock-out mice have been reported to have JBTS-like phenotypes, suggesting a role for Hap1 in ciliogenesis. Fibroblasts and neurons with Hap1 deficiency form PC with normal growth factor-induced ciliary signaling, indicating that the Hap1 JBTS phenotype is likely not through effects at PC. These results also suggest that the binding of Ahi1 and Hap1 may not be critical for ciliary function. However, we show that HAP1 has decreased binding to AHI1-V443D indicating that this altered binding could be responsible for the JBTS-like phenotype through an unknown pathway. Thus, these JBTS-associated missense mutations alter their subcellular distribution and protein interactions, compromising functions of AHI1 in cell polarity and cilium-mediated signaling, thereby contributing to JBTS.
Collapse
Affiliation(s)
- Karina Tuz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Leightner AC, Hommerding CJ, Peng Y, Salisbury JL, Gainullin VG, Czarnecki PG, Sussman CR, Harris PC. The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet 2013; 22:2024-40. [PMID: 23393159 DOI: 10.1093/hmg/ddt054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meckel syndrome (MKS) is a lethal disorder associated with renal cystic disease, encephalocele, ductal plate malformation and polydactyly. MKS is genetically heterogeneous and part of a growing list of syndromes called ciliopathies, disorders resulting from defective cilia. TMEM67 mutation (MKS3) is a major cause of MKS and the related ciliopathy Joubert syndrome, although the complete etiology of the disease is not well understood. To further investigate MKS3, we analyzed phenotypes in the Tmem67 null mouse (bpck) and in zebrafish tmem67 morphants. Phenotypes similar to those in human MKS and other ciliopathy models were observed, with additional eye, skeletal and inner ear abnormalities characterized in the bpck mouse. The observed disorganized stereociliary bundles in the bpck inner ear and the convergent extension defects in zebrafish morphants are similar to those found in planar cell polarity (PCP) mutants, a pathway suggested to be defective in ciliopathies. However, analysis of classical vertebrate PCP readouts in the bpck mouse and ciliary organization analysis in tmem67 morphants did not support a global loss of planar polarity. Canonical Wnt signaling was upregulated in cyst linings and isolated fibroblasts from the bpck mouse, but was unchanged in the retina and cochlea tissue, suggesting that increased Wnt signaling may only be linked to MKS3 phenotypes associated with elevated proliferation. Together, these data suggest that defective cilia loading, but not a global loss of ciliogenesis, basal body docking or PCP signaling leads to dysfunctional cilia in MKS3 tissues.
Collapse
Affiliation(s)
- Amanda C Leightner
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Han J, Soletti RC, Sadarangani A, Sridevi P, Ramirez ME, Eckmann L, Borges HL, Wang JYJ. Nuclear expression of β-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol Cancer Res 2013; 11:207-18. [PMID: 23339186 DOI: 10.1158/1541-7786.mcr-12-0670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor (TNF)-α promotes tumor development under chronic inflammation. Because TNF also activates caspase-8, selective inhibition of TNF-induced extrinsic apoptosis would be required for inflammation-associated tumor growth. In a mouse model of inflammation-associated colon carcinogenesis, we found nuclear expression of β-catenin in tumors of wild-type, but not mutant, mice that were made resistant to TNF-induced apoptosis by a germline mutation blocking caspase cleavage of the retinoblastoma (RB) protein, despite similar frequencies of β-catenin exon-3 mutations in these two genetic backgrounds. TNF-induced apoptosis was also attenuated in human colon cancer cell lines with genetically activated β-catenin. However, we found that HCT116 cells, which contain an activated allele of β-catenin but do not express nuclear β-catenin, were sensitive to TNF-induced apoptosis. In HCT116 cells, TNF stimulated efficient RB cleavage that preceded chromatin condensation. In contrast, TNF did not induce RB cleavage in colon cancer cells expressing nuclear β-catenin and these cells could be sensitized to basal and/or TNF-induced apoptosis by the knockdown of β-catenin or RB. In the apoptosis-resistant colon cancer cells, knockdown of β-catenin led to a reduction in the RB protein without affecting RB mRNA. Furthermore, ectopic expression of the caspase-resistant, but not the wild-type, RB re-established resistance to TNF-induced caspase activation in colon cancer cells without β-catenin. Together, these results suggest that nuclear β-catenin-dependent RB stabilization suppresses TNF-induced apoptosis in caspase-8-positive colon cancer cells.
Collapse
Affiliation(s)
- Jinbo Han
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abdelhamed ZA, Wheway G, Szymanska K, Natarajan S, Toomes C, Inglehearn C, Johnson CA. Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects. Hum Mol Genet 2013; 22:1358-72. [PMID: 23283079 DOI: 10.1093/hmg/dds546] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The ciliopathies are a group of heterogeneous diseases with considerable variations in phenotype for allelic conditions such as Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) even at the inter-individual level within families. In humans, mutations in TMEM67 (also known as MKS3) cause both MKS and JBTS, with TMEM67 encoding the orphan receptor meckelin (TMEM67) that localizes to the ciliary transition zone. We now describe the Tmem67(tm1(Dgen/H)) knockout mouse model that recapitulates the brain phenotypic variability of these human ciliopathies, with categorization of Tmem67 mutant animals into two phenotypic groups. An MKS-like incipient congenic group (F6 to F10) manifested very variable neurological features (including exencephaly, and frontal/occipital encephalocele) that were associated with the loss of primary cilia, diminished Shh signalling and dorsalization of the caudal neural tube. The 'MKS-like' group also had high de-regulated canonical Wnt/β-catenin signalling associated with hyper-activated Dishevelled-1 (Dvl-1) localized to the basal body. Conversely, a second fully congenic group (F > 10) had less variable features pathognomonic for JBTS (including cerebellar hypoplasia), and retention of abnormal bulbous cilia associated with mild neural tube ventralization. The 'JBTS-like' group had de-regulated low levels of canonical Wnt signalling associated with the loss of Dvl-1 localization to the basal body. Our results suggest that modifier alleles partially determine the variation between MKS and JBTS, implicating the interaction between Dvl-1 and meckelin, or other components of the ciliary transition zone. The Tmem67(tm1(Dgen/H)) line is unique in modelling the variable expressivity of phenotypes in these two ciliopathies.
Collapse
Affiliation(s)
- Zakia A Abdelhamed
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
83
|
Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 2012; 229:221-31. [DOI: 10.1002/path.4121] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Takahisa Kawakami
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| | - Shuyu Ren
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| | - Jeremy S Duffield
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| |
Collapse
|
84
|
Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia 2012; 1:22. [PMID: 23351659 PMCID: PMC3563624 DOI: 10.1186/2046-2530-1-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/19/2012] [Indexed: 02/08/2023] Open
Abstract
Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals. Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two ciliary proteins - CEP290 and RPGR - that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with photoreceptor cilia biogenesis and pathology.
Collapse
|
85
|
Oh EC, Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol 2012; 24:10-8. [PMID: 23123400 DOI: 10.1681/asn.2012050526] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The primary cilium is a highly conserved environmental sensor and modulator of fluid movement in tubular structures. The growing recognition of mutations among its many components has led to the discovery of new disorders collectively called ciliopathies. Ciliary dysfunction disturbs a variety of signaling pathways along its basal body and axoneme that are critical for embryonic development and cell and organ homeostasis. Among the many pathways, here we discuss the emerging role of Wnt proteins in morphogenic signaling and ciliary biology during health and disease.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Department of Cell Biology, 466 Nanaline Building, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
86
|
Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism 2012; 3:10. [PMID: 23083465 PMCID: PMC3492093 DOI: 10.1186/2040-2392-3-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/04/2012] [Indexed: 12/21/2022] Open
Abstract
Microdeletion and microduplication copy number variations are found in patients with autism spectrum disorder and in a number of cases they include genes that are involved in the canonical Wnt signaling pathway (for example, FZD9, BCL9 or CDH8). Association studies investigating WNT2, DISC1, MET, DOCK4 or AHI1 also provide evidence that the canonical Wnt pathway might be affected in autism. Prenatal medication with sodium-valproate or antidepressant drugs increases autism risk. In animal studies, it has been found that these medications promote Wnt signaling, including among others an increase in Wnt2 gene expression. Notably, the available genetic information indicates that not only canonical Wnt pathway activation, but also inhibition seems to increase autism risk. The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may generate a similar set of behavioral and cognitive symptoms. However, without a validated biomarker to stratify for deviant canonical Wnt pathway activity, it is probably too dangerous to treat patients with compounds that modify pathway activity.
Collapse
Affiliation(s)
- Hans Otto Kalkman
- Neuroscience Department, Novartis Institute of Biomedical Research, Building 386-14,22,15, Basel, CH 4002, Switzerland.
| |
Collapse
|
87
|
Cheng YZ, Eley L, Hynes AM, Overman LM, Simms RJ, Barker A, Dawe HR, Lindsay S, Sayer JA. Investigating embryonic expression patterns and evolution of AHI1 and CEP290 genes, implicated in Joubert syndrome. PLoS One 2012; 7:e44975. [PMID: 23028714 PMCID: PMC3454386 DOI: 10.1371/journal.pone.0044975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/15/2012] [Indexed: 12/30/2022] Open
Abstract
Joubert syndrome and related diseases (JSRD) are developmental cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy and nephronophthisis (a cystic kidney disease). We have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR), to perform in-situ hybridisation studies on embryonic tissues, revealing an early onset neuronal, retinal and renal expression pattern for AHI1. An almost identical pattern of expression is seen with CEP290 in human embryonic and fetal tissue. A novel finding is that both AHI1 and CEP290 demonstrate strong expression within the developing choroid plexus, a ciliated structure important for central nervous system development. To test if AHI1 and CEP290 may have co-evolved, we carried out a genomic survey of a large group of organisms across eukaryotic evolution. We found that, in animals, ahi1 and cep290 are almost always found together; however in other organisms either one may be found independent of the other. Finally, we tested in murine epithelial cells if Ahi1 was required for recruitment of Cep290 to the centrosome. We found no obvious differences in Cep290 localisation in the presence or absence of Ahi1, suggesting that, while Ahi1 and Cep290 may function together in the whole organism, they are not interdependent for localisation within a single cell. Taken together these data support a role for AHI1 and CEP290 in multiple organs throughout development and we suggest that this accounts for the wide phenotypic spectrum of AHI1 and CEP290 mutations in man.
Collapse
Affiliation(s)
- Yu-Zhu Cheng
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Lorraine Eley
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Ann-Marie Hynes
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Lynne M. Overman
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Roslyn J. Simms
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Amy Barker
- Biosciences: College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Helen R. Dawe
- Biosciences: College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Susan Lindsay
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
88
|
Abstract
The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.
Collapse
Affiliation(s)
- Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK.
| | | |
Collapse
|
89
|
Esmailzadeh S, Jiang X. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders. Oncotarget 2012; 2:918-34. [PMID: 22248740 PMCID: PMC3282096 DOI: 10.18632/oncotarget.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of diseases. Ultimately, this knowledge will set the stage for translation into new and more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sharmin Esmailzadeh
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
90
|
Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, Sander M. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 2012; 139:2488-99. [PMID: 22675211 DOI: 10.1242/dev.078634] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both ductal and endocrine development and reveal that Notch does not function in an on-off mode, but that a gradient of Notch activity produces distinct cellular states during pancreas development.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Borgal L, Habbig S, Hatzold J, Liebau MC, Dafinger C, Sacarea I, Hammerschmidt M, Benzing T, Schermer B. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling. J Biol Chem 2012; 287:25370-80. [PMID: 22654112 DOI: 10.1074/jbc.m112.385658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.
Collapse
Affiliation(s)
- Lori Borgal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Davis EE, Katsanis N. The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 2012; 22:290-303. [PMID: 22632799 DOI: 10.1016/j.gde.2012.04.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 01/19/2023]
Abstract
The last decade has witnessed an explosion in the identification of genes, mutations in which appear sufficient to cause clinical phenotypes in humans. This is especially true for disorders of ciliary dysfunction in which an excess of 50 causal loci are now known; this discovery was driven partly by an improved understanding of the protein composition of the cilium and the co-occurrence of clinical phenotypes associated with ciliary dysfunction. Despite this progress, the fundamental challenge of predicting phenotype and or clinical progression based on single locus information remains unsolved. Here, we explore how the combinatorial knowledge of allele quality and quantity, an improved understanding of the biological composition of the primary cilium, and the expanded appreciation of the subcellular roles of this organelle can be synthesized to generate improved models that can explain both causality but also variable penetrance and expressivity.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
93
|
Abstract
Huntington's disease (HD) is caused by expansion of a polyglutamine repeat in the N-terminal region of huntingtin (htt), a large protein that has been found to interact with a variety of proteins. It remains to be determined how the interactions of htt with other proteins are involved in the pathogenesis of HD. A recent publication by Keryer et al. demonstrates that htt regulates ciliogenesis by interacting with PCM1 through HAP1. This recent study shows that htt and HAP1 are essential for protein trafficking to the centrosome, as well as normal ciliogenesis, and that mutant htt causes abnormal ciliogenesis, providing a novel insight into the pathogenesis of HD.
Collapse
Affiliation(s)
- Shihua Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
94
|
May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia 2012; 1:7. [PMID: 23351924 PMCID: PMC3555707 DOI: 10.1186/2046-2530-1-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 05/02/2012] [Indexed: 12/14/2022] Open
Abstract
Primary cilia have recently been highlighted as key regulators in development and disease. This review focuses on current work demonstrating the broad role of cilia-related proteins in developmental signaling systems. Of particular consideration is the importance of the basal body region, located at the base of the cilium, in its role as a focal point for many signaling pathways and as a microtubule organizing center. As the cilium is effectively a microtubular extension of the cytoskeleton, investigating connections between the cilium and the cytoskeleton provides greater insight into signaling and cell function. Of the many signaling pathways associated with primary cilia, the most extensively studied in association with the cytoskeleton and cytoskeletal rearrangements are both canonical and non-canonical Wnt pathways. One of the key concepts currently emerging is a possible additional role for the traditionally 'cilia-related' proteins in other aspects of cellular processes. In many cases, disruption of such processes manifests at the level of the cilium. While the involvement of cilia and cilia-related proteins in signaling pathways is currently being unraveled, there is a growing body of evidence to support the notion that ciliary proteins are required not only for regulation of Wnt signaling, but also as downstream effectors of Wnt signaling. This review summarizes recent advances in our understanding of the involvement of cilia and basal body proteins in Wnt signaling pathways.
Collapse
Affiliation(s)
- Helen L May-Simera
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, 35 Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
95
|
Zhang M, Huang Z, Yu B, Ji H. New homogeneous high-throughput assays for inhibitors of β-catenin/Tcf protein–protein interactions. Anal Biochem 2012; 424:57-63. [DOI: 10.1016/j.ab.2012.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
96
|
Hsiao YC, Tuz K, Ferland RJ. Trafficking in and to the primary cilium. Cilia 2012; 1:4. [PMID: 23351793 PMCID: PMC3541539 DOI: 10.1186/2046-2530-1-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/25/2012] [Indexed: 01/08/2023] Open
Abstract
Polarized vesicle trafficking is mediated by small GTPase proteins, such as Rabs and Arls/Arfs. These proteins have essential roles in maintaining normal cellular function, in part, through regulating intracellular trafficking. Moreover, these families of proteins have recently been implicated in the formation and function of the primary cilium. The primary cilium, which is found on almost every cell type in vertebrates, is an organelle that protrudes from the surface of the cell and functions as a signaling center. Interestingly, it has recently been linked to a variety of human diseases, collectively referred to as ciliopathies. The primary cilium has an exceptionally high density of receptors on its membrane that are important for sensing and transducing extracellular stimuli. Moreover, the primary cilium serves as a separate cellular compartment from the cytosol, providing for unique spatial and temporal regulation of signaling molecules to initiate downstream events. Thus, functional primary cilia are essential for normal signal transduction. Rabs and Arls/Arfs play critical roles in early cilia formation but are also needed for maintenance of ciliary function through their coordination with intraflagellar transport (IFT), a specialized trafficking system in primary cilia. IFT in cilia is pivotal for the proper movement of proteins into and out of this highly regulated organelle. In this review article, we explore the involvement of polarized vesicular trafficking in cilia formation and function, and discuss how defects in these processes could subsequently lead to the abnormalities observed in ciliopathies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA
| | - Karina Tuz
- Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA
| | - Russell J Ferland
- Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
97
|
Radford R, Slattery C, Jennings P, Blacque O, Blaque O, Pfaller W, Gmuender H, Van Delft J, Ryan MP, McMorrow T. Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle. Am J Physiol Renal Physiol 2012; 302:F905-16. [PMID: 22262483 PMCID: PMC3729533 DOI: 10.1152/ajprenal.00427.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/13/2012] [Indexed: 01/12/2023] Open
Abstract
The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO(3)) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO(3) resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO(3) exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO(3) cause significant deciliation in a model of the proximal tubule. With KBrO(3), this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO(3) exposure.
Collapse
Affiliation(s)
- Robert Radford
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Through the combined study of model organisms, cell biology, cell signaling and medical genetics we have significantly increased our understanding of the structure and functions of the vertebrate cilium. This ancient organelle has now emerged as a crucial component of certain signaling and sensory perception pathways in both developmental and homeostatic contexts. Here, we provide a snapshot of the structure, function and distribution of the vertebrate cilium and of the pathologies that are associated with its dysfunction.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham NC 27710, USA.
| | | |
Collapse
|
99
|
Lienkamp S, Ganner A, Walz G. Inversin, Wnt signaling and primary cilia. Differentiation 2012; 83:S49-55. [DOI: 10.1016/j.diff.2011.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/28/2022]
|
100
|
Gallegos TF, Kouznetsova V, Kudlicka K, Sweeney DE, Bush KT, Willert K, Farquhar MG, Nigam SK. A protein kinase A and Wnt-dependent network regulating an intermediate stage in epithelial tubulogenesis during kidney development. Dev Biol 2012; 364:11-21. [PMID: 22290330 DOI: 10.1016/j.ydbio.2012.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/19/2022]
Abstract
Genetic interactions regulating intermediate stages of tubulogenesis in the developing kidney have been difficult to define. A systems biology strategy using microarray was combined with in vitro/ex vivo and genetic approaches to identify pathways regulating specific stages of tubulogenesis. Analysis of the progression of the metanephric mesenchyme (MM) through four stages of tubule induction and differentiation (i.e., epithelialization, tubular organization and elongation and early differentiation) revealed signaling pathways potentially involved at each stage and suggested key roles for a number of signaling molecules. A screen of the signaling pathways on in vitro/ex vivo nephron formation implicated a unique regulatory role for protein kinase A (PKA), through PKA-2, in a specific post-epithelialization morphogenetic step (conversion of the renal vesicle to the S-shaped body). Microarray analysis not only confirmed this stage-specificity, but also highlighted the upregulation of Wnt genes. Addition of PKA agonists to LIF-induced nephrons (previously shown to be a Wnt/beta-catenin dependent pathway) disrupted normal tubulogenesis in a manner similar to PKA-agonist treated MM/spinal-cord assays, suggesting that PKA regulates a Wnt-dependent tubulogenesis step. PKA induction of canonical Wnt signaling during tubulogenesis was confirmed genetically using MM from Batgal-reporter mice. Addition of a Wnt synthesis inhibitor to activated PKA cultures rescued tubulogenesis. By re-analysis of existing microarray data from the FGF8, Lim1 and Wnt4 knockouts, which arrest in early tubulogenesis, a network of genes involving PKA, Wnt, Lhx1, FGF8, and hyaluronic acid signaling regulating the transition of nascent epithelial cells to tubular epithelium was derived, helping to reconcile in vivo and in vitro/ex vivo data.
Collapse
Affiliation(s)
- Thomas F Gallegos
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|