51
|
Bakshi P, Liao YF, Gao J, Ni J, Stein R, Yeh LA, Wolfe MS. A High-Throughput Screen to Identify Inhibitors of Amyloid β-Protein Precursor Processing. ACTA ACUST UNITED AC 2016; 10:1-12. [PMID: 15695338 DOI: 10.1177/1087057104270068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebral accumulation of the amyloid β-peptide (Aβ) is believed to play a key role in the pathogenesis of Alzheimer’s disease (AD). Because Aβ is produced from the proteolysis of amyloid β-protein precursor (APP) by β-and γ-secretases, these enzymes are considered important drug targets for AD. The authors have developed a luciferase-based reporter system that can identify new molecules that inhibit APP processing in a high-throughput manner. Such molecules can help in understanding the biology of APP and APP processing and in developing new drug prototypes for AD. In this system, APP is fused on its C-terminus with Gal4-VP16, a chimeric yeast-viral transcription activator, and luciferase is under control of the yeast Gal4 promoter. Compounds that modulate the luciferase signal may affect the secretases directly, interact with modifiers of these proteases, or interact with APP directly. The authors successfully interfaced this assay with a high-throughput screen, testing ~60,000 compounds with diverse chemical structures. In principle, this sensitive, specific, and quantitative assay may be useful for identifying both inhibitors and stimulators of APP processing.( Journal of Biomolecular Screening 2005:1-12)
Collapse
Affiliation(s)
- Pancham Bakshi
- Center for Neurologic Diseases and Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Trotter J, Klein C, Krämer EM. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist 2016. [DOI: 10.1177/107385840000600410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins in mammalian cells play a role in adhesion and signaling. They are sorted in the trans-Golgi network into glycosphingolipid- and cholesterol-rich microdomains termed rafts. Such rafts can be isolated from many cell types including epithelial cells, neural cells, and lymphocytes. In polarized cells, the rafts segregate in distinct regions of the cell. The rafts constitute platforms for signal transduction via raft-associated srcfamily tyrosine kinases. This review compares the sorting, distribution, and signaling of GPI-anchored proteins and rafts in epithelial cells, lymphocytes, and neural cells. A possible involvement of rafts in distinct diseases is also addressed.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany,
| | - Corinna Klein
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Krämer
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
53
|
Marzesco AM, Flötenmeyer M, Bühler A, Obermüller U, Staufenbiel M, Jucker M, Baumann F. Highly potent intracellular membrane-associated Aβ seeds. Sci Rep 2016; 6:28125. [PMID: 27311744 PMCID: PMC4911570 DOI: 10.1038/srep28125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
An early event in Alzheimer's disease (AD) pathogenesis is the formation of extracellular aggregates of amyloid-β peptide (Aβ), thought to be initiated by a prion-like seeding mechanism. However, the molecular nature and location of the Aβ seeds remain rather elusive. Active Aβ seeds are found in crude homogenates of amyloid-laden brains and in the soluble fraction thereof. To analyze the seeding activity of the pellet fraction, we have either separated or directly immunoisolated membranes from such homogenates. Here, we found considerable Aβ seeding activity associated with membranes in the absence of detectable amyloid fibrils. We also found that Aβ seeds on mitochondrial or associated membranes efficiently induced Aβ aggregation in vitro and seed β-amyloidosis in vivo. Aβ seeds at intracellular membranes may contribute to the spreading of Aβ aggregation along neuronal pathways and to the induction of intracellular pathologies downstream of Aβ.
Collapse
Affiliation(s)
- Anne-Marie Marzesco
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | | | - Anika Bühler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Ulrike Obermüller
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Matthias Staufenbiel
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Frank Baumann
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| |
Collapse
|
54
|
Yoon H, Flores LF, Kim J. MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2139-2147. [PMID: 27155217 DOI: 10.1016/j.bbalip.2016.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023]
Abstract
Cholesterol is important for various neuronal functions in the brain. Brain has elaborate regulatory mechanisms to control cholesterol metabolism that are distinct from the mechanisms in periphery. Interestingly, dysregulation of the cholesterol metabolism is strongly associated with a number of neurodegenerative diseases. MicroRNAs are short non-coding RNAs acting as post-transcriptional gene regulators. Recently, several microRNAs are demonstrated to be involved in regulating cholesterol metabolism in the brain. This article reviews the regulatory mechanisms of cellular cholesterol homeostasis in the brain. In addition, we discuss the role of microRNAs in brain cholesterol metabolism and their potential implications for the treatment of Alzheimer's disease. This article is part of a special issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Hyejin Yoon
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Luis F Flores
- Biochemistry and Molecular Biology Graduate Program, Mayo Graduate School, Jacksonville, FL, United States
| | - Jungsu Kim
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
55
|
Membrane Lipids in Presynaptic Function and Disease. Neuron 2016; 90:11-25. [DOI: 10.1016/j.neuron.2016.02.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
|
56
|
Amyloid-β peptides in interaction with raft-mime model membranes: a neutron reflectivity insight. Sci Rep 2016; 6:20997. [PMID: 26880066 PMCID: PMC4754687 DOI: 10.1038/srep20997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The role of first-stage β–amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β–amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment.
Collapse
|
57
|
Glimepiride protects neurons against amyloid-β-induced synapse damage. Neuropharmacology 2016; 101:225-36. [DOI: 10.1016/j.neuropharm.2015.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
|
58
|
Elbassal EA, Liu H, Morris C, Wojcikiewicz EP, Du D. Effects of Charged Cholesterol Derivatives on Aβ40 Amyloid Formation. J Phys Chem B 2015; 120:59-68. [PMID: 26652010 DOI: 10.1021/acs.jpcb.5b09557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Understanding of the mechanistic progess of amyloid-β peptide (Aβ) aggregation is critical for elucidating the underlying pathogenesis of Alzheimer's disease (AD). Herein, we report for the first time the effects of two cholesterol derivatives, negatively charged cholesterol sulfate (cholesterol-SO4) and positively charged 3β-[N-(dimethylaminoethane)carbamoyl]-cholesterol (DC-cholesterol), on the fibrillization of Aβ40. Our results demonstrate that both of the nonvesicular forms of cholesterol-SO4 and DC-cholesterol moderately accelerate the aggregation rate of Aβ40. This effect is similar to that observed for unmodified cholesterol, indicating the importance of hydrophobic interactions in binding of Aβ40 to these steroid molecules. Furthermore, we show that the vesicles formed at higher concentrations of anionic cholesterol-SO4 facilitate Aβ40 aggregation rate markedly. In contrast, the cationic DC-cholesterol vesicles show the ability to inhibit Aβ40 fibril formation under appropriate experimental conditions. The results suggest that the electrostatic interactions between Aβ40 and the charged vesicles can be of great importance in regulating Aβ40-vesicle interaction. Our results also indicate that the structural properties of the aggregates of the cholesterol derivatives, including the surface charge and the size of the vesicles, are critical in regulating the effects of these vesicles on Aβ40 aggregation kinetics.
Collapse
Affiliation(s)
- Esmail A Elbassal
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Haiyang Liu
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Clifford Morris
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Ewa P Wojcikiewicz
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| |
Collapse
|
59
|
Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neurosci Biobehav Rev 2015; 60:121-38. [PMID: 26593111 DOI: 10.1016/j.neubiorev.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) a little over 20 years ago was revolutionary given that miRNAs are essential to numerous physiological and physiopathological processes. Currently, several aspects of the biogenic process of miRNAs and of the translational repression mechanism exerted on their targets mRNAs are known in detail. In fact, the development of bioinformatics tools for predicting miRNA targets has established that miRNAs have the potential to regulate almost all known biological processes. Therefore, the identification of the signals and molecular mechanisms that regulate miRNA function is relevant to understanding the role of miRNAs in both pathological and adaptive processes. Recently, a series of studies has focused on miRNA expression in the brain, establishing that their levels are altered in response to various environmental factors (EFs), such as light, sound, odorants, nutrients, drugs and stress. In this review, we discuss how exposure to various EFs modulates the expression and function of several miRNAs in the nervous system and how this control determines adaptation to their environment, behavior and disease state.
Collapse
Affiliation(s)
- Juan F Codocedo
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
60
|
Zhang YD, Zhao JJ. TFEB Participates in the Aβ-Induced Pathogenesis of Alzheimer's Disease by Regulating the Autophagy-Lysosome Pathway. DNA Cell Biol 2015; 34:661-8. [PMID: 26368054 DOI: 10.1089/dna.2014.2738] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To investigate whether transcriptional factor EB (TFEB) participates in amyloid-β(1-42) (Aβ(1-42))-induced pathogenesis of Alzheimer's disease (AD) and its underlying mechanisms. Three-month-old and 8-month-old transgenic APP/PS1 AD mice and age-matched wild mice were used in this study. We found that the 8-month-old AD animals presented significantly higher deposition of Aβ(1-42) and expression of TFEB and its targeted proteins, such as LAMP-1 and cathepsin D, and autophagy-associated LC3-II and p62 in brain tissues than in others. In an in vitro study, TFEB overexpression rescued autophagic flux that blocked by Aβ(1-42) and the degradation of the absorbed Aβ(1-42), relieved Aβ(1-42)-mediated induction of overloaded autophagy. In addition, TFEB overexpression enhanced cathepsin D expression and activity, restored Aβ(1-42)-disturbed acid environment of lysosome, and promoted the fusion of autophagosomes with lysosomes. Furthermore, TFEB upregulation reduced Aβ(1-42)-induced production of malondialdehyde, oxidative carbonyl proteins, and reactive oxygen species (ROS) and cell apoptosis mainly dependent on the removal of Aβ(1-42) by the autophagy-lysosome pathway. TFEB overexpression alleviated AD progression by reducing Aβ accumulation through regulating the autophagy-lysosome pathway and reducing Aβ-induced ROS production and cell apoptosis.
Collapse
Affiliation(s)
- Yi-dan Zhang
- Encephalopathy Therapy Area, The Affiliated Hospital of Changchun University of Chinese Medicine , Changchun Jilin, People's Republic of China
| | - Jian-jun Zhao
- Encephalopathy Therapy Area, The Affiliated Hospital of Changchun University of Chinese Medicine , Changchun Jilin, People's Republic of China
| |
Collapse
|
61
|
Gupta S, Verma S, Mantri S, Berman NE, Sandhir R. Targeting MicroRNAs in Prevention and Treatment of Neurodegenerative Disorders. Drug Dev Res 2015; 76:397-418. [PMID: 26359796 DOI: 10.1002/ddr.21277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preclinical Research microRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that are key regulators of gene expression. They act on wide range of targets by binding to mRNA via imperfect complementarity at 3' UTR. Evidence suggests that miRNAs regulate many biological processes including neuronal development, differentiation, and disease. Altered expression of several miRNAs has been reported in many neurodegenerative disorders (NDDs). Many miRNAs are altered in these diseases, but miRNA 15, miRNA 21, and miRNA 146a have been shown to play critical role in many neurodegenerative conditions. As these miRNAs regulate many genes, miRNA targeted approaches would allow concurrently targeting of multiple effectors of pathways that regulate disease progression. In this review, we describe the role of miRNAs in various NDDs and their potential as therapeutic tools in prevention and treatment of neurological conditions.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Savita Verma
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Shrikant Mantri
- Computational Biology Laboratory, National Agri-Food Biotechnology Institute, Mohali, Punjab, 160071, India
| | - Nancy E Berman
- Department of Anatomy & Cell Biology, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
62
|
Bate C. Enhanced neuronal degradation of amyloid-β oligomers allows synapse regeneration. Neural Regen Res 2015; 10:700-1. [PMID: 26109937 PMCID: PMC4468754 DOI: 10.4103/1673-5374.156955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|
63
|
Are microRNAs the Molecular Link Between Metabolic Syndrome and Alzheimer's Disease? Mol Neurobiol 2015; 53:2320-38. [PMID: 25976367 DOI: 10.1007/s12035-015-9201-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in people over 65 years of age. At present, treatment options for AD address only its symptoms, and there are no available treatments for the prevention or delay of the disease process. Several preclinical and epidemiological studies have linked metabolic risk factors such as hypertension, obesity, dyslipidemia, and diabetes to the pathogenesis of AD. However, the molecular mechanisms that underlie this relationship are not fully understood. Considering that less than 1% of cases of AD are attributable to genetic factors, the identification of new molecular targets linking metabolic risk factors to neuropathological processes is necessary for improving the diagnosis and treatment of AD. The dysregulation of microRNAs (miRNAs), small non-coding RNAs that regulate several biological processes, has been implicated in the development of different pathologies. In this review, we summarize some of the relevant evidence that points to the role of miRNAs in metabolic syndrome (MetS) and AD and propose that miRNAs may be a molecular link in the complex relationship between both diseases.
Collapse
|
64
|
Park HJ, Ran Y, Jung JI, Holmes O, Price AR, Smithson L, Ceballos-Diaz C, Han C, Wolfe MS, Daaka Y, Ryabinin AE, Kim SH, Hauger RL, Golde TE, Felsenstein KM. The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity. EMBO J 2015; 34:1674-86. [PMID: 25964433 DOI: 10.15252/embj.201488795] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase.
Collapse
Affiliation(s)
- Hyo-Jin Park
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA Department of Pharmacology and Therapeutics, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oliver Holmes
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashleigh R Price
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa Smithson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Seong-Hun Kim
- Department of Pharmacology and Therapeutics, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, Department of Psychiatry, VA Healthcare System, University of California, San Diego, CA, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin M Felsenstein
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
65
|
Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability. Mol Cell Biol 2015; 35:2368-84. [PMID: 25939386 DOI: 10.1128/mcb.01338-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability.
Collapse
|
66
|
Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1886-96. [PMID: 25791349 DOI: 10.1016/j.bbamem.2015.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
67
|
Hong H. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:1-31. [DOI: 10.1007/978-3-319-17344-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
68
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
69
|
Abstract
Antiretroviral therapy extends the lifespan of human immunodeficiency virus (HIV)-infected patients, but many survivors develop premature impairments in cognition. These residual cognitive impairments may involve aberrant deposition of amyloid β-peptides (Aβ). By unknown mechanisms, Aβ accumulates in the lysosomal and autophagic compartments of neurons in the HIV-infected brain. Here we identify the molecular events evoked by the HIV coat protein gp120 that facilitate the intraneuronal accumulation of Aβ. We created a triple transgenic gp120/APP/PS1 mouse that recapitulates intraneuronal deposition of Aβ in a manner reminiscent of the HIV-infected brain. In cultured neurons, we found that the HIV coat protein gp120 increased the transcriptional expression of BACE1 through repression of PPARγ, and increased APP expression by promoting interaction of the translation-activating RBP heterogeneous nuclear ribonucleoprotein C with APP mRNA. APP and BACE1 were colocalized into stabilized membrane microdomains, where the β-cleavage of APP and Aβ formation were enhanced. Aβ-peptides became localized to lysosomes that were engorged with sphingomyelin and calcium. Stimulating calcium efflux from lysosomes with a TRPM1 agonist promoted calcium efflux, luminal acidification, and cleared both sphingomyelin and Aβ from lysosomes. These findings suggest that therapeutics targeted to reduce lysosomal pH in neurodegenerative conditions may protect neurons by facilitating the clearance of accumulated sphingolipids and Aβ-peptides.
Collapse
|
70
|
Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates. Nat Protoc 2014; 10:134-48. [PMID: 25521790 DOI: 10.1038/nprot.2015.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions.
Collapse
|
71
|
Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Potential of caveolae in the therapy of cardiovascular and neurological diseases. Front Physiol 2014; 5:370. [PMID: 25324780 PMCID: PMC4179688 DOI: 10.3389/fphys.2014.00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022] Open
Abstract
Caveolae are membrane micro-domains enriched in cholesterol, sphingolipids and caveolins, which are transmembrane proteins with a hairpin-like structure. Caveolae participate in receptor-mediated trafficking of cell surface receptors and receptor-mediated signaling. Furthermore, caveolae participate in clathrin-independent endocytosis of membrane receptors. On the one hand, caveolins are involved in vascular and cardiac dysfunction. Also, neurological abnormalities in caveolin-1 knockout mice and a link between caveolin-1 gene haplotypes and neurodegenerative diseases have been reported. The aim of this article is to present the rationale for considering caveolae as potential targets in cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Gemma Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Rafael Franco
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
72
|
Matveev SV, Spielmann HP, Metts BM, Chen J, Onono F, Zhu H, Scheff SW, Walker LC, LeVine H. A distinct subfraction of Aβ is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain. J Neurochem 2014; 131:356-68. [PMID: 24995708 DOI: 10.1111/jnc.12815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022]
Abstract
The positron emission tomography (PET) ligand (11) C-labeled Pittsburgh compound B (PIB) is used to image β-amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human-sequence Aβ in amyloid precursor protein transgenic mice and non-human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB-binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, (3) H-PIB was employed to track purification of the PIB-binding site in > 90% yield from frontal cortical tissue of autopsy-diagnosed AD subjects. The purified PIB-binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate-resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human-specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues. A lipid-associated subpopulation of Aβ accounts for the high-affinity binding of Pittsburgh compound B (PIB) in Alzheimer's disease brain. Mass spectrometry of the isolated PIB-binding site from frontal cortex identified Aβ peptides and a set of plaque-associated proteins in AD but not age-matched normal brain. The PIB-binding site may represent a particularly pathogenic entity and/or report local pathologic conditions.
Collapse
Affiliation(s)
- Sergey V Matveev
- Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
74
|
Malnar M, Hecimovic S, Mattsson N, Zetterberg H. Bidirectional links between Alzheimer's disease and Niemann-Pick type C disease. Neurobiol Dis 2014; 72 Pt A:37-47. [PMID: 24907492 DOI: 10.1016/j.nbd.2014.05.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/17/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) and Niemann-Pick type C (NPC) disease are progressive neurodegenerative diseases with very different epidemiology and etiology. AD is a common cause of dementia with a complex polyfactorial etiology, including both genetic and environmental risk factors, while NPC is a very rare autosomal recessive disease. However, the diseases share some disease-related molecular pathways, including abnormal cholesterol metabolism, and involvement of amyloid-β (Aβ) and tau pathology. Here we review recent studies on these pathological traits, focusing on studies of Aβ and tau pathology in NPC, and the importance of the NPC1 gene in AD. Further studies of similarities and differences between AD and NPC may be useful to increase the understanding of both these devastating neurological diseases.
Collapse
Affiliation(s)
- Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
75
|
Wong BX, Hung YH, Bush AI, Duce JA. Metals and cholesterol: two sides of the same coin in Alzheimer's disease pathology. Front Aging Neurosci 2014; 6:91. [PMID: 24860500 PMCID: PMC4030154 DOI: 10.3389/fnagi.2014.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, North Yorkshire, UK
| |
Collapse
|
76
|
Pathological roles of ceramide and its metabolites in metabolic syndrome and Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:793-8. [DOI: 10.1016/j.bbalip.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
|
77
|
Jung JI, Ran Y, Cruz PE, Rosario AM, Ladd TB, Kukar TL, Koo EH, Felsenstein KM, Golde TE. Complex relationships between substrate sequence and sensitivity to alterations in γ-secretase processivity induced by γ-secretase modulators. Biochemistry 2014; 53:1947-57. [PMID: 24620716 PMCID: PMC3985764 DOI: 10.1021/bi401521t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
γ-Secretase
catalyzes the final cleavage of the amyloid precursor
protein (APP), resulting in the production of amyloid-β (Aβ)
peptides with different carboxyl termini. Presenilin (PSEN) and amyloid precursor protein (APP) mutations
linked to early onset familial Alzheimer’s disease modify the
profile of Aβ isoforms generated, by altering both the initial
γ-secretase cleavage site and subsequent processivity in a manner
that leads to increased levels of the more amyloidogenic Aβ42
and in some circumstances Aβ43. Compounds termed γ-secretase
modulators (GSMs) and inverse GSMs (iGSMs) can decrease and increase
levels of Aβ42, respectively. As GSMs lower the level of production
of pathogenic forms of long Aβ isoforms, they are of great interest
as potential Alzheimer’s disease therapeutics. The factors
that regulate GSM modulation are not fully understood; however, there
is a growing body of evidence that supports the hypothesis that GSM
activity is influenced by the amino acid sequence of the γ-secretase
substrate. We have evaluated whether mutations near the luminal border
of the transmembrane domain (TMD) of APP alter the ability of both
acidic, nonsteroidal anti-inflammatory drug-derived carboxylate and
nonacidic,
phenylimidazole-derived classes of GSMs and iGSMs to modulate γ-secretase
cleavage. Our data show that point mutations can dramatically reduce
the sensitivity to modulation of cleavage by GSMs but have weaker
effects on iGSM activity. These studies support the concept that the
effect of GSMs may be substrate selective; for APP, it is dependent
on the amino acid sequence of the substrate near the junction of the
extracellular domain and luminal segment of the TMD.
Collapse
Affiliation(s)
- Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, and McKnight Brain Institute, College of Medicine, University of Florida , Gainesville, Florida 32603, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Simmons C, Ingham V, Williams A, Bate C. Platelet-activating factor antagonists enhance intracellular degradation of amyloid-β42 in neurons via regulation of cholesterol ester hydrolases. Alzheimers Res Ther 2014; 6:15. [PMID: 24625058 PMCID: PMC4055000 DOI: 10.1186/alzrt245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/19/2014] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The progressive dementia that is characteristic of Alzheimer's disease is associated with the accumulation of amyloid-beta (Aβ) peptides in extracellular plaques and within neurons. Aβ peptides are targeted to cholesterol-rich membrane micro-domains called lipid rafts. Observations that many raft proteins undertake recycling pathways that avoid the lysosomes suggest that the accumulation of Aβ in neurons may be related to Aβ targeting lipid rafts. Here we tested the hypothesis that the degradation of Aβ by neurons could be increased by drugs affecting raft formation. METHODS Primary neurons were incubated with soluble Aβ preparations. The amounts of Aβ42 in neurons or specific cellular compartments were measured by enzyme-linked immunosorbent assay. The effects of drugs on the degradation of Aβ42 were studied. RESULTS Aβ42 was targeted to detergent-resistant, low-density membranes (lipid rafts), trafficked via a pathway that avoided the lysosomes, and was slowly degraded by neurons (half-life was greater than 5 days). The metabolism of Aβ42 was sensitive to pharmacological manipulation. In neurons treated with the cholesterol synthesis inhibitor squalestatin, less Aβ42 was found within rafts, greater amounts of Aβ42 were found in lysosomes, and the half-life of Aβ42 was reduced to less than 24 hours. Treatment with phospholipase A2 inhibitors or platelet-activating factor (PAF) antagonists had the same effects on Aβ42 metabolism in neurons as squalestatin. PAF receptors were concentrated in the endoplasmic reticulum (ER) along with enzymes that constitute the cholesterol ester cycle. The addition of PAF to ER membranes triggered activation of cholesterol ester hydrolases and the release of cholesterol from stores of cholesterol esters. An inhibitor of cholesterol ester hydrolases (diethylumbelliferyl phosphate) also increased the degradation of Aβ42 in neurons. CONCLUSIONS We conclude that the targeting of Aβ42 to rafts in normal cells is a factor that affects its degradation. Critically, pharmacological manipulation of neurons can significantly increase Aβ42 degradation. These results are consistent with the hypothesis that the Aβ-induced production of PAF controls a cholesterol-sensitive pathway that affects the cellular localization and hence the fate of Aβ42 in neurons.
Collapse
Affiliation(s)
- Charlotte Simmons
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Victoria Ingham
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Alun Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| |
Collapse
|
79
|
Membrane-anchored Aβ accelerates amyloid formation and exacerbates amyloid-associated toxicity in mice. J Neurosci 2014; 33:19284-94. [PMID: 24305824 DOI: 10.1523/jneurosci.2542-13.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pathological, genetic, and biochemical hallmarks of Alzheimer's disease (AD) are linked to amyloid-β (Aβ) peptide aggregation. Especially misfolded Aβ42 peptide is sufficient to promote amyloid plaque formation. However, the cellular compartment facilitating the conversion of monomeric Aβ to aggregated toxic Aβ species remains unknown. In vitro models suggest lipid membranes to be the driving force of Aβ conversion. To this end, we generated two novel mouse models, expressing either membrane-anchored or nonanchored versions of the human Aβ42 peptide. Strikingly, membrane-anchored Aβ42 robustly accelerated Aβ deposition and exacerbated amyloid-associated toxicity upon crossing with Aβ precursor protein transgenic mice. These in vivo findings support the hypothesis that Aβ-membrane interactions play a pivotal role in early-onset AD as well as neuronal damage and provide evidence to study Aβ-membrane interactions as therapeutic targets.
Collapse
|
80
|
Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7:265. [PMID: 24391543 PMCID: PMC3867638 DOI: 10.3389/fncel.2013.00265] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.
Collapse
Affiliation(s)
- Simona Maciotta
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy ; Diabetes Research Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy
| |
Collapse
|
81
|
Walter J, van Echten-Deckert G. Cross-talk of membrane lipids and Alzheimer-related proteins. Mol Neurodegener 2013; 8:34. [PMID: 24148205 PMCID: PMC4016522 DOI: 10.1186/1750-1326-8-34] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is neuropathologically characterized by the combined occurrence of extracellular β-amyloid plaques and intracellular neurofibrillary tangles in the brain. While plaques contain aggregated forms of the amyloid β-peptide (Aβ), tangles are formed by fibrillar forms of the microtubule associated protein tau. All mutations identified so far to cause familial forms of early onset AD (FAD) are localized close to or within the Aβ domain of the amyloid precursor protein (APP) or in the presenilin proteins that are essential components of a protease complex involved in the generation of Aβ. Mutations in the tau gene are not associated with FAD, but can cause other forms of dementia. The genetics of FAD together with biochemical and cell biological data, led to the formulation of the amyloid hypothesis, stating that accumulation and aggregation of Aβ is the primary event in the pathogenesis of AD, while tau might mediate its toxicity and neurodegeneration. The generation of Aβ involves sequential proteolytic cleavages of the amyloid precursor protein (APP) by enzymes called β-and γ-secretases. Notably, APP itself as well as the secretases are integral membrane proteins. Thus, it is very likely that membrane lipids are involved in the regulation of subcellular transport, activity, and metabolism of AD related proteins. Indeed, several studies indicate that membrane lipids, including cholesterol and sphingolipids (SLs) affect Aβ generation and aggregation. Interestingly, APP and other AD associated proteins, including β-and γ-secretases can, in turn, influence lipid metabolic pathways. Here, we review the close connection of cellular lipid metabolism and AD associated proteins and discuss potential mechanisms that could contribute to initiation and progression of AD.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Sigmund-Freud-Str, 25, 53127, Bonn, Germany.
| | | |
Collapse
|
82
|
Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 2013; 33:11169-83. [PMID: 23825420 DOI: 10.1523/jneurosci.4704-12.2013] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brains of patients affected by Alzheimer's disease (AD) contain large deposits of aggregated amyloid β-protein (Aβ). Only a small fraction of the amyloid precursor protein (APP) gives rise to Aβ. Here, we report that ∼10% of APP undergoes a post-translational lipid modification called palmitoylation. We identified the palmitoylation sites in APP at Cys¹⁸⁶ and Cys¹⁸⁷. Surprisingly, point mutations introduced into these cysteines caused nearly complete ER retention of APP. Thus, either APP palmitoylation or disulfide bridges involving these Cys residues appear to be required for ER exit of APP. In later compartments, palmitoylated APP (palAPP) was specifically enriched in lipid rafts. In vitro BACE1 cleavage assays using cell or mouse brain lipid rafts showed that APP palmitoylation enhanced BACE1-mediated processing of APP. Interestingly, we detected an age-dependent increase in endogenous mouse brain palAPP levels. Overexpression of selected DHHC palmitoyl acyltransferases increased palmitoylation of APP and doubled Aβ production, while two palmitoylation inhibitors reduced palAPP levels and APP processing. We have found previously that acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition led to impaired APP processing. Here we demonstrate that pharmacological inhibition or genetic inactivation of ACAT decrease lipid raft palAPP levels by up to 76%, likely resulting in impaired APP processing. Together, our results indicate that APP palmitoylation enhances amyloidogenic processing by targeting APP to lipid rafts and enhancing its BACE1-mediated cleavage. Thus, inhibition of palAPP formation by ACAT or specific palmitoylation inhibitors would appear to be a valid strategy for prevention and/or treatment of AD.
Collapse
|
83
|
Kang MS, Baek SH, Chun YS, Moore AZ, Landman N, Berman D, Yang HO, Morishima-Kawashima M, Osawa S, Funamoto S, Ihara Y, Di Paolo G, Park JH, Chung S, Kim TW. Modulation of lipid kinase PI4KIIα activity and lipid raft association of presenilin 1 underlies γ-secretase inhibition by ginsenoside (20S)-Rg3. J Biol Chem 2013; 288:20868-20882. [PMID: 23723072 PMCID: PMC3774358 DOI: 10.1074/jbc.m112.445734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/20/2013] [Indexed: 01/09/2023] Open
Abstract
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.
Collapse
Affiliation(s)
- Min Suk Kang
- From the Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032
| | | | - Yoon Sun Chun
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - A Zenobia Moore
- From the Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032
| | - Natalie Landman
- From the Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032
| | - Diego Berman
- From the Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology-Gangneung Institute, Gangneung, Gangwon-do 210-340, Korea
| | - Maho Morishima-Kawashima
- Department of Molecular Neuropathology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - Satoko Osawa
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan, and
| | - Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan, and
| | - Gilbert Di Paolo
- From the Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032
| | - Jeong Hill Park
- Research Institute of Pharmaceutical Sciences, Seoul National University, College of Pharmacy, Seoul 151-742, Korea
| | - Sungkwon Chung
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea,.
| | - Tae-Wan Kim
- From the Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032,.
| |
Collapse
|
84
|
Danza G, Di Serio C, Ambrosio MR, Sturli N, Lonetto G, Rosati F, Rocca BJ, Ventimiglia G, del Vecchio MT, Prudovsky I, Marchionni N, Tarantini F. Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int J Cancer 2013; 133:2577-86. [PMID: 23729168 DOI: 10.1002/ijc.28293] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/06/2013] [Indexed: 01/02/2023]
Abstract
Prostate cancer (PC) is still the second cause of cancer-related death among men. Although patients with metastatic presentation have an ominous outcome, the vast majority of PCs are diagnosed at an early stage. Nonetheless, even among patients with clinically localized disease the outcome may vary considerably. Other than androgen sensitivity, little is known about which other signaling pathways are deranged in aggressive, localized cancers. The elucidation of such pathways may help to develop innovative therapies aimed at specific molecular targets. We report that in a hormone-sensitive PC cell line, LNCaP, Notch3 was activated by hypoxia and sustained cell proliferation and colony formation in soft agar. Hypoxia also modulated cellular cholesterol content and the number and size of lipid rafts, causing a coalescence of small rafts into bigger clusters; under this experimental condition, Notch3 migrated from the non-raft into the raft compartment where it colocalized with the γ-secretase complex. We also looked at human PC biopsies and found that expression of Notch3 positively correlated with Gleason score and with expression of carbonic anhydrase IX, a marker of hypoxia. In conclusion, hypoxia triggers the activation of Notch3, which, in turn, sustains proliferation of PC cells. Notch3 pathway represents a promising target for adjuvant therapy in patients with PC.
Collapse
Affiliation(s)
- Giovanna Danza
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Chu C, Zhang X, Ma W, Li L, Wang W, Shang L, Fu P. Induction of autophagy by a novel small molecule improves aβ pathology and ameliorates cognitive deficits. PLoS One 2013; 8:e65367. [PMID: 23750258 PMCID: PMC3672196 DOI: 10.1371/journal.pone.0065367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/30/2013] [Indexed: 01/25/2023] Open
Abstract
Growing evidence has demonstrated a neuroprotective role of autophagy in Alzheimer's disease (AD). Thus, autophagy has been regarded as a potential therapeutic target, attracting increasing interest in pharmaceutical autophagy modulation by small molecules. We designed a two-cycle screening strategy on the basis of imaging high-throughout screening (HTS) and cellular toxicity assay, and have identified a novel autophagy inducer known as GTM-1. We further showed that GTM-1 exhibits dual activities, such as autophagy induction and antagonism against Aβ-oligomer toxicity. GTM-1 modulates autophagy in an Akt-independent and mTOR-independent manner. In addition, we demonstrated that GTM-1 enhances autophagy clearance and reverses the downregulation of autophagy flux by thapsigargin and asparagine. Furthermore, administration of GTM-1 attenuated Aβ pathology and ameliorated cognitive deficits in AD mice.
Collapse
Affiliation(s)
- Cheng Chu
- Department of Neurology, The First People’s Hospital of Yangzhou, Jiang Su, PR China
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Xinjiang Zhang
- Department of Neurology, The First People’s Hospital of Yangzhou, Jiang Su, PR China
| | - Wei Ma
- Mu Danjiang Medical College, Hei Longjiang, PR China
| | - Li Li
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Wei Wang
- Department of Neurology, The First People’s Hospital of Yangzhou, Jiang Su, PR China
| | - Lu Shang
- The Eighth Detachment Health Team of CAPF, Shanghai Corps, Jiangsu, PR China
| | - Peng Fu
- Department of Pharmacy, Changhai Hospital,Second Military Medical University, Shanghai, PR China
| |
Collapse
|
86
|
Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis? Neuroscience 2013; 245:26-39. [PMID: 23618758 DOI: 10.1016/j.neuroscience.2013.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
Abstract
Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD.
Collapse
|
87
|
Inhibition of serine palmitoyltransferase reduces Aβ and tau hyperphosphorylation in a murine model: a safe therapeutic strategy for Alzheimer's disease. Neurobiol Aging 2013; 34:2037-51. [PMID: 23528227 DOI: 10.1016/j.neurobiolaging.2013.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/31/2013] [Accepted: 02/09/2013] [Indexed: 12/14/2022]
Abstract
The contribution of the autosomal dominant mutations to the etiology of familial Alzheimer's disease (AD) is well characterized. However, the molecular mechanisms contributing to sporadic AD are less well understood. Increased ceramide levels have been evident in AD patients. We previously reported that increased ceramide levels, regulated by increased serine palmitoyltransferase (SPT), directly mediate amyloid β (Aβ) levels. Therefore, we inhibited SPT in an AD mouse model (TgCRND8) through subcutaneous administration of L-cylcoserine. The cortical Aβ₄₂ and hyperphosphorylated tau levels were down-regulated with the inhibition of SPT/ceramide. Positive correlations were observed among cortical SPT, ceramide, and Aβ₄₂ levels. With no evident toxic effects observed, inhibition of SPT could be a safe therapeutic strategy to ameliorate the AD pathology. We previously observed that miR-137, -181c, -9, and 29a/b post-transcriptionally regulate SPT levels, and the corresponding miRNA levels in the blood sera are potential diagnostic biomarkers for AD. Here, we observe a negative correlation between cortical Aβ₄₂ and sera Aβ₄₂, and a positive correlation between cortical miRNA levels and sera miRNA levels suggesting their potential as noninvasive diagnostic biomarkers.
Collapse
|
88
|
Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013; 304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022]
|
89
|
Luan K, Rosales JL, Lee KY. Viewpoint: Crosstalks between neurofibrillary tangles and amyloid plaque formation. Ageing Res Rev 2013; 12:174-81. [PMID: 22728532 DOI: 10.1016/j.arr.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/17/2012] [Accepted: 06/06/2012] [Indexed: 12/29/2022]
Abstract
Since its discovery, the hallmarks of Alzheimer's disease (AD) brain have been recognised as the formation of amyloid plaques and neurofibrillary tangles (NFTs). Mounting evidence has suggested the active interplay between the two pathways. Studies have shown that β-amyloid (Aβ) can be internalized and generated intracellularly, accelerating NFT formation. Conversely, tau elements in NFTs are observed to affect Aβ and amyloid plaque formation. Yet the precise mechanisms which link the pathologies of the two brain lesions remain elusive. In this review, we discuss recent evidence that support five putative mechanisms by which crosstalk occurs between amyloid plaque and NFT formation in AD pathogenesis. Understanding the crosstalks in the formation of AD pathologies could provide new clues for the development of novel therapeutic strategies to delay or halt the progression of AD.
Collapse
Affiliation(s)
- Kailie Luan
- Department of Cell Biology and Anatomy, Southern Alberta Cancer Research and Hotchkiss Brain Institutes, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
90
|
Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF. Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. ACTA ACUST UNITED AC 2012; 209:2501-13. [PMID: 23209315 PMCID: PMC3526350 DOI: 10.1084/jem.20121239] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To be added There is extensive evidence that cholesterol and membrane lipids play a key role in Alzheimer disease (AD) pathogenesis. Cyclodextrins (CD) are cyclic oligosaccharide compounds widely used to bind cholesterol. Because CD exerts significant beneficial effects in Niemann-Pick type C disease, which shares neuropathological features with AD, we examined the effects of hydroxypropyl-β-CD (HP-β-CD) in cell and mouse models of AD. Cell membrane cholesterol accumulation was detected in N2a cells overexpressing Swedish mutant APP (SwN2a), and the level of membrane cholesterol was reduced by HP-β-CD treatment. HP-β-CD dramatically lowered the levels of Aβ42 in SwN2a cells, and the effects were persistent for 24 h after withdrawal. 4 mo of subcutaneous HP-β-CD administration significantly improved spatial learning and memory deficits in Tg19959 mice, diminished Aβ plaque deposition, and reduced tau immunoreactive dystrophic neurites. HP-β-CD lowered levels of Aβ42 in part by reducing β cleavage of the APP protein, and it also up-regulated the expression of genes involved in cholesterol transport and Aβ clearance. This is the first study to show neuroprotective effects of HP-β-CD in a transgenic mouse model of AD, both by reducing Aβ production and enhancing clearance mechanisms, which suggests a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits. Prog Neurobiol 2012; 99:226-45. [DOI: 10.1016/j.pneurobio.2012.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
|
92
|
Pernber Z, Blennow K, Bogdanovic N, Månsson JE, Blomqvist M. Altered distribution of the gangliosides GM1 and GM2 in Alzheimer's disease. Dement Geriatr Cogn Disord 2012; 33:174-88. [PMID: 22572791 DOI: 10.1159/000338181] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder where β-amyloid tends to aggregate and form plaques. Lipid raft-associated ganglioside GM1 has been suggested to facilitate β-amyloid aggregation; furthermore, GM1 and GM2 are increased in lipid rafts isolated from cerebral cortex of AD cases. AIM/METHOD The distribution of GM1 and GM2 was studied by immunohistochemistry in the frontal and temporal cortex of AD cases. Frontotemporal dementia (FTD) was included as a contrast group. RESULTS The distribution of GM1 and GM2 changes during the process of AD (n = 5) and FTD (n = 3) compared to controls (n = 5). Altered location of the GM1-positive small circular structures seems to be associated with myelin degradation. In the grey matter, the staining of GM1-positive plasma membranes might reflect neuronal loss in the AD/FTD tissue. The GM1-positive compact bundles were only visible in cells located in the AD frontal grey matter, possibly reflecting raft formation of GM1 and thus a pathological connection. Furthermore, our results suggest GM2 to be enriched within vesicles of pyramidal neurons of the AD/FTD brain. CONCLUSION Our study supports the biochemical finding of ganglioside accumulation in cellular membranes of AD patients and shows a redistribution of these molecules.
Collapse
Affiliation(s)
- Z Pernber
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Molndal, Sweden
| | | | | | | | | |
Collapse
|
93
|
van Echten-Deckert G, Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog Lipid Res 2012; 51:378-93. [DOI: 10.1016/j.plipres.2012.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
|
94
|
Maulik M, Westaway D, Jhamandas JH, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 2012; 47:37-63. [PMID: 22983915 DOI: 10.1007/s12035-012-8337-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disorder believed to be initiated by accumulation of amyloid β (Aβ)-related peptides derived from proteolytic processing of amyloid precursor protein (APP). Research over the past two decades provided a mechanistic link between cholesterol and AD pathogenesis. Genetic polymorphisms in genes regulating the pivotal points in cholesterol metabolism have been suggested to enhance the risk of developing AD. Altered neuronal membrane cholesterol level and/or subcellular distribution have been implicated in aberrant formation, aggregation, toxicity, and degradation of Aβ-related peptides. However, the results are somewhat contradictory and we still do not have a complete understanding on how cholesterol can influence AD pathogenesis. In this review, we summarize our current understanding on the role of cholesterol in regulating the production/function of Aβ-related peptides and also examine the therapeutic potential of regulating cholesterol homeostasis in the treatment of AD pathology.
Collapse
Affiliation(s)
- M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | | | | | | |
Collapse
|
95
|
Algarzae N, Hebron M, Miessau M, Moussa CEH. Parkin prevents cortical atrophy and Aβ-induced alterations of brain metabolism: ¹³C NMR and magnetic resonance imaging studies in AD models. Neuroscience 2012; 225:22-34. [PMID: 22960314 DOI: 10.1016/j.neuroscience.2012.08.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative aging disorder characterized by extracellular Aβ plaques and intraneuronal neurofibrillary tangles. We conducted longitudinal studies to examine the effects of Aβ on brain amino acid metabolism in lentiviral Aβ(1-42) gene transfer animals and transgenic AD mice. We also performed lentiviral parkin gene delivery to determine the effects of Aβ clearance in AD models. Aβ(1-42) activated mTOR signaling, and increased 4E-BP phosphorylation. Aβ(1-42) increased the synthesis of glutamate and aspartate, but not glutamine, leucine and isoleucine, but an increase in leucine and isoleucine levels was concurrent with diminution of neurotransmitters. Additionally, Aβ(1-42) attenuated mitochondrial tricarboxylic acid (TCA) cycle activity and decreased synthesis of its by-products. Glutamate levels increased prior to lactate accumulation, suggesting oxidative stress. Importantly, parkin reversed the effects of Aβ(1-42) on amino acid levels, prevented TCA cycle impairment and protected against glutamate toxicity. Cortical atrophy was observed in aged 3xTg-AD mice, while parkin expression was associated with reduced atrophy. Similarly, Aβ(1-42) resulted in significant cell loss, pronounced astrogliosis and cortical atrophy and parkin reduced astrogliosis and reversed Aβ(1-42) effects on cell loss and cortical atrophy. Taken together these data suggest that parkin prevents amyloid-induced alteration of brain metabolism and may be used as a therapeutic target to limit neuronal loss in AD.
Collapse
Affiliation(s)
- Norah Algarzae
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
96
|
Sebastião AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 2012; 64:97-107. [PMID: 22820274 DOI: 10.1016/j.neuropharm.2012.06.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The synapse is a crowded area. In the last years, the concept that proteins can be organized in different membrane domains according to their structure has emerged. Cholesterol-rich membrane domains, or lipid rafts, form an organized portion of the membrane that is thought to concentrate signaling molecules. Accumulating evidence has shown that both the pre-synaptic and post-synaptic sites are highly enriched in lipid rafts, which are likely to organize and maintain synaptic proteins in their precise localization. Here we review recent studies highlighting the importance of lipid rafts for synaptic function and plasticity, as well as their relevance for age or disease-related cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
97
|
Hicks DA, Nalivaeva NN, Turner AJ. Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol 2012; 3:189. [PMID: 22737128 PMCID: PMC3381238 DOI: 10.3389/fphys.2012.00189] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events.
Collapse
Affiliation(s)
- David A Hicks
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | |
Collapse
|
98
|
Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012; 336:1168-71. [PMID: 22654059 PMCID: PMC3528355 DOI: 10.1126/science.1219988] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by γ-secretase to release the amyloid-β polypeptides, which are associated with Alzheimer's disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded "N-helix" followed by a short "N-loop" connecting to the transmembrane domain (TMD). The TMD is a flexibly curved α helix, making it well suited for processive cleavage by γ-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer's therapeutics.
Collapse
Affiliation(s)
- Paul J. Barrett
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yuanli Song
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wade D. Van Horn
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric J. Hustedt
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Johanna M. Schafer
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Arina Hadziselimovic
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew J. Beel
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Charles R. Sanders
- Dept. of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
99
|
Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H. Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem 2012; 287:21326-34. [PMID: 22532566 DOI: 10.1074/jbc.m112.356659] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic generation of amyloid β-peptide (Aβ) by sequential cleavage of β-amyloid precursor protein (APP) by β- and γ-secretases is widely believed to causally underlie Alzheimer disease (AD). β-Secretase initially cleaves APP thereby generating a membrane-bound APP C-terminal fragment, from which γ-secretase subsequently liberates 37-43-amino acid long Aβ species. Although the latter cleavages are intramembranous and although lipid alterations have been implicated in AD, little is known of how the γ-secretase-mediated release of the various Aβ species, in particular that of the pathogenic longer variants Aβ(42) and Aβ(43), is affected by the lipid environment. Using a cell-free system, we have directly and systematically investigated the activity of γ-secretase reconstituted in defined model membranes of different thicknesses. We found that bilayer thickness is a critical parameter affecting both total activity as well as cleavage specificity of γ-secretase. Whereas the generation of the pathogenic Aβ(42/43) species was markedly attenuated in thick membranes, that of the major and rather benign Aβ(40) species was enhanced. Moreover, the increased production of Aβ(42/43) by familial AD mutants of presenilin 1, the catalytic subunit of γ-secretase, could be substantially lowered in thick membranes. Our data demonstrate an effective modulation of γ-secretase activity by membrane thickness, which may provide an approach to lower the generation of the pathogenic Aβ(42/43) species.
Collapse
Affiliation(s)
- Edith Winkler
- Adolf Butenandt Institute, Biochemistry, Ludwig Maximilians University Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Herman AM, Khandelwal PJ, Rebeck GW, Moussa CEH. Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Exp Neurol 2012; 235:297-305. [PMID: 22402344 DOI: 10.1016/j.expneurol.2012.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/13/2012] [Accepted: 02/19/2012] [Indexed: 12/12/2022]
Abstract
The transactivation DNA-binding protein (TDP-43) pathology is associated with fronto-temporal lobar dementia (FTLD) with ubiquitinated inclusions and some cases of Alzheimer's disease (AD). Proteolytic fragments of β-amyloid precursor protein (βAPP) are detected in AD as well as the cerebrospinal fluid (CSF) from FTLD and Amyotrophic Lateral Sclerosis (ALS) patients, suggesting alteration in APP processing. Because of the overlap in TDP-43 pathology between FTLD and AD, we sought to determine whether there is a relationship between TDP-43 and APP metabolism. We generated gene transfer models using lentiviral delivery of human TDP-43 and Aβ(1-42) into the rat primary motor cortex and examined their role 2 weeks post-injection. Expression of TDP-43 and/or Aβ(1-42) increase pro-inflammatory markers, including Interleukin (IL)-6, tumor necrosis factor (TNF-α), glial neurofibrillary proteins (GFAP) and ionized calcium binding adaptor molecule 1 (IBA-1). Lentiviral Aβ(1-42) up-regulates endogenous TDP-43 and promotes its phosphorylation, aggregation and cleavage into 35 kDa fragments. Inversely, lentiviral TDP-43 expression increases the levels and activity of β-secretase (BACE), accelerating production of APP C-terminal fragments (C99) and Aβ(1-40). Here we show that TDP-43 up-regulates APP metabolism and suggest a mechanistic link between TDP-43 and BACE.
Collapse
Affiliation(s)
- Alexander M Herman
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|