51
|
Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm 2020; 582:119320. [PMID: 32278720 DOI: 10.1016/j.ijpharm.2020.119320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The application of nanoparticles (NPs) as radio-sensitizers and carriers has opened up a new horizon to overcome the limitations of chemo and radiotherapy. In this study, bovine serum albumin-coated Bi2S3 NPs (Bi2S3@BSA NPs) were synthesized and evaluated in terms of their ability to be used as a radio-sensitizer and carrier for methotrexate (MTX). Physicochemical properties of MTX conjugated Bi2S3@BSA NPs (Bi2S3@BSA-MTX NPs) were characterized by DLS, TEM, FTIR, UV/Vis, and XRD analyses. After the evaluation of cellular uptake and intracellular localization, the cytotoxicity of the combination of Bi2S3@BSA-MTX NPs and X-Ray radiation was analyzed against the SW480 cell line. The synthesized NPs exhibited spherical-like shapes and homogenous morphology, possessing a hydrodynamic diameter of 140.2 ± 5.71 nm (mean ± SD) and zeta potential of -25 mV. Also, the release study showed that the release of MTX is faster and higher in the presence of the proteinase K enzyme than the absence of the enzyme. The results of in-vitro chemo-radiation therapy indicated that the viability of treated cells with Bi2S3@BSA-MTX NPs is significantly lower than the cells treated with Bi2S3@BSA NPs. Furthermore, cells treated with Bi2S3@BSA-MTX NPs showed a lower degree of viability when combined with X-Ray radiation in comparison with the absence of irradiation, which confirmed the ability of the Bi2S3@BSA-MTX NPs as radio-sensitizer.
Collapse
|
52
|
Zeng Q, Guo Q, Yuan Y, Zhang X, Jiang W, Xiao S, Zhang B, Lou X, Ye C, Liu M, Bouchard LS, Zhou X. A Small Molecular Multifunctional Tool for pH Detection, Fluorescence Imaging, and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:1779-1786. [PMID: 35021667 DOI: 10.1021/acsabm.9b01080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A smart multitool platform for theranostics would be useful for monitoring the administration of therapies in vivo. However, the integration of multiple functions into a single small-molecule platform remains a challenge. In this study, we developed a multifunctional probe based on a small-molecule platform. The properties of this probe were investigated via hyperpolarized 129Xe NMR/MRI, fluorescence imaging in cells and in vivo, and photodynamic therapy (PDT) in tumor mouse models. This multifunctional probe shows good pH response across a broad range of pH values. It also exhibits excellent fluorescence in vivo for mapping its biodistribution. Additionally, it produces enough 1O2 radicals for in vivo PDT. The combination of these functionalities into a single small-molecule platform, rather than a bulky nanoconstruct, offers unique possibilities for molecular imaging and therapy.
Collapse
Affiliation(s)
- Qingbin Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Qianni Guo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Bin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Louis-S Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Department of Chemistry and of Bioengineering, University of California, Los Angeles, California, United States
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
53
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
54
|
Wei Z, Jiang Z, Pan C, Xia J, Xu K, Xue T, Yuan B, Akakuru OU, Zhu C, Zhang G, Mao Z, Qiu X, Wu A, Shen Z. Ten-Gram-Scale Facile Synthesis of Organogadolinium Complex Nanoparticles for Tumor Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906870. [PMID: 32091159 DOI: 10.1002/smll.201906870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The market of available contrast agents for clinical magnetic resonance imaging (MRI) has been dominated by gadolinium (Gd) chelates based T1 contrast agents for decades. However, there are growing concerns about their safety because they are retained in the body and are nephrotoxic, which necessitated a warning by the U.S. Food and Drug Administration against the use of such contrast agents. To ameliorate these problems, it is necessary to improve the MRI efficiency of such contrast agents to allow the administration of much reduced dosages. In this study, a ten-gram-scale facile method is developed to synthesize organogadolinium complex nanoparticles (i.e., reductive bovine serum albumin stabilized Gd-salicylate nanoparticles, GdSalNPs-rBSA) with high r1 value of 19.51 mm-1 s-1 and very low r2 /r1 ratio of 1.21 (B0 = 1.5 T) for high-contrast T1 -weighted MRI of tumors. The GdSalNPs-rBSA nanoparticles possess more advantages including low synthesis cost (≈0.54 USD per g), long in vivo circulation time (t1/2 = 6.13 h), almost no Gd3+ release, and excellent biosafety. Moreover, the GdSalNPs-rBSA nanoparticles demonstrate excellent in vivo MRI contrast enhancement (signal-to-noise ratio (ΔSNR) ≈ 220%) for tumor diagnosis.
Collapse
Affiliation(s)
- Zhenni Wei
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, 166 Renai Road, Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
| | - Chunshu Pan
- Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Jiangbei District, Ningbo, Zhejiang, 315010, China
| | - Jianbi Xia
- Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Jiangbei District, Ningbo, Zhejiang, 315010, China
| | - Kaiwei Xu
- Department of Radiology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang, 315020, China
| | - Ting Xue
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
| | - Chengjie Zhu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
| | - Guilong Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushan Lake Road, Hefei, Anhui, 230031, China
| | - Zheng Mao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang, 315201, China
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
55
|
Das SS, Neelam, Hussain K, Singh S, Hussain A, Faruk A, Tebyetekerwa M. Laponite-based Nanomaterials for Biomedical Applications: A Review. Curr Pharm Des 2020; 25:424-443. [PMID: 30947654 DOI: 10.2174/1381612825666190402165845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
Abstract
Laponite based nanomaterials (LBNMs) are highly diverse regarding their mechanical, chemical, and structural properties, coupled with shape, size, mass, biodegradability and biocompatibility. These ubiquitous properties of LBNMs make them appropriate materials for extensive applications. These have enormous potential for effective and targeted drug delivery comprised of numerous biodegradable materials which results in enhanced bioavailability. Moreover, the clay material has been explored in tissue engineering and bioimaging for the diagnosis and treatment of various diseases. The material has been profoundly explored for minimized toxicity of nanomedicines. The present review compiled relevant and informative data to focus on the interactions of laponite nanoparticles and application in drug delivery, tissue engineering, imaging, cell adhesion and proliferation, and in biosensors. Eventually, concise conclusions are drawn concerning biomedical applications and identification of new promising research directions.
Collapse
Affiliation(s)
- Sabya S Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Neelam
- Department of Pharmaceutical Sciences, NIMS University, Jaipur-303121, Rajasthan, India
| | - Kashif Hussain
- Gyani Inder Singh Institute of Professional Studies, Dehradun-248003, Uttarakhand, India
| | - Sima Singh
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| | - Mike Tebyetekerwa
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science, Donghua University, Shanghai, China
| |
Collapse
|
56
|
Liu X, Huang H, Gao Y, Zhou L, Yang J, Li X, Li Y, Zhao H, Su S, Ke C, Pei Z. Visualization of gene therapy with a liver cancer-targeted adeno-associated virus 3 vector. J Cancer 2020; 11:2192-2200. [PMID: 32127946 PMCID: PMC7052912 DOI: 10.7150/jca.39579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: To evaluate the feasibility of a self-complementing recombinant adeno-associated virus 3 (scrAAV3) vector targeting liver cancer and non-invasively monitor gene therapy of liver cancer. Materials and methods: An scrAAV3-HSV1-TK-kallistatin (ATK) gene drug was constructed, which contained the herpes virus thymidine kinase (HSV1-TK) reporter gene and human endogenous angiogenesis inhibitor (kallistatin) gene for non-invasive imaging of gene expression. Subcutaneous xenografted tumors of hepatoma in nude mice were generated for positron emission tomography/computed tomography (PET/CT) imaging. The ATK group was injected with the ATK gene through the tail vein, and an imaging agent was injected 2 weeks later. PET/CT imaging was performed at 1 hour after injection of the imaging agent. The control group was injected with phosphate-buffered saline at the same volume as the ATK gene drug. HE staining is used for pathological observation of tumor sections. HSV1-TK and kallistatin expression was identified by immunofluorescence, real-time quantitative PCR, and western blotting. Results: Radioactivity on PET/CT images was significantly higher in the ATK group compared with the control group. 18F-FHBG uptake values of left forelegs in ATK and control groups were 0.591±0.151% and 0.017 ± 0.011% ID/g (n=5), respectively (P<0.05). After injection of the ATK gene drug, mRNA and protein expression of HSV1-TK and kallistatin in subcutaneous xenograft tumors was detected successfully. In vitro analysis demonstrated significant differences in the expression of HSV1-TK and kallistatin between ATK and control groups (P<0.05). Conclusions: The scrAAV3 vector has a strong liver cancer-targeting ability, and the ATK gene drug can be used for targeted and non-invasive monitoring of liver cancer gene therapy.
Collapse
Affiliation(s)
- Xusheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Hanling Huang
- Health management center, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lumeng Zhou
- Postgraduate Training Base of Taihe Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jianwei Yang
- Postgraduate Training Base of Taihe Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaohui Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yang Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Haiwen Zhao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Shanchun Su
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Changbin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhijun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of WudangLocal Chinese Medicine Research, Shiyan, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, China
| |
Collapse
|
57
|
Myrovali E, Maniotis N, Samaras T, Angelakeris M. Spatial focusing of magnetic particle hyperthermia. NANOSCALE ADVANCES 2020; 2:408-416. [PMID: 36133972 PMCID: PMC9417684 DOI: 10.1039/c9na00667b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 05/09/2023]
Abstract
Magnetic particle hyperthermia is a promising cancer therapy, but a typical constraint of its applicability is localizing heat solely to malignant regions sparing healthy surrounding tissues. By simultaneous application of a constant magnetic field together with the hyperthermia inducing alternating magnetic field, heating focus may be confined to smaller regions in a tunable manner. The main objective of this work is to evaluate the focusing parameters, by adequate selection of magnetic nanoparticles and field conditions, and explore spatially focused magnetic particle hyperthermia efficiency in tissue phantom systems comprising agarose gel and magnetic nanoparticles. Our results suggest the possibility of spatially focused heating efficiency of magnetic nanoparticles through the application of a constant magnetic field. Tuning of the constant magnetic field parameters may result in minimizing thermal shock in surrounding regions without affecting the beneficiary thermal outcome in the focusing region.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Nikos Maniotis
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Theodoros Samaras
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
- Department of Physics, University of Malta Msida MSD 2080 Malta
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| |
Collapse
|
58
|
Li K, Lu L, Xue C, Liu J, He Y, Zhou J, Xia Z, Dai L, Luo Z, Mao Y, Cai K. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. NANOSCALE 2020; 12:130-144. [PMID: 31799577 DOI: 10.1039/c9nr06505a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most important components in the tumor immunosuppressive microenvironment, promoting tumor growth and metastasis. Although TAMs have become one of the hot topics of tumor immunotherapy, challenges still remain to achieve TAM-targeted re-polarization therapy. In this work, porous hollow iron oxide nanoparticles (PHNPs) were synthesized for loading a P13K γ small molecule inhibitor (3-methyladenine, 3-MA) and further modified by mannose to target TAMs. The delivery system named PHNPs@DPA-S-S-BSA-MA@3-MA showed good efficiency for targeting TAMs. The inflammatory factor NF-κB p65 of macrophages was activated by the combination of PHNPs and 3-MA, which synergistically switched TAMs to pro-inflammatory M1-type macrophages. As a result, it activated immune responses and inhibited tumor growth in vivo. The study provides an intracellular switch of the TAM phenotype for targeted TAM therapy.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Chencheng Xue
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ju Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ye He
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jun Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Liangliang Dai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
59
|
Zhou B, Pu Y, Lin H, Yue W, Yin H, Yin Y, Ren W, Zhao C, Chen Y, Xu H. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. J Mater Chem B 2020; 8:5257-5266. [PMID: 32436561 DOI: 10.1039/d0tb00519c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report in situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window.
Collapse
|
60
|
Ding L, Lyu Z, Tintaru A, Laurini E, Marson D, Louis B, Bouhlel A, Balasse L, Fernandez S, Garrigue P, Mas E, Giorgio S, Pricl S, Guillet B, Peng L. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging. Chem Commun (Camb) 2020; 56:301-304. [DOI: 10.1039/c9cc07750b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An amphiphilic dendrimer bearing SPECT imaging reporters is self-assembled into supramolecular nanomicelles for effective tumor imaging.
Collapse
Affiliation(s)
- Ling Ding
- Aix Marseille Univ
- CNRS
- Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)
- Equipe Labellisée Ligue Contre le Cancer
- Marseille
| | - Zhenbin Lyu
- Aix Marseille Univ
- CNRS
- Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)
- Equipe Labellisée Ligue Contre le Cancer
- Marseille
| | - Aura Tintaru
- Aix Marseille Univ
- CNRS
- Institut de Chimie Radicalaire (UMR7273)
- Marseille
- France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS)
- DEA
- University of Trieste
- Trieste
- Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS)
- DEA
- University of Trieste
- Trieste
- Italy
| | | | | | | | | | | | - Eric Mas
- Aix Marseille Univ
- CNRS
- INSERM
- Institut Paoli-Calmettes
- Centre de Recherche en Cancérologie de Marseille (CRCM)
| | - Suzanne Giorgio
- Aix Marseille Univ
- CNRS
- Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)
- Equipe Labellisée Ligue Contre le Cancer
- Marseille
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS)
- DEA
- University of Trieste
- Trieste
- Italy
| | | | - Ling Peng
- Aix Marseille Univ
- CNRS
- Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)
- Equipe Labellisée Ligue Contre le Cancer
- Marseille
| |
Collapse
|
61
|
Akhtar MJ, Ahamed M, Alhadlaq H, Alrokayan S. Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Curr Drug Metab 2019; 20:907-917. [DOI: 10.2174/1389200220666191105113754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Background:
Due to the potential advantages of Gadolinium Nanoparticles (NPs) over gadolinium elements,
gadolinium based NPs are currently being explored in the field of MRI. Either in elemental form or nanoparticulate
form, gadolinium toxicity is believed to occur due to the deposition of gadolinium ion (designated as Gd3+ ion
or simply G ion).
Objective:
There is a serious lack of literature on the mechanisms of toxicity caused by either gadolinium-based NPs
or ions. Breast cancer tumors are often subjected to MRIs, therefore, human breast cancer (MCF-7) cells could serve
as an appropriate in vitro model for the study of Gadolinium Oxide (GO) NP and G ion.
Methods:
Cytotoxicity and oxidative damage was determined by quantifying cell viability, cell membrane damage,
and Reactive Oxygen Species (ROS). Intracellular Glutathione (GSH) was measured along with cellular Total Antioxidant
Capacity (TAC). Autophagy was determined by using Monodansylcadaverine (MDC) and Lysotracker Red
(LTR) dyes in tandem. Mitochondrial Membrane Potential (MMP) was measured by JC-1 fluorescence. Physicochemical
properties of GO NPs were characterized by field emission transmission electron microscopy, X-ray diffraction,
and energy dispersive spectrum.
Results:
A time- and concentration-dependent toxicity and oxidative damage was observed due to GO NPs and G
ions. Bax/Bcl2 ratios, FITC-7AAD double staining, and cell membrane blebbing in phase-contrast images all suggested
different modes of cell death induced by NPs and ions.
Conclusion:
In summary, cell death induced by GO NPs with high aspect ratio favored apoptosis-independent cell
death, whereas G ions favored apoptosis-dependent cell death.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alrokayan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
62
|
Hao T, Chen Q, Qi Y, Sun P, Chen D, Jiang W, Liu K, Sun H, Li L, Ding J, Li Z. Biomineralized Gd 2 O 3 @HSA Nanoparticles as a Versatile Platform for Dual-Modal Imaging and Chemo-Phototherapy-Synergized Tumor Ablation. Adv Healthc Mater 2019; 8:e1901005. [PMID: 31738019 DOI: 10.1002/adhm.201901005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/27/2019] [Indexed: 12/25/2022]
Abstract
A great challenge still remains to explore the facile approaches to construct multifunctional nanoparticles for acquiring precise cancer theranostics. Herein, a biocompatible theranostic nanoplatform capable of simultaneous cancer imaging and therapy is attempted by loading of paclitaxel (PTX) and indocyanine green (ICG) molecules into the matrix of Gd2 O3 @human serum albumin (HSA) nanoparticles (PIGH NPs) via hydrophobic interaction. The subsequent in vitro investigations reveal that the PIGH NPs afford uniform particle size, sustained drug release profile, strong longitudinal relaxivity, potent photothermal effect, effective singlet oxygen generation, and ideal resistance to photobleaching. Moreover, the PIGH NPs achieve high cellular uptake, efficient cytoplasmic drug translocation based on singlet oxygen-triggered endolysosomal disruption and prominent cytotoxicity effect against 4T1 cells under 808 nm near-infrared (NIR) irradiation in contrast to PTX/ICG-loaded HSA nanoparticles (PIH NPs) and free PTX/ICG. After intravenous injection, the PIGH NPs exhibit preferable tumor accumulation and achieve effective tumor ablation in 4T1 tumor bearing mouse model with excellent dual near-infrared fluorescence/magnetic resonance (NIRF/MR) imaging guided synergistic chemo-phototherapy. Hence, the PIGH NPs can be utilized as potential theranostic nanosystem for simultaneous cancer imaging and therapy.
Collapse
Affiliation(s)
- Tangna Hao
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
- Department of PharmacyThe Second Affiliated Hospital of Dalian Medical University Dalian 116011 Liaoning P. R. China
| | - Qixian Chen
- School of Life Science and BiotechnologyDalian University of Technology Dalian 116024 Liaoning P. R. China
| | - Yan Qi
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Pengyuan Sun
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Dawei Chen
- School of PharmacyShenyang Pharmaceutical University Shenyang 110016 Liaoning P. R. China
- School of PharmacyMedical College of Soochow University Suzhou 215123 Jiangsu P. R. China
| | - Weiwei Jiang
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Kexin Liu
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Huijun Sun
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Lei Li
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin P. R. China
| | - Zhen Li
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| |
Collapse
|
63
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
64
|
Yao Q, Huang Z, Liu D, Chen J, Gao Y. Enzyme-Instructed Supramolecular Self-Assembly with Anticancer Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804814. [PMID: 30444545 DOI: 10.1002/adma.201804814] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Cancer remains one of the leading causes of death, which has continuously stimulated the development of numerous functional biomaterials with anticancer activities. Herein is reviewed one recent trend of biomaterials focusing on the advances in enzyme-instructed supramolecular self-assembly (EISA) with anticancer activity. EISA relies on enzymatic transformations to convert designed small-molecular precursors into corresponding amphiphilic residues that can form assemblies in living systems. EISA has shown some advantages in controlling cell fate from three aspects. 1) Based on the abnormal activity of specific enzymes, EISA can differentiate cancer cells from normal cells. In contrast to the classical ligand-receptor recognition, the targeting capability of EISA relies on dynamic control of the self-assembly process. 2) The interactions between EISA and cellular components directly disrupt cellular processes or pathways, resulting in cell death phenotypes. 3) EISA spatiotemporally controls the distribution of therapeutic agents, which boosts drug delivery efficiency. Therefore, with regard to the development of EISA, the aim is to provide a perspective on the future directions of research into EISA as anticancer theranostics.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiali Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
65
|
Jiang W, Tan Y, Yin JF, Li H, Wu J, Wu Y, Wang DG, Gao L, Kuang GC. Self-Assembly of amphiphilic BODIPY derivative and its nanoparticles as a photosensitizer for photodynamic therapy in corneal neovascularization. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
66
|
Gonda A, Zhao N, Shah JV, Calvelli HR, Kantamneni H, Francis NL, Ganapathy V. Engineering Tumor-Targeting Nanoparticles as Vehicles for Precision Nanomedicine. MED ONE 2019; 4:e190021. [PMID: 31592196 PMCID: PMC6779336 DOI: 10.20900/mo.20190021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a nascent and emerging field that holds great potential for precision oncology, nanotechnology has been envisioned to improve drug delivery and imaging capabilities through precise and efficient tumor targeting, safely sparing healthy normal tissue. In the clinic, nanoparticle formulations such as the first-generation Abraxane® in breast cancer, Doxil® for sarcoma, and Onivyde® for metastatic pancreatic cancer, have shown advancement in drug delivery while improving safety profiles. However, effective accumulation of nanoparticles at the tumor site is sub-optimal due to biological barriers that must be overcome. Nanoparticle delivery and retention can be altered through systematic design considerations in order to enhance passive accumulation or active targeting to the tumor site. In tumor niches where passive targeting is possible, modifications in the size and charge of nanoparticles play a role in their tissue accumulation. For niches in which active targeting is required, precision oncology research has identified targetable biomarkers, with which nanoparticle design can be altered through bioconjugation using antibodies, peptides, or small molecule agonists and antagonists. This review is structured to provide a better understanding of nanoparticle engineering design principles with emphasis on overcoming tumor-specific biological barriers.
Collapse
Affiliation(s)
- Amber Gonda
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hannah R. Calvelli
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Harini Kantamneni
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
67
|
Liang L, Liu Z, Barman I. Decoding Live Cell Interactions with Multi-Nanoparticle Systems: Differential Implications for Uptake, Trafficking, and Gene Regulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33659-33666. [PMID: 31436085 PMCID: PMC6776239 DOI: 10.1021/acsami.9b11315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Surface modification with oligonucleotides renders gold nanoparticles to endocytose through very different pathways as compared to unmodified ones. Such oligonucleotide-modified gold nanoparticles (OGNs) have been exploited as effective nanocarriers for gene regulation therapies. Notably, in an effort to reduce overall dosage and provide safer transition to the clinic, cooperative systems composed of two or more discrete nanomaterials have been recently proposed as an alternative to intrinsically multifunctional nanoparticles. Yet, our understanding of such systems designed to synergistically cooperate in their diagnostic or therapeutic functions remains acutely limited. Specifically, cellular interactions and uptake of OGNs are poorly understood when the cell simultaneously interacts with other types of nanoparticles. Here, we investigated the impact of simultaneous uptake of similar-sized iron oxide nanoparticles (IOPs) on the endocytosis and gene regulation function of OGNs, whose analogues have been proposed for sensitization, targeting, and treatment of tumors. We discovered that both the OGN uptake amount and, remarkably, the gene regulation function remained stable when exposed to a very wide range of extracellular concentrations of IOPs. Additionally, the co-localization analysis showed that a proportion of OGNs was co-localized with IOPs inside cells, which hints at the presence of similar trafficking pathways for OGNs and IOPs following endocytosis. Taken together, our observations indicate that while the OGN endocytosis is highly independent of the IOP endocytosis, it shares transport pathways inside cells-but does so without affecting the gene regulation behavior. These results provide key insights into concomitant interactions of cells with diverse nanoparticles and offer a basis for the future design and optimization of cooperative nanomaterials for diverse theranostic applications.
Collapse
Affiliation(s)
- Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
68
|
Nemeth C, Fine A, Fatemi A. Translational challenges in advancing regenerative therapy for treating neurological disorders using nanotechnology. Adv Drug Deliv Rev 2019; 148:60-67. [PMID: 31100303 DOI: 10.1016/j.addr.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
The focus of regenerative therapies is to replace or enrich diseased or injured cells and tissue in an attempt to replenish the local environment and function, while slowing or halting further degeneration. Targeting neurological diseases specifically is difficult, due to the complex nature of the central nervous system, including the difficulty of bypassing the brain's natural defense systems. While cell-based regenerative therapies show promise in select tissues, preclinical and clinical studies have been largely unable to transfer these successes to the brain. Advancements in nanotechnologies have provided new methods of central nervous system access, drug and cell delivery, as well as new systems of cell maintenance and support that may bridge the gap between regenerative therapies and the brain. In this review, we discuss current regenerative therapies for neurological diseases, nanotechnology as nanocarriers, and the technical, manufacturing, and regulatory challenges that arise from inception to formulation of nanoparticle-regenerative therapies.
Collapse
|
69
|
Siddhanta S, Bhattacharjee S, Harrison SM, Scholz D, Barman I. Shedding Light on the Trehalose-Enabled Mucopermeation of Nanoparticles with Label-Free Raman Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901679. [PMID: 31267720 PMCID: PMC6697627 DOI: 10.1002/smll.201901679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Nanoparticle-based drug delivery systems have attracted significant interest owing to their promise as tunable platforms that offer improved intracellular release of cargo therapeutics. However, significant challenges remain in maintaining the physiological stability of the mucosal matrix due to the nanoparticle-induced reduction in the matrix diffusivity and promotion of mucin aggregation. Such aggregation also adversely impacts the permeability of the nanoparticles, and thus, diminishes the efficacy of nanoparticle-based formulations. Here, an entirely complementary approach is proposed to the existing nanoparticle functionalization methods to address these challenges by using trehalose, a naturally occurring disaccharide that offers exceptional protein stabilization. Plasmon-enhanced Raman spectroscopy and far-red fluorescence emission of the plasmonic silver nanoparticulate clusters are harnessed to create a unique dual-functional, aggregating, and imaging agent that obviates the need of an additional reporter to investigate mucus-nanoparticle interactions. These spectroscopy-based density mapping tools uncover the mechanism of mucus-nanoparticle interactions and establish the protective role of trehalose microenvironment in minimizing the nanoparticle aggregation. Thus, in contrast to the prevailing belief, these results demonstrate that nonfunctionalized nanoparticles may rapidly penetrate through mucus barriers, and by leveraging the bioprotectant attributes of trehalose, an in vivo milieu for efficient mucosal drug delivery can be generated.
Collapse
Affiliation(s)
- Soumik Siddhanta
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Dublin 4, Ireland
| | - Sabine M Harrison
- School of Agriculture & Food Science, University College Dublin (UCD), Dublin 4, Ireland
| | - Dimitri Scholz
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
70
|
Zhao Z, Xu K, Fu C, Liu H, Lei M, Bao J, Fu A, Yu Y, Zhang W. Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials 2019; 219:119379. [PMID: 31376746 DOI: 10.1016/j.biomaterials.2019.119379] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Engineering interfacial structure of biomaterials have drawn much attention due to it can improve the diagnostic accuracy and therapy efficacy of nanomedicine, even introducing new moiety to construct theranostic agents. Nanosized magnetic resonance imaging contrast agent holds great promise for the clinical diagnosis of disease, especially tumor and brain disease. Thus, engineering its interfacial structure can form new theranostic platform to achieve effective disease diagnosis and therapy. In this study, we engineered the interfacial structure of typical MRI contrast agent, Gd2O3, to form a new theranostic agent with improved relaxivity for MRI guided synergetic chemodynamic/photothermal therapy. The synthesized Mn doped gadolinium oxide nanoplate exhibit improved T1 contrast ability due to large amount of efficient paramagnetic metal ions and synergistic enhancement caused by the exposed Mn and Gd cluster. Besides, the introduced Mn element endow this nanomedicine with the Fenton-like ability to generate OH from excess H2O2 in tumor site to achieve chemodynamic therapy (CDT). Furthermore, polydopamine engineered surface allow this nanomedicine with effective photothermal conversion ability to rise local temperature and accelerate the intratumoral Fenton process to achieve synergetic CDT/photothermal therapy (PTT). This work provides new guidance for designing magnetic resonance imaging guided synergetic CDT/PTT to achieve tumor detection and therapy.
Collapse
Affiliation(s)
- Zhenghuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| | - Kai Xu
- Department of Radiology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400010, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400010, China
| | - Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Heng Liu
- Department of Radiology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400010, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400010, China
| | - Ming Lei
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Jianfeng Bao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400010, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400010, China.
| |
Collapse
|
71
|
Weng Q, Hu X, Zheng J, Xia F, Wang N, Liao H, Liu Y, Kim D, Liu J, Li F, He Q, Yang B, Chen C, Hyeon T, Ling D. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS NANO 2019; 13:6801-6812. [PMID: 31141658 DOI: 10.1021/acsnano.9b01511] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used for T1-weighted magnetic resonance imaging (MRI) in clinic diagnosis. However, a major drawback of GBCAs is that they can increase the toxicological risk of nephrogenic systemic fibrosis (NSF) in patients with advanced renal dysfunction. Hence, safer alternatives to GBCAs are currently in demand, especially for patients with renal diseases. Here we investigated the potential of polyethylene glycol (PEG)-stabilized iron oxide nanoclusters (IONCs) as biocompatible T1MRI contrast agents and systematically evaluated their NSF-related risk in rats with renal failure. We profiled the distribution, excretion, histopathological alterations, and fibrotic gene expressions after administration of IONCs and GBCAs. Our results showed that, compared with GBCAs, IONCs exhibited dramatically improved biosafety and a much lower risk of causing NSF, suggesting the feasibility of substituting GBCAs with IONCs in clinical MRI diagnosis of patients with renal diseases.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Center for Drug Safety Evaluation and Research , Zhejiang University , Hangzhou 310058 , China
| | | | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | | | | | | | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Dokyoon Kim
- Department of Bionano Engineering , Hanyang University , Ansan 15588 , Korea
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
| | - Jianan Liu
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | | | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
72
|
Syu WJ, Huang CC, Hsiao JK, Lee YC, Huang YT, Venkatesan P, Lai PS. Co-precipitation Synthesis of Near-infrared Iron Oxide Nanocrystals on Magnetically Targeted Imaging and Photothermal Cancer Therapy via Photoablative Protein Denature. Nanotheranostics 2019; 3:236-254. [PMID: 31263656 PMCID: PMC6584136 DOI: 10.7150/ntno.24124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/21/2019] [Indexed: 01/06/2023] Open
Abstract
Near-infrared (NIR)-based nanomaterials that provide efficient tumor ablation for cancer therapy have been reported. However, the issues of biocompatibility of metals or ions in inorganic nanoparticles systems such as copper and gold nanoparticles are still a matter of concern. In this study, we developed a facile and ligand-assisted co-precipitation method to synthesize biocompatible iron oxide (IO) nanocrystals with NIR absorption that provided T2-weighted magnetic resonance (MR) images and photothermal ablation characteristics suitable for cancer theranostics. Our results showed that 150-nm particles can be synthesized and optimized by using different amounts of ligand. NIR-IO nanocrystals of this size showed high photothermal conversion efficiency (21.2%) and T2-weighted MR contrast (transverse relaxivity value approximately 141 S-1 mM-1). The NIR-IO nanocrystals showed no cytotoxicity in HT-29 colorectal cancer cells without irradiation, whereas the viability of cells that received NIR-IO nanocrystals decreased significantly after 808-nm laser irradiation. The mechanism of cell death may involve alterations in protein secondary structure and membrane permeability. For in vivo studies, 4-fold enhanced tumor accumulation was significantly observed of NIR-IO nanocrystals with a magnetic field (MF) application, resulting in a 3-fold higher T2-weighted MR signal than that produced by a commercial T2-weighted MR contrast agent (Resovist®) and excellent photothermal efficacy (approximately 53 °C) for cancer treatment. The innovative NIR-IO nanocrystals showed excellent biocompatibility and have great potential as a theranostic agent against cancer.
Collapse
Affiliation(s)
- Wei-Jhe Syu
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan City 701, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Buddhist Tzu Chi General Hospital, Taipei Branch, New Taipei City 231, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | | | - Parthiban Venkatesan
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
73
|
Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics 2019; 9:3249-3261. [PMID: 31244952 PMCID: PMC6567973 DOI: 10.7150/thno.31814] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/09/2019] [Indexed: 12/21/2022] Open
Abstract
Advances in supramolecular self-assembly have promoted the development of theranostics, the combination of both therapeutic and diagnostic functions in a single nanoplatform, which is closely associated with antitumor applications and has shown promising potential in personalized medicine. Peptide-modulated self-assembly serves as a versatile strategy for tumor supramolecular nanotheranostics possessing controllability, programmability, functionality and biosafety, thus promoting the translation of nanotheranostics from bench to bedside. In this review, we will focus on the self-assembly of peptide-photosensitizers and peptide-drugs as well as multicomponent cooperative self-assembly for the fabrication of nanotheranostics that integrate diagnosis and therapeutics for antitumor applications. Emphasis will be placed on building block design, interaction strategies and the potential relationships between their structures and properties, aiming to increase understanding of the critical role of peptide-modulated self-assembly in advancing antitumor supramolecular nanotheranostics.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| |
Collapse
|
74
|
Waddington DEJ, Boele T, Rej E, McCamey DR, King NJC, Gaebel T, Reilly DJ. Phase-Encoded Hyperpolarized Nanodiamond for Magnetic Resonance Imaging. Sci Rep 2019; 9:5950. [PMID: 30976049 PMCID: PMC6459867 DOI: 10.1038/s41598-019-42373-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/21/2019] [Indexed: 11/08/2022] Open
Abstract
Surface-functionalized nanomaterials are of interest as theranostic agents that detect disease and track biological processes using hyperpolarized magnetic resonance imaging (MRI). Candidate materials are sparse however, requiring spinful nuclei with long spin-lattice relaxation (T1) and spin-dephasing times (T2), together with a reservoir of electrons to impart hyperpolarization. Here, we demonstrate the versatility of the nanodiamond material system for hyperpolarized 13C MRI, making use of its intrinsic paramagnetic defect centers, hours-long nuclear T1 times, and T2 times suitable for spatially resolving millimeter-scale structures. Combining these properties, we enable a new imaging modality, unique to nanoparticles, that exploits the phase-contrast between spins encoded with a hyperpolarization that is aligned, or anti-aligned with the external magnetic field. The use of phase-encoded hyperpolarization allows nanodiamonds to be tagged and distinguished in an MRI based on their spin-orientation alone, and could permit the action of specific bio-functionalized complexes to be directly compared and imaged.
Collapse
Affiliation(s)
- David E J Waddington
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Boele
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ewa Rej
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dane R McCamey
- ARC Centre of Excellence for Exciton Science, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Torsten Gaebel
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - David J Reilly
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- Microsoft Corporation, Station Q Sydney, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
75
|
Zhao S, Sun S, Jiang K, Wang Y, Liu Y, Wu S, Li Z, Shu Q, Lin H. In Situ Synthesis of Fluorescent Mesoporous Silica-Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery. NANO-MICRO LETTERS 2019; 11:32. [PMID: 34137970 PMCID: PMC7770874 DOI: 10.1007/s40820-019-0263-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment. In this work, a novel method for the preparation of a fluorescent mesoporous silica-carbon dot nanohybrid was developed. Carbon dots (CDs), from folic acid as the raw material, were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles (MSNs-NH2) via a microwave-assisted solvothermal reaction. The as-prepared nanohybrid (designated MSNs-CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs (e.g., mesoporous structure, large specific surface area, and good biocompatibility), demonstrating a potential capability for fluorescence imaging-guided drug delivery. More interestingly, the MSNs-CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells (e.g., HeLa), indicating that folic acid still retained its function even after undergoing the solvothermal reaction. Benefited by these excellent properties, the fluorescent MSNs-CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted delivery of anticancer drugs (e.g., doxorubicin), thereby enhancing chemotherapeutic efficacy and reducing side effects. Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms, which is beneficial in the diagnosis and therapy of cancers in future.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Shan Sun
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Kai Jiang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yuhui Wang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yu Liu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, 518001, People's Republic of China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, 518001, People's Republic of China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qinghai Shu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, 518001, People's Republic of China.
| | - Hengwei Lin
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| |
Collapse
|
76
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
77
|
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules 2019; 24:E1117. [PMID: 30901827 PMCID: PMC6470858 DOI: 10.3390/molecules24061117] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, we reviewed state-of-the-art endogenous-based and exogenous-based stimuli-responsive drug delivery systems (DDS) for programmed site-specific release to overcome the drawbacks of conventional therapeutic modalities. This particular work focuses on the smart chemistry and mechanism of action aspects of several types of stimuli-responsive polymeric carriers that play a crucial role in extracellular and intracellular sections of diseased tissues or cells. With ever increasing scientific knowledge and awareness, research is underway around the globe to design new types of stimuli (external/internal) responsive polymeric carriers for biotechnological applications at large and biomedical and/or pharmaceutical applications, in particular. Both external/internal and even dual/multi-responsive behavior of polymeric carriers is considered an essential element of engineering so-called 'smart' DDS, which controls the effective and efficient dose loading, sustained release, individual variability, and targeted permeability in a sophisticated manner. So far, an array of DDS has been proposed, developed, and implemented. For instance, redox, pH, temperature, photo/light, magnetic, ultrasound, and electrical responsive DDS and/or all in all dual/dual/multi-responsive DDS (combination or two or more from any of the above). Despite the massive advancement in DDS arena, there are still many challenging concerns that remain to be addressed to cover the research gap. In this context, herein, an effort has been made to highlight those concerning issues to cover up the literature gap. Thus, the emphasis was given to the drug release mechanism and applications of endogenous and exogenous based stimuli-responsive DDS in the clinical settings.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Faran Nabeel
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, Mexico.
| |
Collapse
|
78
|
Jiang M, Liu H, Zeng S, Hao J. A General In Situ Growth Strategy of Designing Theranostic NaLnF
4
@Cu
2−
x
S Nanoplatform for In Vivo NIR‐II Optical Imaging Beyond 1500 nm and Photothermal Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingyang Jiang
- College of Physics and Information Science and Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of the Ministry of EducationSynergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal University Changsha Hunan 410081 China
| | - Hongrong Liu
- College of Physics and Information Science and Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of the Ministry of EducationSynergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal University Changsha Hunan 410081 China
| | - Songjun Zeng
- College of Physics and Information Science and Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of the Ministry of EducationSynergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal University Changsha Hunan 410081 China
| | - Jianhua Hao
- Department of Applied PhysicsHong Kong Polytechnic University Kowloon 999077 Hong Kong China
| |
Collapse
|
79
|
Poudel K, Gautam M, Jin SG, Choi HG, Yong CS, Kim JO. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. Int J Pharm 2019; 562:135-150. [PMID: 30904728 DOI: 10.1016/j.ijpharm.2019.03.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Copper sulfide nanoparticles (CuS NPs), emerging nanoplatforms with dual diagnostic and therapeutic applications, are being actively investigated in this era of "war on cancer" owing to their versatility and adaptability. This article discusses the pros and cons of using CuS NPs in diagnostics, therapeutics, and theranostics. The first section introduces CuS NPs and discusses the features that render them more advantageous than other established nanoplatforms in cancer management. Subsequent sections include specific in vitro and in vivo results of different studies showing the potential of CuS NPs as nanoplatforms. Methods used for visualization (photoacoustic imaging and magnetic resonance imaging) of CuS NPs and treatment (phototherapy and combinatorial therapy) have also been discussed. Furthermore, the challenges and opportunities associated with using CuS NPs have been elucidated. Further investigations on CuS NPs are required to translate it for clinical applications.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
80
|
Lei Z, Ding L, Yao C, Mo F, Li C, Huang Y, Yin X, Li M, Liu J, Zhang Y, Ling C, Wang Y. A Highly Efficient Tumor-Targeting Nanoprobe with a Novel Cell Membrane Permeability Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807456. [PMID: 30680812 DOI: 10.1002/adma.201807456] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Efficient tumor targeting has been a great challenge in the clinic for a very long time. The traditional targeting methods based on enhanced permeability and retention (EPR) effects show only an ≈5% targeting rate. To solve this problem, a new graphene-based tumor cell nuclear targeting fluorescent nanoprobe (GTTN), with a new tumor-targeting mechanism, is developed. GTTN is a graphene-like single-crystalline structure amphiphilic fluorescent probe with a periphery that is functionalized by sulfonic and hydroxyl groups. This probe has the characteristic of specific tumor cell targeting, as it can directly cross the cell membrane and specifically target to the tumor cell nucleus by the changed permeability of the tumor cell membranes in the tumor tissue. This new targeting mechanism is named the cell membrane permeability targeting (CMPT) mechanism, which is very different from the EPR effect. These probes can recognize tumor tissue at a very early stage and track the invasion and metastasis of tumor cells at the single cell level. The tumor-targeting rate is improved from less than 5% to more than 50%. This achievement in efficient and accurate tumor cell targeting will speed up the arrival of a new era of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zhendong Lei
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Lin Ding
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Fengfeng Mo
- Ship Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Chenchen Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Yanan Huang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Min Li
- Ship Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Jinliang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Yong Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
81
|
Amirav L, Berlin S, Olszakier S, Pahari SK, Kahn I. Multi-Modal Nano Particle Labeling of Neurons. Front Neurosci 2019; 13:12. [PMID: 30778281 PMCID: PMC6369355 DOI: 10.3389/fnins.2019.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
The development of imaging methodologies for single cell measurements over extended timescales of up to weeks, in the intact animal, will depend on signal strength, stability, validity and specificity of labeling. Whereas light-microscopy can achieve these with genetically-encoded probes or dyes, this modality does not allow mesoscale imaging of entire intact tissues. Non-invasive imaging techniques, such as magnetic resonance imaging (MRI), outperform light microscopy in field of view and depth of imaging, but do not offer cellular resolution and specificity, suffer from low signal-to-noise ratio and, in some instances, low temporal resolution. In addition, the origins of the signals measured by MRI are either indirect to the process of interest or hard to validate. It is therefore highly warranted to find means to enhance MRI signals to allow increases in resolution and cellular-specificity. To this end, cell-selective bi-functional magneto-fluorescent contrast agents can provide an elegant solution. Fluorescence provides means for identification of labeled cells and particles location after MRI acquisition, and it can be used to facilitate the design of cell-selective labeling of defined targets. Here we briefly review recent available designs of magneto-fluorescent markers and elaborate on key differences between them with respect to durability and relevant cellular highlighting approaches. We further focus on the potential of intracellular labeling and basic functional sensing MRI, with assays that enable imaging cells at microscopic and mesoscopic scales. Finally, we illustrate the qualities and limitations of the available imaging markers and discuss prospects for in vivo neural imaging and large-scale brain mapping.
Collapse
Affiliation(s)
- Lilac Amirav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shunit Olszakier
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sandip K Pahari
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
82
|
Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
83
|
Chen L, Zhong H, Qi X, Shao H, Xu K. Modified core–shell magnetic mesoporous zirconia nanoparticles formed through a facile “outside-to-inside” way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy. RSC Adv 2019; 9:13220-13233. [PMID: 35520762 PMCID: PMC9063760 DOI: 10.1039/c9ra01063g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Iron oxide based magnetic nanoparticles (MNPs) as typical theranostic nanoagents have been popularly used in various biomedical applications. Conventional core–shell MNPs are usually synthesized from inside to outside. This method has strict requirements on the interface properties of magnetic cores and the precursors of the coating shell. The shape and size of MNPs are significantly influenced by that of the pre-synthesized magnetic cores. Most core–shell MNPs have only single T2W MRI imaging ability. Herein, we propose a new synthetic strategy for core-mesoporous shell structural MNPs, where hollow mesoporous nanospheres which exhibit an intrinsic property for both CT imaging and drug loading were used as the shell and the magnetic cores were produced in the cavity of the shell. A new type of MNPs, Fe3O4@ZrO2 nanoparticles (M-MZNs), were developed using this facile outside-to-inside way, where multiple Fe3O4 nanoparticles grew inside the cavity of the mesoporous hollow ZrO2 nanospheres through chemical coprecipitation. The obtained MNPs not only exhibited superior magnetic properties and CT/MR imaging ability but also high drug loading capacity. In vitro experiment results revealed that M-MZNs-PEG loaded with doxorubicin (DOX) presented selective growth inhibition against cancer cells due to pH-sensitive DOX release and enhanced endocytosis by cancer cells under a magnetic field. Furthermore, the proposed MNPs exhibited CT/MRI dual modal imaging ability and effective physical targeting to tumor sites in vivo. More importantly, experiments of magnetic targeting chemotherapy on tumor bearing mice demonstrated that the nanocomposites significantly suppressed tumor growth without obvious pathological damage to major organs. Henceforth, this study provides a new strategy for CT/MRI dual-modal imaging guided and magnetic targeting cancer therapy. Magnetic mesoporous zirconia nanoparticle was synthesized by producing multiple iron oxide cores inside the cavity of mesoporous ZrO2 hollow nanospheres and was used for CT/MRI dual-modal imaging and magnetic targeting chemotherapy.![]()
Collapse
Affiliation(s)
- Lufeng Chen
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Hongshan Zhong
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Xun Qi
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Haibo Shao
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| | - Ke Xu
- Department of Radiology
- First Hospital of China Medical University
- Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province
- Shenyang 110001
- People's Republic of China
| |
Collapse
|
84
|
Xu Q, Zhang T, Wang Q, Jiang X, Li A, Li Y, Huang T, Li F, Hu Y, Ling D, Gao J. Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. Int J Pharm 2018; 552:443-452. [DOI: 10.1016/j.ijpharm.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
85
|
Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, Xue D, Lam JWY, Li G, Qian J, Tang BZ. Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS NANO 2018; 12:11282-11293. [PMID: 30345739 DOI: 10.1021/acsnano.8b05937] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Second near-infrared (NIR-II, 1000-1700 nm) fluorescence bioimaging has attracted tremendous scientific interest and already been used in many biomedical studies. However, reports on organic NIR-II fluorescent probes for in vivo photoinduced imaging and simultaneous therapy, as well as the long-term tracing of specific biological objects, are still very rare. Herein we designed a single-molecular and NIR-II-emissive theranostic system by encapsulating a kind of aggregation-induced emission luminogen (AIEgen, named BPN-BBTD) with amphiphilic polymer. The ultra-stable BPN-BBTD nanoparticles were employed for the NIR-II fluorescence imaging and photothermal therapy of bladder tumors in vivo. The 785 nm excitation triggered photothermal therapy could completely eradicate the subcutaneous tumor and inhibit the growth of orthotopic tumors. Furthermore, BPN-BBTD nanoparticles were capable of monitoring subcutaneous and orthotopic tumors for a long time (32 days). Single-molecular and NIR-II-emitted aggregation-induced emission nanoparticles hold potential for the diagnosis, precise treatment, and metastasis monitoring of tumors in the future.
Collapse
Affiliation(s)
- Nuernisha Alifu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Abudureheman Zebibula
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Ji Qi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Hequn Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Chaowei Sun
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Xiaoming Yu
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Dingwei Xue
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Gonghui Li
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device , Zhejiang University , Hangzhou 310016 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
- NSFC Centre for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
86
|
Cui L, Xiong C, Zhou M, Shi S, Chow DSL, Li C. Integrin αvβ3-Targeted [ 64Cu]CuS Nanoparticles for PET/CT Imaging and Photothermal Ablation Therapy. Bioconjug Chem 2018; 29:4062-4071. [PMID: 30404438 DOI: 10.1021/acs.bioconjchem.8b00690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper sulfide (CuS) nanoparticles have been considered one of the most clinical relevant nanosystems because of their straightforward chemistry, small particle size, low toxicity, and intrinsic theranostic characteristics. In our previous studies, radioactive [64Cu]CuS nanoparticles were successfully developed to be used as efficient radiotracers for positron emission tomography and for photothermal ablation therapy of cancer cells using near-infrared laser irradiation. However, the major challenge of CuS nanoparticles as a theranostic platform is the lack of a means for effective targeted delivery to the tumor site. To overcome this challenge, we designed and synthesized angiogenesis-targeting [64Cu]CuS nanoparticles, which are coupled with cyclic RGDfK peptide [c(RGDfK)] through polyethylene glycol (PEG) linkers using click chemistry. In assessing their tumor-targeting efficacy, we found that the tumor uptakes of [64Cu]CuS-PEG-c(RGDfK) nanoparticles at 24 h after intravenous injection were significantly greater (8.6% ± 1.4% injected dose/gram of tissue) than those of nontargeted [64Cu]CuS-PEG nanoparticles (4.3% ± 1.2% injected dose/gram of tissue, p < 0.05). Irradiation of tumors in mice administered [64Cu]CuS-PEG-c(RGDfK) nanoparticles induced 98.7% necrotic areas. In contrast, irradiation of tumors in mice administered nontargeted CuS-PEG nanoparticles induced 59% necrotic areas ( p < 0.05). The angiogenesis-targeting [64Cu]CuS nanoparticles may serve as a promising platform for image-guided ablation therapy with high efficacy and minimal side effects in future clinical translation of this novel class of multifunctional nanomaterials.
Collapse
Affiliation(s)
- Lili Cui
- Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , Texas 77024 , United States
| | - Chiyi Xiong
- Department of Cancer Systems Imaging , The University of Texas MD Anderson Cancer Center , Houston , Texas 77054-1907 , United States
| | - Min Zhou
- Department of Cancer Systems Imaging , The University of Texas MD Anderson Cancer Center , Houston , Texas 77054-1907 , United States.,Institute of Translational Medicine, School of Medicine , Zhejiang University , Hangzhou , 310029 , China
| | - Sixiang Shi
- Department of Cancer Systems Imaging , The University of Texas MD Anderson Cancer Center , Houston , Texas 77054-1907 , United States
| | - Diana S-L Chow
- Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , Texas 77024 , United States
| | - Chun Li
- Department of Cancer Systems Imaging , The University of Texas MD Anderson Cancer Center , Houston , Texas 77054-1907 , United States
| |
Collapse
|
87
|
Prasad R, Agawane SB, Chauhan DS, Srivastava R, Selvaraj K. In Vivo Examination of Folic Acid-Conjugated Gold-Silica Nanohybrids as Contrast Agents for Localized Tumor Diagnosis and Biodistribution. Bioconjug Chem 2018; 29:4012-4019. [PMID: 30376632 DOI: 10.1021/acs.bioconjchem.8b00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enhanced biocompatibility of nanosized contrast agent with high radiodensity and specific biodistribution is an important parameter for localized tumor imaging and organ safety. Various nanoparticles, especially gold nanorods (GNRs), have been applied for tumor diagnosis. However, their toxicity, nonspecific biodistribution, and easy aggregation are critical issues in cancer medicine. To avoid these issues, encapsulation of the GNRs in the core of nanoscopic mesoporous silica (MS) under ambient conditions, yielding multifunctional nanomaterials for cancer nanomedicine, is a recent and active development. Interestingly, GNR embedded MS nanohybrid (GNR-MS), though a promising material in nanomedicine, is rarely examined for tumor diagnosis, in vivo toxicity, organ safety, contrast ability, and excretion. Herein, we report a systematic in vivo examination of folic acid functionalized GNR-MS (GNR-MS-FA) for localized 4T1 breast tumor diagnosis, organ safety, and excretion using a one-time dose administration. The nanomaterials show good aqueous dispersibility, biocompatibility, high radiodensity, and tumor specific targeting ability ( in vitro as well as in vivo). The in vivo tumor diagnosis and specific biodistribution of injected nanomaterials clearly demonstrates their potential for the visualization of tumors deep in the body of mice. In addition, all organs including the healthy glomerulus of the kidney are observed to be free of tissue injuries thereby indicating the superior biocompatibility of the nanomaterials.
Collapse
Affiliation(s)
| | | | - Deepak S Chauhan
- Department of Bioscience and Bioengineering , IIT Bombay , Powai, Mumbai , 400076 , India
| | - Rohit Srivastava
- Department of Bioscience and Bioengineering , IIT Bombay , Powai, Mumbai , 400076 , India
| | | |
Collapse
|
88
|
Abstract
Nanotechnology-based imaging is expected to bring breakthroughs in cancer diagnosis by improving imaging sensitivity and specificity while reducing toxicity. Here, we developed an innovative nanosystem for positron emission tomography (PET) imaging based on a self-assembling amphiphilic dendrimer. This dendrimer assembled spontaneously into uniform supramolecular nanomicelles with abundant PET reporting units on the surface. By harnessing both dendrimeric multivalence and the “enhanced permeation and retention” (EPR) effect, this dendrimer nanosystem effectively accumulated in tumors, leading to exceedingly sensitive and specific imaging of various tumors, especially those that are otherwise undetectable using the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). This study illustrates the power of nanotechnology based on self-assembling dendrimers to provide an effective platform for bioimaging and related biomedical applications. Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the “enhanced permeation and retention” (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity. Here, we report an original nanosystem for positron emission tomography (PET) imaging based on an amphiphilic dendrimer, which bears multiple PET reporting units at the terminals. This dendrimer is able to self-assemble into small and uniform nanomicelles, which accumulate in tumors for effective PET imaging. Benefiting from the combined dendrimeric multivalence and EPR-mediated passive tumor targeting, this nanosystem demonstrates superior imaging sensitivity and specificity, with up to 14-fold increased PET signal ratios compared with the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). Most importantly, this dendrimer system can detect imaging-refractory low–glucose-uptake tumors that are otherwise undetectable using [18F]FDG. In addition, it is endowed with an excellent safety profile and favorable pharmacokinetics for PET imaging. Consequently, this dendrimer nanosystem constitutes an effective and promising approach for cancer imaging. Our study also demonstrates that nanotechnology based on self-assembling dendrimers provides a fresh perspective for biomedical imaging and cancer diagnosis.
Collapse
|
89
|
Zhang J, Chen J, Ren J, Guo W, Li X, Chen R, Chelora J, Cui X, Wan Y, Liang XJ, Hao Y, Lee CS. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. Biomaterials 2018; 181:92-102. [DOI: 10.1016/j.biomaterials.2018.07.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
|
90
|
Huang YQ, Yuan JD, Ding HF, Song YS, Qian G, Wang JL, Ji M, Zhang Y. Design, synthesis and pharmacological evaluation of a novel PEG-cRGD-conjugated irinotecan derivative as potential antitumor agent. Eur J Med Chem 2018; 158:82-90. [DOI: 10.1016/j.ejmech.2018.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
91
|
Selective bio-labeling and induced apoptosis of hematopoietic cancer cells using dual-functional polyethylenimine-caged platinum nanoclusters. Biochem Biophys Res Commun 2018; 503:1465-1470. [DOI: 10.1016/j.bbrc.2018.07.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
|
92
|
Starsich FH, Eberhardt C, Keevend K, Boss A, Hirt AM, Herrmann IK, Pratsinis SE. Reduced Magnetic Coupling in Ultrasmall Iron Oxide T1 MRI Contrast Agents. ACS APPLIED BIO MATERIALS 2018; 1:783-791. [DOI: 10.1021/acsabm.8b00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Christian Eberhardt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Kerda Keevend
- Particles-Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | | | - Inge K. Herrmann
- Particles-Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | | |
Collapse
|
93
|
Khor SY, Vu MN, Pilkington EH, Johnston APR, Whittaker MR, Quinn JF, Truong NP, Davis TP. Elucidating the Influences of Size, Surface Chemistry, and Dynamic Flow on Cellular Association of Nanoparticles Made by Polymerization-Induced Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801702. [PMID: 30043521 DOI: 10.1002/smll.201801702] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
The size and surface chemistry of nanoparticles dictate their interactions with biological systems. However, it remains unclear how these key physicochemical properties affect the cellular association of nanoparticles under dynamic flow conditions encountered in human vascular networks. Here, the facile synthesis of novel fluorescent nanoparticles with tunable sizes and surface chemistries and their association with primary human umbilical vein endothelial cells (HUVECs) is reported. First, a one-pot polymerization-induced self-assembly (PISA) methodology is developed to covalently incorporate a commercially available fluorescent dye into the nanoparticle core and tune nanoparticle size and surface chemistry. To characterize cellular association under flow, HUVECs are cultured onto the surface of a synthetic microvascular network embedded in a microfluidic device (SynVivo, INC). Interestingly, increasing the size of carboxylic acid-functionalized nanoparticles leads to higher cellular association under static conditions but lower cellular association under flow conditions, whereas increasing the size of tertiary amine-decorated nanoparticles results in a higher level of cellular association, under both static and flow conditions. These findings provide new insights into the interactions between polymeric nanomaterials and endothelial cells. Altogether, this work establishes innovative methods for the facile synthesis and biological characterization of polymeric nanomaterials for various potential applications.
Collapse
Affiliation(s)
- Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Mai N Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, UK
| | - Angus P R Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, UK
| |
Collapse
|
94
|
Heggannavar G, Hiremath CG, Achari DD, Pangarkar VG, Kariduraganavar MY. Development of Doxorubicin-Loaded Magnetic Silica-Pluronic F-127 Nanocarriers Conjugated with Transferrin for Treating Glioblastoma across the Blood-Brain Barrier Using an in Vitro Model. ACS OMEGA 2018; 3:8017-8026. [PMID: 30087932 PMCID: PMC6072239 DOI: 10.1021/acsomega.8b00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/05/2018] [Indexed: 05/14/2023]
Abstract
Brain glioma is the most lethal type of cancer, with extremely poor prognosis and high relapse. Unfortunately, the treatment of brain glioma is often limited because of the low permeability of anticancer drugs across the blood-brain barrier (BBB). To circumvent this, magnetic mesoporous nanoparticles were synthesized and loaded with doxorubicin as an anticancer agent. These nanoparticles were fabricated with Pluronic F-127 and subsequently conjugated with transferrin (Tf) to achieve the sustained release of the drug at the targeted site. The physicochemical properties of the conjugated nanoparticles were analyzed using different techniques. The magnetic saturation of the nanoparticles determined by a vibration sample magnetometer was found to be 26.10 emu/g. The cytotoxicity study was performed using the MTT assay at 48 and 96 h against the U87 cell line. The Tf-conjugated nanoparticles (DOX-MNP-MSN-PF-127-Tf) exhibited a significant IC50 value (0.570 μg/mL) as compared to the blank nanoparticles (121.98 μg/mL). To understand the transport mechanism of drugs across the BBB, an in vitro BBB model using human brain microvascular endothelial cells was developed. Among the nanoparticles, the Tf-conjugated nanoparticles demonstrated an excellent permeability across the BBB. This effect was predominant in the presence of an external magnetic field, suggesting that magnetic particles present in the matrix facilitated the uptake of drugs in U87 cells. Finally, it is concluded that nanoparticles conjugated with Tf effectively crossed the BBB. Thus, the developed nanocarriers can be considered as potential candidates to treat brain tumor.
Collapse
Affiliation(s)
| | - Chinmay G. Hiremath
- Department
of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | - Divya D. Achari
- Department
of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | | | | |
Collapse
|
95
|
Liao J, Wei X, Ran B, Peng J, Qu Y, Qian Z. Polymer hybrid magnetic nanocapsules encapsulating IR820 and PTX for external magnetic field-guided tumor targeting and multifunctional theranostics. NANOSCALE 2018; 9:2479-2491. [PMID: 28150848 DOI: 10.1039/c7nr00033b] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Developing multifunctional nanoparticle-based theranostic systems for personalized cancer diagnosis and treatment is highly desirable. Herein, a magnetic targeting theranostic nanocapsule (NC-SPIOs-IR820-PTX) was fabricated by hierarchically assembling superparamagnetic iron oxide nanoparticles (SPIOs), cyanine dye (IR820) and chemotherapeutic compound of paclitaxel (PTX) with poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA). The nanocapsules exhibited high stability and biocompatibility both in vitro and in vivo. The nanocomposites maintained their morphology in the cellular uptake and showed efficient tumoricidal activity. Most importantly, the external magnetic field could remotely control the nanocapsules and guide them to target tumors for magnetic resonance imaging (MRI)/near-infrared (NIR) fluorescence imaging. The synergistic therapeutic effects of NC-SPIOs-IR820-PTX with extra-magnetic field-induced tumor targeting ability have enhanced the co-therapy of photo-chemotherapy, resulting in significant tumor inhibition effects. Therefore, NC-SPIOs-IR820-PTX theranostics could be applied for magnetic field guided tumor targeting as well as multimodal MRI/NIR imaging, and imaging-guided combined therapy.
Collapse
Affiliation(s)
- JinFeng Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. and State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - XiaWei Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.
| | - Bei Ran
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.
| | - Ying Qu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.
| |
Collapse
|
96
|
Gao C, Lin Z, Lin X, He Q. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| |
Collapse
|
97
|
Shen Z, Song J, Zhou Z, Yung BC, Aronova MA, Li Y, Dai Y, Fan W, Liu Y, Li Z, Ruan H, Leapman RD, Lin L, Niu G, Chen X, Wu A. Dotted Core-Shell Nanoparticles for T 1 -Weighted MRI of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803163. [PMID: 29972604 PMCID: PMC6320323 DOI: 10.1002/adma.201803163] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 05/20/2023]
Abstract
Gd-based T 1 -weighted contrast agents have dominated the magnetic resonance imaging (MRI) contrast agent market for decades. Nevertheless, they are reported to be nephrotoxic and the U.S. Food and Drug Administration has issued a general warning concerning their use. In order to reduce the risk of nephrotoxicity, the MRI performance of the Gd-based T 1 -weighted contrast agents needs to be improved to allow a much lower dosage. In this study, novel dotted core-shell nanoparticles (FeGd-HN3-RGD2) with superhigh r 1 value (70.0 mM-1 s-1 ) and very low r 2 /r 1 ratio (1.98) are developed for high-contrast T 1 -weighted MRI of tumors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and histological analyses show good biocompatibility of FeGd-HN3-RGD2. Laser scanning confocal microscopy images and flow cytometry demonstrate active targeting to integrin αv β3 positive tumors. MRI of tumors shows high tumor ΔSNR for FeGd-HN3-RGD2 (477 ± 44%), which is about 6-7-fold higher than that of Magnevist (75 ± 11%). MRI and inductively coupled plasma results further confirm that the accumulation of FeGd-HN3-RGD2 in tumors is higher than liver and spleen due to the RGD2 targeting and small hydrodynamic particle size (8.5 nm), and FeGd-HN3-RGD2 is readily cleared from the body by renal excretion.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zihou Li
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, China
| | - Huimin Ruan
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, China
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, China
| |
Collapse
|
98
|
Wang Y, Luo S, Zhang C, Liao X, Liu T, Jiang Z, Liu D, Tan X, Long L, Wang Y, Chen Z, Liu Y, Yang F, Gan Y, Shi C. An NIR-Fluorophore-Based Therapeutic Endoplasmic Reticulum Stress Inducer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800475. [PMID: 29961960 DOI: 10.1002/adma.201800475] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/07/2018] [Indexed: 05/26/2023]
Abstract
The endoplasmic reticulum (ER) stress signaling or unfolded protein response (UPR) is a common feature of many human diseases, including cancer. Excessive activation of ER stress directly induces cell death, holding a new promising strategy for the therapeutic intervention of cancer. Current ER-stress-inducing agents mainly target UPR components or proteasomes, which exert limited treatment efficacy and undesired side effects due to unselective ER stress and poor tumor-specific distribution. In this study, a unique near-infrared (NIR) fluorophore, IR-34, is synthesized and identified to selectively and efficiently trigger tumoricidal ER stress by targeting the mitochondrial protein NDUFS1. IR-34 is demonstrated to specifically accumulate in living cancer cells for tumor NIR imaging and drastically inhibit tumor growth and recurrence without causing apparent toxicity. Thus, this multifunctional NIR fluorophore may represent a novel theranostic agent for tumor imaging-guided treatment and also strengthens the idea that mitochondria could be a useful target for therapeutic ER stress in cancer cells.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shenglin Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xingyun Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Tao Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Dengqun Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Fan Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yibo Gan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
99
|
Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803321] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Jianjian Zhang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| |
Collapse
|
100
|
Zhou J, Li T, Zhang C, Xiao J, Cui D, Cheng Y. Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. NANOSCALE 2018; 10:9707-9719. [PMID: 29762622 DOI: 10.1039/c8nr00994e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multifunctional nanoplatforms have been developed into advanced drug delivery systems for cancer therapy. In this study, we report a charge-switchable nanocapsule with multistage pH-responsive behaviors. First, DOX-encapsulated and oleylamine-embedded hollow structures with a diameter of 132 ± 21 nm are prepared via the double emulsion method. Subsequently, the hollow structures are encompassed by Gd-DTPA-, chlorin e6 (Ce6)-, and folate (FA)-modified BSA to form tumour-targeted, dual NIR/MR imaging-guided and chemo-photodynamic therapeutic nanoplatforms. Importantly, the nanocapsule can intelligently switch its surface charge to positive under mildly acidic conditions (pH 6.5) with no release of Ce6 and DOX, which is confirmed by ξ-potential and cumulative release measurements. Moreover, confocal imaging pictures demonstrate that acid-sensitive DOX sealed in nanocapsules is progressively released into the nuclei of MGC-803 cells. These advantages as well as FA-targeting facilitate effective endocytosis and synergistic therapeutic efficacy. Selective tumour accumulation and long tumour retention time are further indicated by NIR/MR in vivo imaging. In addition, excellent therapeutic efficacy combined with chemotherapy (DOX) and photodynamic therapy (PDT) is observed with the tumour eventually ablating at the 15th day. All results demonstrate that the as-prepared nanocapsules hold great potential for clinical cancer theranostics.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | | | | | | | | | | |
Collapse
|