51
|
Indelicato E, Nachbauer W, Eigentler A, Rudzki D, Wanschitz J, Boesch S. Intraepidermal Nerve Fiber Density in Friedreich's Ataxia. J Neuropathol Exp Neurol 2019; 77:1137-1143. [PMID: 30358880 DOI: 10.1093/jnen/nly100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Friedreich's Ataxia (FRDA) is caused by a homozygous intronic GAA expansion in the FXN gene. FRDA affects primarily the peripheral nervous system (PNS) with cumulative evidence from postmortem studies and in vitro models suggesting a developmental component of its pathology. In the present study, we aimed at gaining further insight in the PNS involvement in FRDA by investigating small nerve fibers in vivo. For this purpose, we evaluated the intraepidermal nerve fiber (IENF) density in skin-biopsies of the lower leg and applied clinical assessments of small fiber function (painDETECT, quantitative sensory testing) in 17 FRDAs. Mean IENF density was significantly lower in FRDAs compared to controls (5.77 ± 4.68 vs 9.33 ± 1.41, p = 0.013). Clinically, cold detection threshold was decreased in FRDAs (FRDA = -3.47(-6.64; -3.14), controls = -1.71 (-3.43; -1.23), p = 0.001) while other measures of small fiber function such as warm and pain sensation thresholds did not differ from controls. Five patients had sensory complaints, but none was diagnosed with neuropathic pain at painDETECT. The degree of small fiber loss was markedly variable in our cohort and showed an inverse correlation with the GAA repeat length (R2 = 0.573, p = 0.001). Our findings support a genetically determined small fiber loss in FRDA.
Collapse
Affiliation(s)
| | | | - Andreas Eigentler
- Neurology Department, Innsbruck Medical University, Innsbruck, Austria
| | - Dagmar Rudzki
- Neurology Department, Innsbruck Medical University, Innsbruck, Austria
| | - Julia Wanschitz
- Neurology Department, Innsbruck Medical University, Innsbruck, Austria
| | - Sylvia Boesch
- Neurology Department, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
52
|
Garcia-Diaz B, Bachelin C, Coulpier F, Gerschenfeld G, Deboux C, Zujovic V, Charnay P, Topilko P, Baron-Van Evercooren A. Blood vessels guide Schwann cell migration in the adult demyelinated CNS through Eph/ephrin signaling. Acta Neuropathol 2019; 138:457-476. [PMID: 31011859 PMCID: PMC6689289 DOI: 10.1007/s00401-019-02011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/27/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological conditions. However, how SC invade the CNS to remyelinate central axons remains undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous transplantation in the demyelinated spinal cord. The data highlight for the first time that SC migrate preferentially along blood vessels in perivascular extracellular matrix (ECM), avoiding CNS myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue of a dual mode of action of Eph/ephrin signaling. Indeed, EphrinB3, enriched in myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and triggers their preferential adhesion to ECM components, such as fibronectin via integrinβ1 interactions. This complex interplay enhances SC migration along the blood vessel network and together with lesion-induced vascular remodeling facilitates their timely invasion of the lesion site. These novel findings elucidate the mechanism by which SC invade and contribute to spinal cord repair.
Collapse
|
53
|
The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS One 2019; 14:e0216527. [PMID: 31107888 PMCID: PMC6527217 DOI: 10.1371/journal.pone.0216527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures—dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles—where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3–6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.
Collapse
|
54
|
Jessen KR, Mirsky R. Schwann Cell Precursors; Multipotent Glial Cells in Embryonic Nerves. Front Mol Neurosci 2019; 12:69. [PMID: 30971890 PMCID: PMC6443887 DOI: 10.3389/fnmol.2019.00069] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The cells of the neural crest, often referred to as neural crest stem cells, give rise to a number of sub-lineages, one of which is Schwann cells, the glial cells of peripheral nerves. Crest cells transform to adult Schwann cells through the generation of two well defined intermediate stages, the Schwann cell precursors (SCP) in early embryonic nerves, and immature Schwann cells (iSch) in late embryonic and perinatal nerves. SCP are formed when neural crest cells enter nascent nerves and form intimate relationships with axons, a diagnostic feature of glial cells. This involves large-scale changes in gene expression, including the activation of established glial cell markers. Like early glia in the CNS, radial glia, SCP retain developmental multipotency and contribute to other crest-derived lineages during embryonic development. SCP, as well as closely related cells termed boundary cap cells, and later stages of the Schwann cell lineage have all been implicated as the tumor initiating cell in NF1 associated neurofibromas. iSch are formed from SCP in a process that involves the appearance of additional differentiation markers, autocrine survival circuits, cellular elongation, a formation of endoneurial connective tissue and basal lamina. Finally, in peri- and post-natal nerves, iSch are reversibly induced by axon-associated signals to form the myelin and non-myelin Schwann cells of adult nerves. This review article discusses early Schwann cell development in detail and describes a large number of molecular signaling systems that control glial development in embryonic nerves.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
55
|
Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA. Cell Rep 2019; 26:3522-3536.e5. [DOI: 10.1016/j.celrep.2019.02.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
|
56
|
Pioneer axons employ Cajal's battering ram to enter the spinal cord. Nat Commun 2019; 10:562. [PMID: 30718484 PMCID: PMC6362287 DOI: 10.1038/s41467-019-08421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Sensory axons must traverse a spinal cord glia limitans to connect the brain with the periphery. The fundamental mechanism of how these axons enter the spinal cord is still debatable; both Ramon y Cajal’s battering ram hypothesis and a boundary cap model have been proposed. To distinguish between these hypotheses, we visualized the entry of pioneer axons into the dorsal root entry zone (DREZ) with time-lapse imaging in zebrafish. Here, we identify that DRG pioneer axons enter the DREZ before the arrival of neural crest cells at the DREZ. Instead, actin-rich invadopodia in the pioneer axon are necessary and sufficient for DREZ entry. Using photoactivable Rac1, we demonstrate cell-autonomous functioning of invasive structures in pioneer axon spinal entry. Together these data support the model that actin-rich invasion structures dynamically drive pioneer axon entry into the spinal cord, indicating that distinct pioneer and secondary events occur at the DREZ. The fundamental mechanism of how sensory axons traverse a spinal cord glia limitans remains debatable, with some suggesting a role for boundary cap cells at the dorsal root entry zone (DREZ). Here, authors use time-lapse imaging of DRG axons at the DREZ to show that pioneer axons enter the DREZ before the presence of boundary cap cells, and that this entry is critically dependent on the development of actin-rich invasion structures reminiscent of invadopodia.
Collapse
|
57
|
Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1:S47-S59. [DOI: 10.1016/j.ydbio.2018.03.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
58
|
Radomska KJ, Coulpier F, Gresset A, Schmitt A, Debbiche A, Lemoine S, Wolkenstein P, Vallat JM, Charnay P, Topilko P. Cellular Origin, Tumor Progression, and Pathogenic Mechanisms of Cutaneous Neurofibromas Revealed by Mice with Nf1 Knockout in Boundary Cap Cells. Cancer Discov 2018; 9:130-147. [PMID: 30348676 DOI: 10.1158/2159-8290.cd-18-0156] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022]
Abstract
Patients carrying an inactive NF1 allele develop tumors of Schwann cell origin called neurofibromas (NF). Genetically engineered mouse models have significantly enriched our understanding of plexiform forms of NFs (pNF). However, this has not been the case for cutaneous neurofibromas (cNF), observed in all NF1 patients, as no previous model recapitulates their development. Here, we show that conditional Nf1 inactivation in Prss56-positive boundary cap cells leads to bona fide pNFs and cNFs. This work identifies subepidermal glia as a likely candidate for the cellular origin of cNFs and provides insights on disease mechanisms, revealing a long, multistep pathologic process in which inflammation-related signals play a pivotal role. This new mouse model is an important asset for future clinical and therapeutic investigations of NF1-associated neurofibromas. SIGNIFICANCE: Patients affected by NF1 develop numerous cNFs. We present a mouse model that faithfully recapitulates cNFs, identify a candidate cell type at their origin, analyze the steps involved in their formation, and show that their development is dramatically accelerated by skin injury. These findings have important clinical/therapeutic implications.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Katarzyna J Radomska
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Fanny Coulpier
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Aurelie Gresset
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Alain Schmitt
- Institut Cochin, Inserm, CNRS, Université Paris Descartes, Paris, France
| | - Amal Debbiche
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Sophie Lemoine
- Genomic facility, Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Pierre Wolkenstein
- Département de Dermatologie, Centre de Référence des Neurofibromatoses, Hôpital Henri-Mondor, AP-HP, Créteil, France
| | - Jean-Michel Vallat
- National Reference Centre "Rare Peripheral Neuropathies," Department of Neurology, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Patrick Charnay
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.
| | - Piotr Topilko
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.
| |
Collapse
|
59
|
Fontenas L, Kucenas S. Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin. Front Cell Neurosci 2018; 12:333. [PMID: 30356886 PMCID: PMC6190867 DOI: 10.3389/fncel.2018.00333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes (OLs) and Schwann cells (SCs) have traditionally been thought of as the exclusive myelinating glial cells of the central and peripheral nervous systems (CNS and PNS), respectively, for a little over a century. However, recent studies demonstrate the existence of a novel, centrally-derived peripheral glial population called motor exit point (MEP) glia, which myelinate spinal motor root axons in the periphery. Until recently, the boundaries that exist between the CNS and PNS, and the cells permitted to cross them, were mostly described based on fixed histological collections and static lineage tracing. Recent work in zebrafish using in vivo, time-lapse imaging has shed light on glial cell interactions at the MEP transition zone and reveals a more complex picture of myelination both centrally and peripherally.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
60
|
Angelim MKSC, Maia LMSDS, Mouffle C, Ginhoux F, Low D, Amancio-Dos-Santos A, Makhoul J, Le Corronc H, Mangin JM, Legendre P. Embryonic macrophages and microglia ablation alter the development of dorsal root ganglion sensory neurons in mouse embryos. Glia 2018; 66:2470-2486. [PMID: 30252950 DOI: 10.1002/glia.23499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Microglia are known to regulate several aspects of the development of the central nervous system. When microglia colonize the spinal cord, from E11.5 in the mouse embryo, they interact with growing central axons of dorsal root ganglion sensory neurons (SNs), which suggests that they may have some functions in SN development. To address this issue, we analyzed the effects of embryonic macrophage ablation on the early development of SNs using mouse embryo lacking embryonic macrophages (PU.1 knock-out mice) and immune cell ablation. We discovered that, in addition to microglia, embryonic macrophages contact tropomyosin receptor kinase (Trk) C+ SN, TrkB+ SN, and TrkA+ SN peripheral neurites from E11.5. Deprivation of immune cells resulted in an initial reduction of TrkC+ SN and TrkB+ SN populations at E11.5 that was unlikely to be related to an alteration in their developmental cell death (DCD), followed by a transitory increase in their number at E12.5. It also resulted in a reduction of TrkA+ SN number during the developmental period analyzed (E11.5-E15.5), although we did not observe any change in their DCD. Proliferation of cells negative for brain fatty acid-binding protein (BFABP- ), which likely correspond to neuronal progenitors, was increased at E11.5, while their proliferation was decreased at E12.5, which could partly explain the alterations of SN subtype production observed from E11.5. In addition, we observed alterations in the proliferation of glial cell progenitors (BFABP+ cells) in the absence of embryonic macrophages. Our data indicate that embryonic macrophages and microglia ablation alter the development of SNs.
Collapse
Affiliation(s)
- Monara Kaélle Sérvulo Cruz Angelim
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Neurophysiology and pharmacology laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Luciana Maria Silva de Seixas Maia
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Neurophysiology and pharmacology laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Christine Mouffle
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Jennifer Makhoul
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Hervé Le Corronc
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Université d'Angers, Angers, France
| | - Jean-Marie Mangin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Pascal Legendre
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| |
Collapse
|
61
|
Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka GI, Goll Y, Refaeli R, Zviran O, Lim BK, Groysman M, Goshen I, Mizrahi A, Nelken I, Citri A. The Claustrum Supports Resilience to Distraction. Curr Biol 2018; 28:2752-2762.e7. [PMID: 30122531 PMCID: PMC6485402 DOI: 10.1016/j.cub.2018.06.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilience to distraction, a fundamental aspect of attention.
Collapse
Affiliation(s)
- Gal Atlan
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Anna Terem
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | - Kamini Sehrawat
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ben Jerry Gonzales
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Pozner
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Gen-Ichi Tasaka
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Yael Goll
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ori Zviran
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Groysman
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Adi Mizrahi
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
62
|
Nichols EL, Green LA, Smith CJ. Ensheathing cells utilize dynamic tiling of neuronal somas in development and injury as early as neuronal differentiation. Neural Dev 2018; 13:19. [PMID: 30121077 PMCID: PMC6098834 DOI: 10.1186/s13064-018-0115-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background Glial cell ensheathment of specific components of neuronal circuits is essential for nervous system function. Although ensheathment of axonal segments of differentiated neurons has been investigated, ensheathment of neuronal cell somas, especially during early development when neurons are extending processes and progenitor populations are expanding, is still largely unknown. Methods To address this, we used time-lapse imaging in zebrafish during the initial formation of the dorsal root ganglia (DRG). Results Our results show that DRG neurons are ensheathed throughout their entire lifespan by a progenitor population. These ensheathing cells dynamically remodel during development to ensure axons can extend away from the neuronal cell soma into the CNS and out to the skin. As a population, ensheathing cells tile each DRG neuron to ensure neurons are tightly encased. In development and in experimental cell ablation paradigms, the oval shape of DRG neurons dynamically changes during partial unensheathment. During longer extended unensheathment neuronal soma shifting is observed. We further show the intimate relationship of these ensheathing cells with the neurons leads to immediate and choreographed responses to distal axonal damage to the neuron. Conclusion We propose that the ensheathing cells dynamically contribute to the shape and position of neurons in the DRG by their remodeling activity during development and are primed to dynamically respond to injury of the neuron. Electronic supplementary material The online version of this article (10.1186/s13064-018-0115-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evan L Nichols
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Lauren A Green
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
63
|
Cheng I, Jin L, Rose LC, Deppmann CD. Temporally restricted death and the role of p75NTR as a survival receptor in the developing sensory nervous system. Dev Neurobiol 2018; 78:701-717. [PMID: 29569362 PMCID: PMC6023755 DOI: 10.1002/dneu.22591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/26/2018] [Accepted: 03/16/2018] [Indexed: 11/05/2022]
Abstract
The peripheral somatosensory system overproduces neurons early in development followed by a period of cell death during final target innervation. The decision to survive or die in somatosensory neurons of the dorsal root ganglion (DRG) is mediated by target-derived neurotrophic factors and their cognate receptors. Subsets of peripheral somatosensory neurons can be crudely defined by the neurotrophic receptors that they express: peptidergic nociceptors (TrkA+), nonpeptidergic nociceptors (Ret+), mechanoreceptors (Ret+ or TrkB+), and proprioceptors (TrkC+). A direct comparison of early developmental timing between these subsets has not been performed. Here we characterized the accumulation and death of TrkA, B, C, and Ret+ neurons in the DRG as a function of developmental time. We find that TrkB, TrkC, and Ret-expressing neurons in the DRG complete developmental cell death prior to TrkA-expressing neurons. Given the broadly defined roles of the neurotrophin receptor p75NTR in augmenting neurotrophic signaling in sensory neurons, we investigated its role in supporting the survival of these distinct subpopulations. We find that TrkA+, TrkB+, and TrkC+ sensory neuron subpopulations require p75NTR for survival, but proliferating progenitors do not. These data demonstrate how diverging sensory neurons undergo successive waves of cell death and how p75NTR represses the magnitude, but not developmental window of this culling. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 701-717, 2018.
Collapse
Affiliation(s)
- Irene Cheng
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucy Jin
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucy C. Rose
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
64
|
Dental Pulp Stem Cells - Exploration in a Novel Animal Model: the Tasmanian Devil (Sarcophilus harrisii). Stem Cell Rev Rep 2018; 14:500-509. [PMID: 29737458 DOI: 10.1007/s12015-018-9814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dental pulp stem cells (DPSC) are a heterogeneous population of highly proliferative stem cells located in the soft inner pulp tissue of the tooth. Demonstrated to have an affinity for neural differentiation, DPSC have been reported to generate functional Schwann cells (SC) through in vitro differentiation. Both DPSC and SC have neural crest origins, recently a significant population of DPSC have been reported to derive from peripheral nerve-associated glia. The predisposition DPSC have towards the SC lineage is not only a very useful tool for neural regenerative therapies in the medical field, it also holds great promise in the veterinary field. Devil Facial Tumour (DFT) is a clonally transmissible cancer of SC origin responsible for devastating wild populations of the Tasmanian devil. Very few studies have investigated the healthy Tasmanian devil SC (tdSC) for comparative studies between tdSC and DFT cells, and the development and isolation of a tdSC population is yet to be undertaken. A Tasmanian devil DPSC model offers a promising new outlook for DFT research, and the link between SC and DPSC may provide a potential explanation as to how a cancerous SC initially arose in a single Tasmanian devil to then go on to infect others as a parasitic clonal cell line. In this review we explore the current role of DPSC in human regenerative medicine, provide an overview of the Tasmanian devil and the devastating effect of DFT, and highlight the promising potential DPSC techniques pose for DFT research and our current understanding of DFT.
Collapse
|
65
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
66
|
Müller K, Schnatz A, Schillner M, Woertge S, Müller C, von Graevenitz I, Waisman A, van Minnen J, Vogelaar CF. A predominantly glial origin of axonal ribosomes after nerve injury. Glia 2018; 66:1591-1610. [DOI: 10.1002/glia.23327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Kerstin Müller
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
| | - Andrea Schnatz
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
- Institute of Developmental Biology and Neurobiology, Section Cellular Neurobiology, Johannes Gutenberg University Mainz; Mainz 55099 Germany
| | - Miriam Schillner
- Department of Neurology, Section Neuroimmunology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
| | - Simone Woertge
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
| | - Christina Müller
- Institute of Developmental Biology and Neurobiology, Section Cellular Neurobiology, Johannes Gutenberg University Mainz; Mainz 55099 Germany
| | - Ilse von Graevenitz
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
| | - Jan van Minnen
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary, 3330 Hospital Drive NW; Calgary Alberta T2N 4N1 Canada
| | - Christina F. Vogelaar
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
- Department of Neurology, Section Neuroimmunology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz 55131 Germany
| |
Collapse
|
67
|
George D, Ahrens P, Lambert S. Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia 2018. [DOI: 10.1002/glia.23320] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dale George
- Burnett School of Biomedical Sciences, College of Medicine; University of Central Florida; Orlando Florida
| | - Paige Ahrens
- Department of Medical Education, College of Medicine; University of Central Florida; Orlando Florida
| | - Stephen Lambert
- Department of Medical Education, College of Medicine; University of Central Florida; Orlando Florida
| |
Collapse
|
68
|
Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise? Dev Biol 2018; 444 Suppl 1:S25-S35. [PMID: 29454705 DOI: 10.1016/j.ydbio.2018.02.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
Schwann cell precursors (SCPs) are multipotent embryonic progenitors covering all developing peripheral nerves. These nerves grow and navigate with unprecedented precision, delivering SCP progenitors to almost all locations in the embryonic body. Within specific developing tissues, SCPs detach from nerves and generate neuroendocrine cells, autonomic neurons, mature Schwann cells, melanocytes and other cell types. These properties of SCPs evoke resemblances between them and their parental population, namely, neural crest cells. Neural crest cells are incredibly multipotent migratory cells that revolutionized the course of evolution in the lineage of early chordate animals. Given this similarity and recent data, it is possible to hypothesize that proto-neural crest cells are similar to SCPs spreading along the nerves. Here, we review the multipotency of SCPs, the signals that govern them, their potential therapeutic value, SCP's embryonic origin and their evolutionary connections. We dedicate this article to the memory of Wilhelm His, the father of the microtome and "Zwischenstrang", currently known as the neural crest.
Collapse
Affiliation(s)
- Alessandro Furlan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria.
| |
Collapse
|
69
|
Montani L, Pereira JA, Norrmén C, Pohl HBF, Tinelli E, Trötzmüller M, Figlia G, Dimas P, von Niederhäusern B, Schwager R, Jessberger S, Semenkovich CF, Köfeler HC, Suter U. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J Cell Biol 2018; 217:1353-1368. [PMID: 29434029 PMCID: PMC5881495 DOI: 10.1083/jcb.201706010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023] Open
Abstract
Montani et al. reveal that de novo fatty acid synthesis by Schwann cells, mediated by fatty acid synthase, contributes fundamentally to driving myelination in the peripheral nervous system. They identify lipogenic activation of the PPARγ transcriptional network as a putatively involved functional mechanism. Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ–regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator.
Collapse
Affiliation(s)
- Laura Montani
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Hartmut B F Pohl
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Elisa Tinelli
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Martin Trötzmüller
- Lipidomics Center for Medical Research, Medical University, Graz, Austria
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Penelope Dimas
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Belinda von Niederhäusern
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Rachel Schwager
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University Medical School, St. Louis, MO
| | - Harald C Köfeler
- Lipidomics Center for Medical Research, Medical University, Graz, Austria
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
70
|
Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 2018; 357:357/6346/eaal3753. [PMID: 28684471 DOI: 10.1126/science.aal3753] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
Adrenaline is a fundamental circulating hormone for bodily responses to internal and external stressors. Chromaffin cells of the adrenal medulla (AM) represent the main neuroendocrine adrenergic component and are believed to differentiate from neural crest cells. We demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs). SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland, where they detach from the nerve and form postsynaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell type specification. Subsequently, these programs down-regulate SCP-gene and up-regulate chromaffin cell-gene networks. The AM forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.
Collapse
Affiliation(s)
- Alessandro Furlan
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vyacheslav Dyachuk
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.,Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg 197101, Russia
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Calvo-Enrique
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hind Abdo
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tatiana Chontorotzea
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Natalia Akkuratova
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia.,Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Dmitry Usoskin
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dmitry Kamenev
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Fatima Memic
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ulrika Marklund
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Piotr Topilko
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, INSERM U1024, CNRS UMR 8197, 46 Rue d'Ulm, 75005 Paris, France
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden. .,Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
71
|
Boundary cap cells in development and disease. Curr Opin Neurobiol 2017; 47:209-215. [DOI: 10.1016/j.conb.2017.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 01/18/2023]
|
72
|
Aquino JB, Sierra R. Schwann cell precursors in health and disease. Glia 2017; 66:465-476. [PMID: 29124786 DOI: 10.1002/glia.23262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/07/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022]
Abstract
Schwann cell precursors (SCPs) are frequently regarded as neural crest-derived cells (NCDCs) found in contact with axons during nerve formation. Nevertheless, cells with SCPs properties can be found up to the adulthood. They are well characterized with regard to both gene expression profile and cellular behavior -for instance, proliferation, migratory capabilities and survival requirements-. They differ in origin regarding their anatomic location: even though most of them are derived from migratory NCCs, there is also contribution of the boundary cap neural crest cells (bNCCs) to the skin and other tissues. Many functions are known for SCPs in normal development, including nerve fasciculation and target innervation, arterial branching patterning and differentiation, and other morphogenetic processes. In addition, SCPs are now known to be a source of many neural (glia, endoneural fibroblasts, melanocytes, visceral neurons, and chromaffin cells) and non-neural-like (mesenchymal stromal cells, able e.g., to generate dentine-producing odontoblasts) cell types. Until now no reports of endoderm-like derivatives were reported so far. Interestingly, in the Schwann cell lineage only early SCPs are likely able to differentiate into melanocytes and bone marrow mesenchymal stromal cells. We have also herein discussed the literature regarding their role in repair as well as in disease mechanisms, such as in diverse cancers. Moreover, many caveats in our knowledge of SCPs biology are highlighted all through this article. Future research should expand more into the relevance of SCPs in pathologies and in other regenerative mechanisms which might bring new unexpected clinically-relevant knowledge.
Collapse
Affiliation(s)
- Jorge B Aquino
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Romina Sierra
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| |
Collapse
|
73
|
Koeppen AH, Becker AB, Qian J, Gelman BB, Mazurkiewicz JE. Friedreich Ataxia: Developmental Failure of the Dorsal Root Entry Zone. J Neuropathol Exp Neurol 2017; 76:969-977. [PMID: 29044418 DOI: 10.1093/jnen/nlx087] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Dorsal root ganglia, dorsal roots (DR), and dorsal root entry zones (DREZ) are vulnerable to frataxin deficiency in Friedreich ataxia (FA). A previously unrecognized abnormality is the intrusion of astroglial tissue into DR. Segments of formalin-fixed upper lumbar spinal cord of 13 homozygous and 2 compound heterozygous FA patients were sectioned longitudinally to represent DREZ and stained for glial fibrillary acidic protein (GFAP), S100, vimentin, the central nervous system (CNS)-specific myelin protein proteolipid protein, the peripheral nervous system (PNS) myelin proteins PMP-22 and P0, and the Schwann cell proteins laminin, alpha-dystroglycan, and periaxin. Normal DREZ showed short, sharply demarcated, dome-like extensions of CNS tissue into DR. The Schwann cell-related proteins formed tight caps around these domes. In FA, GFAP-, S100-, and vimentin-reactive CNS tissue extended across DREZ and into DR over much longer distances by breaching the CNS-PNS barrier. The transition between PNS and CNS myelin proteins was disorganized. During development, neural-crest derived boundary cap cells provide guidance to dorsal root ganglia axons growing into the dorsal spinal cord and at the same time block the inappropriate intrusion of CNS glia into DR. It is likely that frataxin is required during a critical period of permissive (axons) and nonpermissive (astroglia) border-control.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Research Service, Veterans Affairs Medical Center, Albany, New York; Department of Pathology, Albany Medical College, Albany, New York; Department of Pathology and Laboratory Medicine, University of Texas Medical Branch, Galveston, Texas; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Alyssa B Becker
- Research Service, Veterans Affairs Medical Center, Albany, New York; Department of Pathology, Albany Medical College, Albany, New York; Department of Pathology and Laboratory Medicine, University of Texas Medical Branch, Galveston, Texas; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Jiang Qian
- Research Service, Veterans Affairs Medical Center, Albany, New York; Department of Pathology, Albany Medical College, Albany, New York; Department of Pathology and Laboratory Medicine, University of Texas Medical Branch, Galveston, Texas; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Benjamin B Gelman
- Research Service, Veterans Affairs Medical Center, Albany, New York; Department of Pathology, Albany Medical College, Albany, New York; Department of Pathology and Laboratory Medicine, University of Texas Medical Branch, Galveston, Texas; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | | |
Collapse
|
74
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
75
|
Livin' On The Edge: glia shape nervous system transition zones. Curr Opin Neurobiol 2017; 47:44-51. [PMID: 28957729 DOI: 10.1016/j.conb.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
The vertebrate nervous system is divided into two functional halves; the central nervous system (CNS), which includes the brain and spinal cord, and the peripheral nervous system (PNS), which consists of nerves and ganglia. Incoming peripheral stimuli transmitted from the periphery to the CNS and subsequent motor responses created because of this information, require efficient communication between the two halves that make up this organ system. Neurons and glial cells of each half of the nervous system, which are the main actors in this communication, segregate across nervous system transition zones and never mix, allowing for efficient neurotransmission. Studies aimed at understanding the cellular and molecular mechanisms governing the development and maintenance of these transition zones have predominantly focused on mammalian models. However, zebrafish has emerged as a powerful model organism to study these structures and has allowed researchers to identify novel glial cells and mechanisms essential for nervous system assembly. This review will highlight recent advances into the important role that glial cells play in building and maintaining the nervous system and its boundaries.
Collapse
|
76
|
Liu J, Gao F, Liu YF, Dou HT, Yan JQ, Fan ZM, Yang ZM. HB-EGF regulates Prss56 expression during mouse decidualization via EGFR/ERK/EGR2 signaling pathway. J Endocrinol 2017; 234:247-254. [PMID: 28611210 DOI: 10.1530/joe-16-0636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/09/2017] [Indexed: 01/17/2023]
Abstract
Embryo implantation and decidualization are key steps for successful reproduction. Although numerous factors have been identified to be involved in embryo implantation and decidualization, the mechanisms underlying these processes are still unclear. Based on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at implantation site in mouse uterus. However, the expression, regulation and function of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated. Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway. Based on promoter analysis, we also showed that Egr2 is involved in Prss56 regulation by HB-EGF. Collectively, Prss56 expression at implantation site is modulated by HB-EGF/EGFR/ERK signaling pathway and involved in mouse decidualization.
Collapse
Affiliation(s)
- Jie Liu
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
- Department of BiologyShantou University, Shantou, China
| | - Fei Gao
- Department of BiologyShantou University, Shantou, China
| | - Yue-Fang Liu
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Hai-Ting Dou
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Jia-Qi Yan
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Zong-Min Fan
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| |
Collapse
|
77
|
Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues. PLoS One 2017; 12:e0177962. [PMID: 28683107 PMCID: PMC5500284 DOI: 10.1371/journal.pone.0177962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+/ BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow.
Collapse
|
78
|
Koeppen AH, Becker AB, Qian J, Feustel PJ. Friedreich Ataxia: Hypoplasia of Spinal Cord and Dorsal Root Ganglia. J Neuropathol Exp Neurol 2017; 76:101-108. [PMID: 28082326 DOI: 10.1093/jnen/nlw111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After Friedreich's description in 1877, depletion of myelinated fibers in the dorsal columns, dorsal spinocerebellar and lateral corticospinal tracts, and neuronal loss in the dorsal nuclei of Clarke columns were considered unique and essential neuropathological features of Friedreich ataxia (FA). Lack of large neurons in dorsal root ganglia (DRG), thinning of dorsal roots (DR), and poor myelination in sensory nerves are now recognized as key components of FA. Here, we measured cross-sectional areas of the mid-thoracic spinal cord (SC) and neuronal sizes in lumbosacral DRG of 24 genetically confirmed FA cases. Mean thoracic SC areas in FA (24.17 mm2) were significantly smaller than those in 12 normal controls (37.5 mm2); DRG neuron perikarya in FA (1362 µm2) were also significantly smaller than normal (2004 µm2). DRG neuron sizes were not correlated with SC areas. The FA patients included a wide range of disease onset and duration suggesting that the SC undergoes growth arrest early and remains abnormally small throughout life. Immunohistochemistry for phosphorylated neurofilament protein, peripheral myelin protein 22, and myelin proteolipid protein confirmed chaotic transition of axons into the SC in DR entry zones. We conclude that smaller SC areas and lack of large DRG neurons indicate hypoplasia rather than atrophy in FA.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA.,Department of Pathology, Albany Medical College, Albany, NY, USA
| | - Alyssa B Becker
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA
| | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, NY, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
79
|
Trolle C, Ivert P, Hoeber J, Rocamonde-Lago I, Vasylovska S, Lukanidin E, Kozlova EN. Boundary cap neural crest stem cell transplants contribute Mts1/S100A4-expressing cells in the glial scar. Regen Med 2017. [PMID: 28621171 DOI: 10.2217/rme-2016-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM During development, boundary cap neural crest stem cells (bNCSCs) assist sensory axon growth into the spinal cord. Here we repositioned them to test if they assist regeneration of sensory axons in adult mice after dorsal root avulsion injury. MATERIALS & METHODS Avulsed mice received bNCSC or human neural progenitor (hNP) cell transplants and their contributions to glial scar formation and sensory axon regeneration were analyzed with immunohistochemistry and transganglionic tracing. RESULTS hNPs and bNCSCs form similar gaps in the glial scar, but unlike hNPs, bNCSCs contribute Mts1/S100A4 (calcium-binding protein) expression to the scar and do not assist sensory axon regeneration. CONCLUSION bNCSC transplants contribute nonpermissive Mts1/S100A4-expressing cells to the glial scar after dorsal root avulsion.
Collapse
Affiliation(s)
- Carl Trolle
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Patrik Ivert
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Eugen Lukanidin
- Department of Molecular Cancer Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
80
|
Sleigh JN, Dawes JM, West SJ, Wei N, Spaulding EL, Gómez-Martín A, Zhang Q, Burgess RW, Cader MZ, Talbot K, Yang XL, Bennett DL, Schiavo G. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proc Natl Acad Sci U S A 2017; 114:E3324-E3333. [PMID: 28351971 PMCID: PMC5402433 DOI: 10.1073/pnas.1614557114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom;
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Steven J West
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469
| | - Adriana Gómez-Martín
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom;
| |
Collapse
|
81
|
Balakrishnan A, Stykel MG, Touahri Y, Stratton JA, Biernaskie J, Schuurmans C. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve. PLoS One 2016; 11:e0153256. [PMID: 27058953 PMCID: PMC4826002 DOI: 10.1371/journal.pone.0153256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/26/2016] [Indexed: 01/09/2023] Open
Abstract
Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs ‘de-differentiate’, downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates transcriptional aspects of several different embryonic stages.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Morgan G. Stykel
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yacine Touahri
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jo Anne Stratton
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- * E-mail: (CS); (JB)
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- * E-mail: (CS); (JB)
| |
Collapse
|
82
|
Smith CJ, Johnson K, Welsh TG, Barresi MJF, Kucenas S. Radial glia inhibit peripheral glial infiltration into the spinal cord at motor exit point transition zones. Glia 2016; 64:1138-53. [PMID: 27029762 DOI: 10.1002/glia.22987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/09/2022]
Abstract
In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | - Kimberly Johnson
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01003
| | - Taylor G Welsh
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.,Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, 22904
| | - Michael J F Barresi
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01003.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.,Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
83
|
Monteiro CB, Midão L, Rebelo S, Reguenga C, Lima D, Monteiro FA. Zinc finger transcription factor Casz1 expression is regulated by homeodomain transcription factor Prrxl1 in embryonic spinal dorsal horn late-born excitatory interneurons. Eur J Neurosci 2016; 43:1449-59. [PMID: 26913565 DOI: 10.1111/ejn.13214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 11/30/2022]
Abstract
The transcription factor Casz1 is required for proper assembly of vertebrate vasculature and heart morphogenesis as well as for temporal control of Drosophila neuroblasts and mouse retina progenitors in the generation of different cell types. Although Casz1 function in the mammalian nervous system remains largely unexplored, Casz1 is expressed in several regions of this system. Here we provide a detailed spatiotemporal characterization of Casz1 expression along mouse dorsal root ganglion (DRG) and dorsal spinal cord development by immunochemistry. In the DRG, Casz1 is broadly expressed in sensory neurons since they are born until perinatal age. In the dorsal spinal cord, Casz1 displays a more dynamic pattern being first expressed in dorsal interneuron 1 (dI1) progenitors and their derived neurons and then in a large subset of embryonic dorsal late-born excitatory (dILB) neurons that narrows gradually to become restricted perinatally to the inner portion. Strikingly, expression analyses using Prrxl1-knockout mice revealed that Prrxl1, a key transcription factor in the differentiation of dILB neurons, is a positive regulator of Casz1 expression in the embryonic dorsal spinal cord but not in the DRG. By performing chromatin immunoprecipitation in the dorsal spinal cord, we identified two Prrxl1-bound regions within Casz1 introns, suggesting that Prrxl1 directly regulates Casz1 transcription. Our work reveals that Casz1 lies downstream of Prrxl1 in the differentiation pathway of a large subset of dILB neurons and provides a framework for further studies of Casz1 in assembly of the DRG-spinal circuit.
Collapse
Affiliation(s)
- César B Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Luís Midão
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Rebelo
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos Reguenga
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe A Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
84
|
Garrett AM, Jucius TJ, Sigaud LPR, Tang FL, Xiong WC, Ackerman SL, Burgess RW. Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse. Front Mol Neurosci 2016; 9:3. [PMID: 26858598 PMCID: PMC4726805 DOI: 10.3389/fnmol.2016.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
Boundary cap cells (BCC) are a transient, neural-crest-derived population found at the motor exit point (MEP) and dorsal root entry zone (DREZ) of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system (CNS/PNS) boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in BCC. We generated Ntn5 knockout mice and examined neurodevelopmental and BCC-related phenotypes. No abnormalities in cranial nerve guidance, dorsal root organization, or sensory projections were found. However, Ntn5 mutant embryos did have ectopic motor neurons (MNs) that migrated out of the ventral horn and into the motor roots. Previous studies have implicated semaphorin6A (Sema6A) in BCC signaling to plexinA2 (PlxnA2)/neuropilin2 (Nrp2) in MNs in restricting MN cell bodies to the ventral horn, particularly in the caudal spinal cord. In Ntn5 mutants, ectopic MNs are likely to be a different population, as more ectopias were found rostrally. Furthermore, ectopic MNs in Ntn5 mutants were not immunoreactive for NRP2. The netrin receptor deleted in colorectal cancer (DCC) is a potential receptor for NTN5 in MNs, as similar ectopic neurons were found in Dcc mutant mice, but not in mice deficient for other netrin receptors. Thus, Ntn5 is a novel netrin family member that is expressed in BCC, functioning to prevent MN migration out of the CNS.
Collapse
Affiliation(s)
| | | | | | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Department of Neurology, Medical College of Georgia, Georgia Regents University Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Department of Neurology, Medical College of Georgia, Georgia Regents University Augusta, GA, USA
| | - Susan L Ackerman
- The Jackson LaboratoryBar Harbor, ME, USA; Howard Hughes Medical InstituteChevy Chase, MD, USA
| | | |
Collapse
|
85
|
The key components of Schwann cell-like differentiation medium and their effects on gene expression pattern of adipose-derived stem cells. Ann Plast Surg 2016; 74:584-8. [PMID: 25643192 DOI: 10.1097/sap.0000000000000436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Schwann cell-like cells differentiated from adipose-derived stem cells may have an important role in peripheral nerve regeneration. Herein, we document the individual effects of growth factors in Schwann cell-like differentiation medium. METHODS There were 6 groups in the study. In the control group, we supplemented the rat adipose-derived stem cells with normal cell culture medium. In group 1, we fed the cells with Schwann cell-like differentiation medium (normal cell culture medium supplemented with platelet-derived growth factor, basic fibroblast growth factor, forskolin, and glial growth factor). In the other groups, we removed the components of the medium one at a time from the differentiation medium so that group 2 lacked glial growth factor, group 3 lacked forskolin, group 4 lacked basic fibroblast growth factor, and group 5 lacked platelet-derived growth factor. We examined the expression of the Schwann cell-specific genes with quantitative reverse transcription polymerase chain reaction and immunofluorescence staining in each group. RESULTS Groups 3 and 4, lacking forskolin and basic fibroblast growth factor, respectively, had the highest expression levels of integrin-β4, and p75. Group 1 showed a 3.2-fold increase in the expression of S100, but the expressions of integrin-β4 and p75 were significantly lower compared to groups 3 and 4. Group 2 [glial growth factor (-)] did not express significant levels of Schwann cell-specific genes. The gene expression profile in group 4 most closely resembled Schwann cells. Immunofluorescence staining results were parallel with the quantitative real-time polymerase chain reaction results. CONCLUSIONS Glial growth factor is a key component of Schwann cell-like differentiation medium.
Collapse
|
86
|
Zeb family members and boundary cap cells underlie developmental plasticity of sensory nociceptive neurons. Dev Cell 2015; 33:343-50. [PMID: 25942625 DOI: 10.1016/j.devcel.2015.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/19/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
Dorsal root ganglia (DRG) sensory neurons arise from heterogeneous precursors that differentiate in two neurogenic waves, respectively controlled by Neurog2 and Neurog1. We show here that transgenic mice expressing a Zeb1/2 dominant-negative form (DBZEB) exhibit reduced numbers of nociceptors and altered pain sensitivity. This reflects an early impairment of Neurog1-dependent neurogenesis due to the depletion of specific sensory precursor pools, which is slightly later partially compensated by the contribution of boundary cap cells (BCCs). Indeed, combined DBZEB expression and genetic BCCs ablation entirely deplete second wave precursors and, in turn, nociceptors, thus recapitulating the Neurog1(-/-) neuronal phenotype. Altogether, our results uncover roles for Zeb family members in the developing DRGs; they show that the Neurog1-dependent sensory neurogenesis can be functionally partitioned in two successive phases; and finally, they illustrate plasticity in the developing peripheral somatosensory system supported by the BCCs, thereby providing a rationale for sensory precursor diversity.
Collapse
|
87
|
Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci 2015; 35:9211-24. [PMID: 26085643 DOI: 10.1523/jneurosci.0156-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radial glial cells are the neural progenitors of the developing CNS and have long radial processes that guide radially migrating neurons. The integrity of the radial glial scaffold, in particular proper adhesion between the endfeet of radial processes and the pial basement membrane (BM), is important for the cellular organization of the CNS, as indicated by evidence emerging from the developing cortex. However, the mechanisms underlying the maintenance of radial glial scaffold integrity during development, when the neuroepithelium rapidly expands, are still poorly understood. Here, we addressed this issue in the developing mouse spinal cord. We show that CXCR4, a receptor of chemokine CXCL12, is expressed in spinal cord radial glia. Conditional knock-out of Cxcr4 in radial glia caused disrupted radial glial scaffold with gaps at the pial endfeet layer and consequentially led to an invasion of boundary cap (BC) cells into the spinal cord. Because BC cells are PNS cells normally positioned at the incoming and outgoing axonal roots, their invasion into the spinal cord suggests a compromised CNS/PNS boundary in the absence of CXCL12/CXCR4 signaling. Both disrupted radial glial scaffold and invasion of BC cells into the CNS were also present in mice deficient in CXCR7, a second receptor of CXCL12. We further show that CXCL12 signaling promotes the radial glia adhesion to BM components and activates integrin β1 avidity. Our study unravels a novel molecular mechanism that deploys CXCL12/CXCR4/CXCR7 for the maintenance of radial glial scaffold integrity, which in turn safeguards the CNS/PNS boundary during spinal cord development.
Collapse
|
88
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
89
|
Gresset A, Coulpier F, Gerschenfeld G, Jourdon A, Matesic G, Richard L, Vallat JM, Charnay P, Topilko P. Boundary Caps Give Rise to Neurogenic Stem Cells and Terminal Glia in the Skin. Stem Cell Reports 2015. [PMID: 26212662 PMCID: PMC4618659 DOI: 10.1016/j.stemcr.2015.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While neurogenic stem cells have been identified in rodent and human skin, their manipulation and further characterization are hampered by a lack of specific markers. Here, we perform genetic tracing of the progeny of boundary cap (BC) cells, a neural-crest-derived cell population localized at peripheral nerve entry/exit points. We show that BC derivatives migrate along peripheral nerves to reach the skin, where they give rise to terminal glia associated with dermal nerve endings. Dermal BC derivatives also include cells that self-renew in sphere culture and have broad in vitro differentiation potential. Upon transplantation into adult mouse dorsal root ganglia, skin BC derivatives efficiently differentiate into various types of mature sensory neurons. Together, this work establishes the embryonic origin, pathway of migration, and in vivo neurogenic potential of a major component of skin stem-like cells. It provides genetic tools to study and manipulate this population of high interest for medical applications. Boundary cap cells give rise to all types of sensory neurons in the developing DRG BC derivatives migrate along peripheral nerves to reach the trunk skin BC cell progeny include glia associated with nerve endings Dermal BC-derived stem cells possess powerful in vivo neurogenic potential
Collapse
Affiliation(s)
- Aurélie Gresset
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| | - Fanny Coulpier
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| | - Gaspard Gerschenfeld
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Alexandre Jourdon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Graziella Matesic
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| | - Laurence Richard
- National Reference Centre "Rare Peripheral Neuropathies" Department of Neurology, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Jean-Michel Vallat
- National Reference Centre "Rare Peripheral Neuropathies" Department of Neurology, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Patrick Charnay
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France.
| | - Piotr Topilko
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and INSERM U1024, and Centre National de la Recherche Scientifique (CNRS) UMR 8197, Paris 75005, France
| |
Collapse
|
90
|
Vidal M, Maniglier M, Deboux C, Bachelin C, Zujovic V, Baron-Van Evercooren A. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination. Stem Cells 2015; 33:2011-24. [DOI: 10.1002/stem.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Marie Vidal
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Madlyne Maniglier
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Cyrille Deboux
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Corinne Bachelin
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Violetta Zujovic
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Anne Baron-Van Evercooren
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| |
Collapse
|
91
|
Gay MHP, Valenta T, Herr P, Paratore-Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol 2015; 13:24. [PMID: 25885041 PMCID: PMC4416270 DOI: 10.1186/s12915-015-0134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background β-catenin plays a central role in multiple developmental processes. However, it has been difficult to study its pleiotropic effects, because of the dual capacity of β-catenin to coordinate cadherin-dependent cell adhesion and to act as a component of Wnt signal transduction. To distinguish between the divergent functions of β-catenin during peripheral nervous system development, we made use of a mutant allele of β-catenin that can mediate adhesion but not Wnt-induced TCF transcriptional activation. This allele was combined with various conditional inactivation approaches. Results We show that of all peripheral nervous system structures, only sensory dorsal root ganglia require β-catenin for proper formation and growth. Surprisingly, however, dorsal root ganglia development is independent of cadherin-mediated cell adhesion. Rather, both progenitor cell proliferation and fate specification are controlled by β-catenin signaling. These can be divided into temporally sequential processes, each of which depends on a different function of β-catenin. Conclusions While early stage proliferation and specific Neurog2- and Krox20-dependent waves of neuronal subtype specification involve activation of TCF transcription, late stage progenitor proliferation and Neurog1-marked sensory neurogenesis are regulated by a function of β-catenin independent of TCF activation and adhesion. Thus, switching modes of β-catenin function are associated with consecutive cell fate specification and stage-specific progenitor proliferation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0134-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Max Hans-Peter Gay
- Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Patrick Herr
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Present address: SciLifeLab, Stockholm, Sweden.
| | - Lisette Paratore-Hari
- Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Present address: University Hospital Zurich, Clinical Trials Center, Zurich, Switzerland.
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Lukas Sommer
- Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
92
|
Jacob C. Transcriptional control of neural crest specification into peripheral glia. Glia 2015; 63:1883-1896. [PMID: 25752517 DOI: 10.1002/glia.22816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nervous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex questions that have existed for decades and are still in the research focus of developmental biologists. This review discusses transcriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyelinating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous ganglia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipotent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia, another type of peripheral glia, will not be discussed in this review. GLIA 2015;63:1883-1896.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
93
|
Czaja K, Fornaro M, Geuna S. Neurogenesis in the adult peripheral nervous system. Neural Regen Res 2015; 7:1047-54. [PMID: 25722694 PMCID: PMC4340017 DOI: 10.3969/j.issn.1673-5374.2012.14.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
Abstract
Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.
Collapse
Affiliation(s)
- Krzysztof Czaja
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (VCAPP), College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA
| | - Michele Fornaro
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Italy
| |
Collapse
|
94
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
95
|
Smith CJ, Morris AD, Welsh TG, Kucenas S. Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone. PLoS Biol 2014; 12:e1001961. [PMID: 25268888 PMCID: PMC4181976 DOI: 10.1371/journal.pbio.1001961] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022] Open
Abstract
In vivo experiments in zebrafish determine that CNS-derived glial cells contribute to the myelinating population of cells in the PNS and ensure that CNS and PNS glia remain segregated. Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition. The nervous system is often thought as two distinct halves: the central nervous system (CNS), which consists of the brain and spinal cord, and the peripheral nervous system (PNS), which includes the nerves that control movement and sense the environment. The cells within these two halves, however, do not commonly mix. To address how cells are segregated within these two compartments of the nervous system, we used live, transgenic zebrafish embryos to watch nerve development. Our study shows that CNS-residing myelinating glia (nonneuronal cells that wrap around nerves to ensure nerve impulse conduction) are restricted from entering the PNS by a cell we call motor exit point (MEP) glia. MEP glia originate from within the CNS, and then migrate into the PNS, divide, and produce cells that ensheath and myelinate spinal motor root axons. Ablation of MEP glia causes CNS glia to migrate inappropriately into the PNS, disrupting the normal boundary that is present between the CNS and PNS. Overall, the identification and characterization of MEP glia identifies an aspect of peripheral nerve composition that may be pertinent in human health and disease.
Collapse
Affiliation(s)
- Cody J. Smith
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Angela D. Morris
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Taylor G. Welsh
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
96
|
Gonsalvez DG, Li-Yuen-Fong M, Cane KN, Stamp LA, Young HM, Anderson CR. Different neural crest populations exhibit diverse proliferative behaviors. Dev Neurobiol 2014; 75:287-301. [DOI: 10.1002/dneu.22229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 01/02/2023]
Affiliation(s)
- David G. Gonsalvez
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Mathew Li-Yuen-Fong
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Kylie N. Cane
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Lincon A. Stamp
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Heather M. Young
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Colin R. Anderson
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| |
Collapse
|
97
|
Zarzosa A, Grassme K, Tanaka E, Taniguchi Y, Bramke S, Kurth T, Epperlein H. Axolotls with an under- or oversupply of neural crest can regulate the sizes of their dorsal root ganglia to normal levels. Dev Biol 2014; 394:65-82. [PMID: 25111151 DOI: 10.1016/j.ydbio.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022]
Abstract
How animals adjust the size of their organs is a fundamental, enduring question in biology. Here we manipulate the amount of neural crest (NC) precursors for the dorsal root ganglia (DRG) in axolotl. We produce embryos with an under- or over-supply of pre-migratory NC in order to find out if DRG can regulate their sizes during development. Axolotl embryos are perfectly suitable for this research. Firstly, they are optimal for microsurgical manipulations and tissue repair. Secondly, they possess, unlike most other vertebrates, only one neural crest string located on top of the neural tube. This condition and position enables NC cells to migrate to either side of the embryo and participate in the regulation of NC cell distribution. We show that size compensation of DRG in axolotl occurs in 2 cm juveniles after undersupply of NC (up-regulation) and in 5 cm juveniles after oversupply of NC (down-regulation). The size of DRG is likely to be regulated locally within the DRG and not via adaptations of the pre-migratory NC or during NC cell migration. Ipsi- and contralateral NC cell migration occurs both in embryos with one and two neural folds, and contralateral migration of NC is the only source for contralateral DRG formation in embryos with only one neural fold. Compensatory size increase is accompanied by an increase in cell division of a DRG precursor pool (PCNA+/SOX2-), rather than by DRG neurons or glial cells. During compensatory size decrease, increased apoptosis and reduced proliferation of DRG cells are observed.
Collapse
Affiliation(s)
- Ana Zarzosa
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Kathrin Grassme
- University of Münster, Angiogenesis Laboratory, Röntgenstr. 20, 48149 Münster, Germany
| | - Elly Tanaka
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Yuka Taniguchi
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Department of Anatomy, Technische Universität, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Silvia Bramke
- Department of Anatomy, Technische Universität, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Hans Epperlein
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Department of Anatomy, Technische Universität, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
98
|
Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura KI, Ogino H, Ueno N, Kawakami K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol 2014; 12:40. [PMID: 24885223 PMCID: PMC4084797 DOI: 10.1186/1741-7007-12-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
99
|
Trolle C, Konig N, Abrahamsson N, Vasylovska S, Kozlova EN. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci 2014; 15:60. [PMID: 24884373 PMCID: PMC4055944 DOI: 10.1186/1471-2202-15-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/24/2014] [Indexed: 01/08/2023] Open
Abstract
Background The boundary cap is a transient group of neural crest-derived cells located at the presumptive dorsal root transitional zone (DRTZ) when sensory axons enter the spinal cord during development. Later, these cells migrate to dorsal root ganglia and differentiate into subtypes of sensory neurons and glia. After birth when the DRTZ is established, sensory axons are no longer able to enter the spinal cord. Here we explored the fate of mouse boundary cap neural crest stem cells (bNCSCs) implanted to the injured DRTZ after dorsal root avulsion for their potential to assist sensory axon regeneration. Results Grafted cells showed extensive survival and differentiation after transplantation to the avulsed DRTZ. Transplanted cells located outside the spinal cord organized elongated tubes of Sox2/GFAP expressing cells closely associated with regenerating sensory axons or appeared as small clusters on the surface of the spinal cord. Other cells, migrating into the host spinal cord as single cells, differentiated to spinal cord neurons with different neurotransmitter characteristics, extensive fiber organization, and in some cases surrounded by glutamatergic terminal-like profiles. Conclusions These findings demonstrate that bNCSCs implanted at the site of dorsal root avulsion injury display remarkable differentiation plasticity inside the spinal cord and in the peripheral compartment where they organize tubes associated with regenerating sensory fibers. These properties offer a basis for exploring the ability of bNCSCs to assist regeneration of sensory axons into the spinal cord and replace lost neurons in the injured spinal cord.
Collapse
Affiliation(s)
| | | | | | | | - Elena N Kozlova
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
100
|
Kaiser A, Kale A, Novozhilova E, Siratirakun P, Aquino JB, Thonabulsombat C, Ernfors P, Olivius P. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture. Brain Res 2014; 1566:12-23. [DOI: 10.1016/j.brainres.2014.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 03/17/2014] [Accepted: 04/07/2014] [Indexed: 01/14/2023]
|