51
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
52
|
Paterson NE, Vocci F, Sevak RJ, Wagreich E, London ED. Dopamine D3 receptors as a therapeutic target for methamphetamine dependence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 40:1-9. [PMID: 24359505 DOI: 10.3109/00952990.2013.858723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Methamphetamine (MA) use disorders are major public health problems nationally and worldwide and treatment remains an unmet need. OBJECTIVES (1) To review preclinical and clinical studies identifying the dopamine D3 receptor as a therapeutic target for substance use disorders (SUDs), including MA dependence, (2) to consider buspirone (Buspar®) as a potential medication based on its dopamine D3 receptor antagonist properties, and (3) to evaluate the safety and initial efficacy of buspirone in a pilot study of MA-dependent individuals. METHODS Literature on the dopamine D3 receptor as a therapeutic target and on the potential of buspirone as a novel therapy for MA dependence was reviewed. The cardiovascular and subjective effects of intravenous MA challenge were assessed in five non-treatment seeking individuals. Participants met DSM-IV criteria for MA dependence and were treated subacutely (9 days) with buspirone (60 mg daily). RESULTS The literature identified the dopamine D3 receptor as a therapeutic target for MA dependence, a safe and approved medication, and a valuable opportunity to re-purpose buspirone for treating MA dependence and perhaps other SUDs. Pilot data (n = 5) indicated that buspirone is safe in MA-using individuals and comparison against historical placebo data from this laboratory suggested that at least some aspects of the subjective properties of MA may be diminished during buspirone treatment. CONCLUSION Future studies should include a small-scale, placebo-controlled Phase IIa trial of buspirone in MA dependence.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Psychiatry and Biobehavioral Sciences, University of California , Los Angeles, CA , USA
| | | | | | | | | |
Collapse
|
53
|
Dardou D, Chassain C, Durif F. Chronic pramipexole treatment increases tolerance for sucrose in normal and ventral tegmental lesioned rats. Front Neurosci 2015; 8:437. [PMID: 25610366 PMCID: PMC4285017 DOI: 10.3389/fnins.2014.00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
The loss of dopamine neurons observed in Parkinson's disease (PD) elicits severe motor control deficits which are reduced by the use of dopamine agonists. However, recent works have indicated that D3-preferential agonists such as pramipexole can induce impulse control disorders (ICDs) such as food craving or compulsive eating. In the present study, we performed an intermittent daily feeding experiment to assess the effect of chronic treatment by pramipexole and VTA bilateral lesion on tolerance for sucrose solution. The impact of such chronic treatment on spontaneous locomotion and spatial memory was also examined. Changes in sucrose tolerance could indicate the potential development of a change in food compulsion or addiction related to the action of pramipexole. Neither the bilateral lesion of the VTA nor chronic treatment with pramipexole altered the spontaneous locomotion or spatial memory in rats. Rats without pramipexole treatment quickly developed a stable intake of sucrose solution in the 12 h access phase. On the contrary, when under daily pramipexole treatment, rats developed a stronger and ongoing escalation of their sucrose solution intakes. In addition, we noted that the change in sucrose consumption was sustained by an increase of the expression of the Dopamine D3 receptor in the core and the shell regions of the nucleus accumbens. The present results may suggest that long-term stimulation of the Dopamine D3 receptor in animals induces a strong increase in sucrose consumption, indicating an effect of this receptor on certain pathological aspects of food eating.
Collapse
Affiliation(s)
- David Dardou
- EA7280 NPSY-Sydo, Université d'Auvergne Clermont-Ferrand, France
| | | | - Franck Durif
- EA7280 NPSY-Sydo, Université d'Auvergne Clermont-Ferrand, France ; Service de Neurologie A, Hopital Gabriel Montpied Clermont-Ferrand, France
| |
Collapse
|
54
|
Keck TM, Burzynski C, Shi L, Newman AH. Beyond small-molecule SAR: using the dopamine D3 receptor crystal structure to guide drug design. ADVANCES IN PHARMACOLOGY 2014; 69:267-300. [PMID: 24484980 DOI: 10.1016/b978-0-12-420118-7.00007-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small-molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This chapter will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small-molecule SAR to improve the selectivity and directed efficacy profiles are examined.
Collapse
Affiliation(s)
- Thomas M Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Caitlin Burzynski
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA.
| |
Collapse
|
55
|
Abstract
Dopamine D3 receptor (D3R) antagonists may be effective medications for multiple substance use disorders (SUDs). However, no selective D3R antagonists are currently available for clinical testing. Buspirone, originally characterized as a 5-HT1A partial agonist and used as an anxiolytic, also binds to D3R and D4R with high affinity, with lower affinity to D2R, and interferes with cocaine reward. Here we used PET with [11C]PHNO (D3R-preferring radioligand), [11C]raclopride (D2R/D3R radioligand) and [11C]NNC-112 (D1R radioligand) to measure occupancy of oral and parenteral buspirone in the primate brain. Intramuscular buspirone (0.19 and 0.5 mg/kg) blocked both [11C]PHNO and [11C]raclopride binding to striatum, exhibiting high occupancy (50-85%) at 15 min and rapid wash-out over 2-6 h. In contrast, oral buspirone (3 mg/kg) significantly blocked [11C]PHNO binding in D3-rich regions (globus pallidum and midbrain) at 3 h, but had minimal effects on [11C]raclopride binding (28-37% at 1 h and 10% at 3 h). Buspirone did not block [11C]NNC-112. Our findings provide evidence that i.m. buspirone blocks D3R and D2R, whereas oral buspirone is more selective towards D3R blockade in vivo, consistent with extensive first pass metabolism and supporting the hypothesis that its metabolites (5- and 6'-hydroxybuspirone) merit evaluation for treating SUDs. They also indicate that for oral buspirone to achieve greater than 80% sustained D3R occupancy, as might be needed to treat addiction, higher doses (at least three-fold) than those used to treat anxiety (maximal 60 mg) will be required. Nonetheless, based on previous clinical studies, these doses would be safe and well tolerated.
Collapse
|
56
|
Le Foll B, Wilson AA, Graff A, Boileau I, Di Ciano P. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol 2014; 5:161. [PMID: 25071579 PMCID: PMC4090596 DOI: 10.3389/fphar.2014.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/19/2014] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in developing highly selective dopamine (DA) D3 receptor ligands for a variety of mental health disorders. DA D3 receptors have been implicated in Parkinson's disease, schizophrenia, anxiety, depression, and substance use disorders. The most concrete evidence suggests a role for the D3 receptor in drug-seeking behaviors. D3 receptors are a subtype of D2 receptors, and traditionally the functional role of these two receptors has been difficult to differentiate. Over the past 10-15 years a number of compounds selective for D3 over D2 receptors have been developed. However, translating these findings into clinical research has been difficult as many of these compounds cannot be used in humans. Therefore, the functional data involving the D3 receptor in drug addiction mostly comes from pre-clinical studies. Recently, with the advent of [(11)C]-(+)-PHNO, it has become possible to image D3 receptors in the human brain with increased selectivity and sensitivity. This is a significant innovation over traditional methods such as [(11)C]-raclopride that cannot differentiate between D2 and D3 receptors. The use of [(11)C]-(+)-PHNO will allow for further delineation of the role of D3 receptors. Here, we review recent evidence that the role of the D3 receptor has functional importance and is distinct from the role of the D2 receptor. We then introduce the utility of analyzing [(11)C]-(+)-PHNO binding by region of interest. This novel methodology can be used in pre-clinical and clinical approaches for the measurement of occupancy of both D3 and D2 receptors. Evidence that [(11)C]-(+)-PHNO can provide insights into the function of D3 receptors in addiction is also presented.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health Toronto, ON, Canada ; Department of Family and Community Medicine, University of Toronto Toronto, ON, Canada ; Department of Pharmacology, University of Toronto Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada
| | - Alan A Wilson
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Ariel Graff
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Isabelle Boileau
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Addiction Imaging Research Group, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| |
Collapse
|
57
|
Payer D, Balasubramaniam G, Boileau I. What is the role of the D3 receptor in addiction? A mini review of PET studies with [(11)C]-(+)-PHNO. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:4-8. [PMID: 23999545 DOI: 10.1016/j.pnpbp.2013.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The chronic use of drugs, including psychostimulants such as cocaine and amphetamine, has been associated with low D2/3 dopamine receptor availability, which in turn has been linked to poor clinical outcome. In contrast, recent studies focused on the D3 receptor (a member of the D2-like receptor family) suggest that chronic exposure to stimulant drugs can up-regulate this receptor subtype, which, in preclinical models, is linked to dopamine system sensitization - a process hypothesized to contribute to relapse in addiction. In this mini review we present recent human data suggesting that the D3 receptor may contribute to core features of addiction, and discuss the usefulness of the PET imaging probe [(11)C]-(+)-PHNO in investigating this question.
Collapse
Affiliation(s)
- Doris Payer
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Programs, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Programs, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
58
|
Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J, Gaiser E, Lee DE, Hannestad J, Lim K, Zheng MQ, Lin SF, Labaree D, Potenza MN, Carson RE, Malison RT, Ding YS. Dopamine D₃ receptor alterations in cocaine-dependent humans imaged with [¹¹C](+)PHNO. Drug Alcohol Depend 2014; 139:100-5. [PMID: 24717909 PMCID: PMC4071607 DOI: 10.1016/j.drugalcdep.2014.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/21/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Evidence from animal models and postmortem human studies points to the importance of the dopamine D₃ receptor (D₃R) in cocaine dependence (CD). The objective of this pilot study was to use the D₃R-preferring radioligand [(11)C](+)PHNO to compare receptor availability in groups with and without CD. METHODS Ten medically healthy, non-treatment seeking CD subjects (mean age 41 ± 8) in early abstinence were compared to 10 healthy control (HC) subjects (mean age 41 ± 6) with no history of cocaine or illicit substance abuse. Binding potential (BPND), a measure of available receptors, was determined with parametric images, computed using the simplified reference tissue model (SRTM2) with the cerebellum as the reference region. RESULTS BPND in CD subjects was higher in D₃R-rich areas including the substantia nigra ((SN) 29%; P=0.03), hypothalamus (28%; P=0.02) and amygdala (35%; P=0.03). No between-group differences were observed in the striatum or pallidum. BPND values in the SN (r=+0.83; P=0.008) and pallidum (r=+0.67; P=0.03) correlated with years of cocaine use. CONCLUSIONS Between-group differences suggest an important role for dopaminergic transmission in the SN, hypothalamus and amygdala in CD. Such findings also highlight the potential relevance of D₃R as a medication development target in CD.
Collapse
Affiliation(s)
- David Matuskey
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.
| | | | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Wendol Williams
- Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jane Wanyiri
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Edward Gaiser
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Dianne E. Lee
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jonas Hannestad
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Minq-Qiang Zheng
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Shu-fei Lin
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - David Labaree
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Richard E. Carson
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | | | - Yu-Shin Ding
- Department of Radiology and Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
59
|
In vivo imaging of cerebral dopamine D3 receptors in alcoholism. Neuropsychopharmacology 2014; 39:1703-12. [PMID: 24469594 PMCID: PMC4023144 DOI: 10.1038/npp.2014.18] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 01/12/2023]
Abstract
Animal studies support the role of the dopamine D3 receptor (DRD3) in alcohol reinforcement or liking. Sustained voluntary alcohol drinking in rats has been associated with an upregulation of striatal DRD3 gene expression and selective blockade of DRD3 reduces ethanol preference, consumption, and cue-induced reinstatement. In vivo measurement of DRD3 in the living human brain has not been possible until recently owing to a lack of suitable tools. In this study, DRD3 status was assessed for the first time in human alcohol addiction. Brain DRD3 availability was compared between 16 male abstinent alcohol-dependent patients and 13 healthy non-dependent age-matched males using the DRD3-preferring agonist positron emission tomography (PET) radioligand [(11)C]PHNO with and without blockade with a selective DRD3 antagonist (GSK598809 60 mg p.o.). In striatal regions of interest, where the [(11)C]PHNO PET signal represents primarily DRD2 binding, no differences were seen in [(11)C]PHNO binding between the groups at baseline. However, baseline [(11)C]PHNO binding was higher in alcohol-dependent patients in hypothalamus (VT: 16.5 ± 4 vs 13.7 ± 2.9, p = 0.040), a region in which the [(11)C]PHNO signal almost entirely reflects DRD3 availability. The reductions in regional receptor binding (VT) following a single oral dose of GSK598809 (60 mg) were consistent with those observed in previous studies across all regions. There were no differences in regional changes in VT following DRD3 blockade between the two groups, indicating that the regional fractions of DRD3 are similar in the two groups, and the increased [(11)C]PHNO binding in the hypothalamus in alcohol-dependent patients is explained by elevated DRD3 in this group. Although we found no difference between alcohol-dependent patients and controls in striatal DRD3 levels, increased DRD3 binding in the hypothalamus of alcohol-dependent patients was observed. This may be relevant to the development of future therapeutic strategies to treat alcohol abuse.
Collapse
|
60
|
Martelle SE, Nader SH, Czoty PW, John WS, Duke AN, Garg PK, Garg S, Newman AH, Nader MA. Further characterization of quinpirole-elicited yawning as a model of dopamine D3 receptor activation in male and female monkeys. J Pharmacol Exp Ther 2014; 350:205-11. [PMID: 24876234 DOI: 10.1124/jpet.114.214833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dopamine (DA) D3 receptor (D3R) has been associated with impulsivity, pathologic gambling, and drug addiction, making it a potential target for pharmacotherapy development. Positron emission tomography studies using the D3R-preferring radioligand [(11)C]PHNO ([(11)C](+)-propyl-hexahydro-naphtho-oxazin) have shown higher binding potentials in drug abusers compared with control subjects. Preclinical studies have examined D3R receptor activation using the DA agonist quinpirole and the unconditioned behavior of yawning. However, the relationship between quinpirole-elicited yawning and D3R receptor availability has not been determined. In Experiment 1, eight drug-naive male rhesus monkeys were scanned with [(11)C]PHNO, and the ability of quinpirole (0.01-0.3 mg/kg i.m.) to elicit yawning was examined. Significant positive (globus pallidus) and negative (caudate nucleus, putamen, ventral pallidum, and hippocampus) relationships between D3R receptor availability and quinpirole-induced yawns were noted. Experiment 2 replicated earlier findings that a history of cocaine self-administration (n = 11) did not affect quinpirole-induced yawning and extended this to examine monkeys (n = 3) with a history of methamphetamine (MA) self-administration and found that monkeys with experience self-administering MA showed greater potency and significantly higher quinpirole-elicited yawning compared with controls. Finally, quinpirole-elicited yawning was studied in drug-naive female monkeys (n = 6) and compared with drug-naive male monkeys (n = 8). Sex differences were noted, with quinpirole being more potent and eliciting significantly more yawns in males compared with females. Taken together these findings support the use of quinpirole-elicited yawning as a behavioral tool for examining D3R activation in monkeys and that both drug history and sex may influence individual sensitivity to the behavioral effects of D3R compounds.
Collapse
Affiliation(s)
- Susan E Martelle
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Susan H Nader
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Paul W Czoty
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - William S John
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Angela N Duke
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Pradeep K Garg
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Sudha Garg
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Amy H Newman
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Michael A Nader
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
61
|
De Simone A, Ruda GF, Albani C, Tarozzo G, Bandiera T, Piomelli D, Cavalli A, Bottegoni G. Applying a multitarget rational drug design strategy: the first set of modulators with potent and balanced activity toward dopamine D3 receptor and fatty acid amide hydrolase. Chem Commun (Camb) 2014; 50:4904-7. [PMID: 24691497 PMCID: PMC4038168 DOI: 10.1039/c4cc00967c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Combining computer-assisted drug design and synthetic efforts, we generated compounds with potent and balanced activities toward both D3 dopamine receptor and fatty acid amide hydrolase (FAAH) enzyme. By concurrently modulating these targets, our compounds hold great potential toward exerting a disease-modifying effect on nicotine addiction and other forms of compulsive behavior.
Collapse
Affiliation(s)
- Alessio De Simone
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego n.30, 16163 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol 2014; 24:645-92. [PMID: 24820238 DOI: 10.1016/j.euroneuro.2014.03.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a complex and multifactorial disorder generally diagnosed in young adults at the time of the first psychotic episode of delusions and hallucinations. These positive symptoms can be controlled in most patients by currently-available antipsychotics. Conversely, they are poorly effective against concomitant neurocognitive dysfunction, deficits in social cognition and negative symptoms (NS), which strongly contribute to poor functional outcome. The precise notion of NS has evolved over the past century, with recent studies - underpinned by novel rating methods - suggesting two major sub-domains: "decreased emotional expression", incorporating blunted affect and poverty of speech, and "avolition", which embraces amotivation, asociality and "anhedonia" (inability to anticipate pleasure). Recent studies implicate a dysfunction of frontocortico-temporal networks in the aetiology of NS, together with a disruption of cortico-striatal circuits, though other structures are also involved, like the insular and parietal cortices, amygdala and thalamus. At the cellular level, a disruption of GABAergic-glutamatergic balance, dopaminergic signalling and, possibly, oxytocinergic and cannibinoidergic transmission may be involved. Several agents are currently under clinical investigation for the potentially improved control of NS, including oxytocin itself, N-Methyl-d-Aspartate receptor modulators and minocycline. Further, magnetic-electrical "stimulation" strategies to recruit cortical circuits and "cognitive-behavioural-psychosocial" therapies likewise hold promise. To acquire novel insights into the causes and treatment of NS, experimental study is crucial, and opportunities are emerging for improved genetic, pharmacological and developmental modelling, together with more refined readouts related to deficits in reward, sociality and "expression". The present article comprises an integrative overview of the above issues as a platform for this Special Issue of European Neuropsychopharmacology in which five clinical and five preclinical articles treat individual themes in greater detail. This Volume provides, then, a framework for progress in the understanding - and ultimately control - of the debilitating NS of schizophrenia.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| | - Kevin Fone
- School of Biomedical Sciences, Medical School, Queen׳s Medical Centre, Nottingham University, Nottingham NG72UH, UK
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - William P Horan
- VA Greater Los Angeles Healthcare System, University of California, Los Angeles, MIRECC 210A, Bldg. 210, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| |
Collapse
|
63
|
Elrashidi MY, Ebbert JO. Emerging drugs for the treatment of tobacco dependence: 2014 update. Expert Opin Emerg Drugs 2014; 19:243-60. [PMID: 24654737 DOI: 10.1517/14728214.2014.899580] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Tobacco dependence remains a global epidemic and the largest preventable cause of morbidity and mortality around the world. Smoking cessation has benefits at all ages but remains challenging for several reasons, among which are the complexities of nicotine addiction and limitations of available pharmacotherapies. AREAS COVERED This review summarizes current and emerging pharmacotherapies for the treatment of tobacco dependence, including first- and second-line recommended agents. Medications with alternative primary indications that have been investigated as potential treatments for tobacco dependence are also discussed. Articles reviewed were obtained through searches of PubMed, Ovid MEDLINE, ClinicalTrials.gov and the Pharmaprojects database. EXPERT OPINION Current evidence suggests that the two most effective pharmacotherapies to treat tobacco dependence are varenicline and combination nicotine replacement therapy. Alternative agents investigated demonstrate mixed rates of success in achieving long-term abstinence from smoking. No single pharmacotherapy will serve as a universally successful treatment given the complex underpinnings of tobacco dependence and individuality of smokers. The ultimate goal of tobacco research with respect to pharmacotherapeutic development continues to be providing clinicians with an armamentarium of drugs to choose from allowing for tailoring of treatment for smokers.
Collapse
|
64
|
Pharmacologically, are smokers the same as non-smokers? Curr Opin Pharmacol 2014; 14:42-9. [DOI: 10.1016/j.coph.2013.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/03/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
|
65
|
Payer DE, Behzadi A, Kish SJ, Houle S, Wilson AA, Rusjan PM, Tong J, Selby P, George TP, McCluskey T, Boileau I. Heightened D3 dopamine receptor levels in cocaine dependence and contributions to the addiction behavioral phenotype: a positron emission tomography study with [11C]-+-PHNO. Neuropsychopharmacology 2014; 39:311-8. [PMID: 23921256 PMCID: PMC3870773 DOI: 10.1038/npp.2013.192] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/15/2013] [Accepted: 07/30/2013] [Indexed: 12/13/2022]
Abstract
The dopamine system is a primary treatment target for cocaine dependence (CD), but research on dopaminergic abnormalities (eg, D2 receptor system deficiencies) has so far failed to translate into effective treatment strategies. The D3 receptor system has recently attracted considerable clinical interest, and D3 antagonism is now under investigation as a novel avenue for addiction treatment. The objective here was to evaluate the status and behavioral relevance of the D3 receptor system in CD, using the positron emission tomography (PET) radiotracer [(11)C]-(+)-PHNO. Fifteen CD subjects (many actively using, but all abstinent 7-240 days on scan day) and fifteen matched healthy control (HC) subjects completed two PET scans: one with [(11)C]-(+)-PHNO to assess D3 receptor binding (BPND; calculated regionally using the simplified reference tissue model), and for comparison, a second scan with [(11)C]raclopride to assess D2/3 binding. CD subjects also completed a behavioral battery to characterize the addiction behavioral phenotype. CD subjects showed higher [(11)C]-(+)-PHNO BPND than HC in the substantia nigra, which correlated with behavioral impulsiveness and risky decision making. In contrast, [(11)C]raclopride BPND was lower across the striatum in CD, consistent with previous literature in 2 week abstinence. The data suggest that in contrast to a D2 deficiency, CD individuals may have heightened D3 receptor levels, which could contribute to addiction-relevant traits. D3 upregulation is emerging as a biomarker in preclinical models of addiction, and human PET studies of this receptor system can help guide novel pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Doris E Payer
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada,Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON, M5T 1R8, Canada, Tel: +416 535 8501 x36280, Fax: +416 979 6871, E-mail:
| | - Arian Behzadi
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada,Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephen J Kish
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada,Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Human Brain Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology, University of Toronto, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Human Brain Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology, University of Toronto, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Toronto, ON, Canada,Division of Addictions, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Schizophrenia, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Toronto, ON, Canada,Division of Addictions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo M Rusjan
- Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Junchao Tong
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada,Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Human Brain Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Toronto, ON, Canada,Division of Addictions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Selby
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada,Division of Schizophrenia, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tony P George
- Division of Addictions, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Schizophrenia, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tina McCluskey
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada,Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Human Brain Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada,Research Imaging Centre and Vivian M Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Human Brain Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Toronto, ON, Canada,Division of Addictions, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Schizophrenia, Centre for Addiction and Mental Health, Toronto, ON, Canada,Addiction Imaging Research Group, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada, Tel: +416 535 8501 x34918, Fax: +416 979 6871, E-mail:
| |
Collapse
|
66
|
Le Foll B, Collo G, Rabiner EA, Boileau I, Merlo Pich E, Sokoloff P. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. PROGRESS IN BRAIN RESEARCH 2014; 211:255-75. [PMID: 24968784 DOI: 10.1016/b978-0-444-63425-2.00011-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Ginetta Collo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenii A Rabiner
- Imanova, Centre for Imaging Sciences, London, UK; Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | |
Collapse
|
67
|
Leyton M, Vezina P. Striatal ups and downs: their roles in vulnerability to addictions in humans. Neurosci Biobehav Rev 2013; 37:1999-2014. [PMID: 23333263 PMCID: PMC3743927 DOI: 10.1016/j.neubiorev.2013.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/05/2023]
Abstract
Susceptibility to addictive behaviors has been related to both increases and decreases in striatal function. Both profiles have been reported in humans as well as in animal models. Yet, the mechanisms underlying these opposing effects and the manner in which they relate to the behavioral development and expression of addiction remain unclear. In the present review of human studies, we describe a number of factors that could influence whether striatal hyper- or hypo-function is observed and propose a model that integrates the influence of these opposite responses on the expression of addiction related behaviors. Central to this model is the role played by the presence versus absence of addiction related cues and their ability to regulate responding to abused drugs and other rewards. Striatal function and incentive motivational states are increased in the presence of these cues and decreased in their absence. Alternations between these states might account for the progressive narrowing of interests as addictions develop and point to relevant processes to target in treatment.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec, H3A 1A1 Canada.
| | | |
Collapse
|
68
|
Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, Mulsant B, Pollock B, Graff-Guerrero A. The potential role of dopamine D₃ receptor neurotransmission in cognition. Eur Neuropsychopharmacol 2013; 23:799-813. [PMID: 23791072 PMCID: PMC3748034 DOI: 10.1016/j.euroneuro.2013.05.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 01/08/2023]
Abstract
Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.
Collapse
Affiliation(s)
- Shinichiro Nakajima
- Multimodal Imaging Group-Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada M5T 1R8.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Dopamine D3 receptor antagonism—still a therapeutic option for the treatment of schizophrenia. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:155-66. [DOI: 10.1007/s00210-012-0806-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
|
70
|
Heidbreder C. Rationale in support of the use of selective dopamine D₃ receptor antagonists for the pharmacotherapeutic management of substance use disorders. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:167-76. [PMID: 23104235 DOI: 10.1007/s00210-012-0803-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Growing evidence indicates that dopamine (DA) D(3) receptors are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders. First, DA D(3) receptors are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse has been shown to produce neuroadaptations in the DA D(3) system. Third, the synthesis and characterization of highly potent and selective DA D(3) receptor antagonists has permitted to further define the role of the DA D(3) receptor in drug addiction. Provided that the available preclinical and preliminary clinical evidence can be translated into clinical proof of concept in human, selective DA D(3) receptor antagonists show promise for the treatment of substance use disorders as reflected by their potential to (1) regulate the motivation to self-administered drugs under schedules of reinforcement that require an increase in work demand and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in the reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior, or stress.
Collapse
Affiliation(s)
- Christian Heidbreder
- Reckitt Benckiser Pharmaceuticals-Global Research and Development, 10710 Midlothian Turnpike Suite 430, Richmond, VA 23235, USA.
| |
Collapse
|