51
|
Moshawih S, Cheema MS, Ibraheem ZO, Tailan ND, Hakim MN. Cosmos caudatus extract/fractions reduce smooth muscle cells migration and invasion in vitro : A potential benefit of suppressing atherosclerosis. Porto Biomed J 2017; 2:293-300. [PMID: 32258785 PMCID: PMC6806747 DOI: 10.1016/j.pbj.2017.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/25/2017] [Indexed: 11/26/2022] Open
Abstract
HIGHLIGHTS Cosmos caudatus Ethanolic extract fractionation by n-butanol produced a phenolics-saponin rich fraction.Cosmos caudatus butanol fraction was the most potent in all antioxidant and MTT assays.High concentrations of all fractions increased cells migration and invasion in vitro.Butanol fraction intermediate concentration maximally inhibited VSMC migration and invasion.Mild concentrations of crude and butanol fractions showed the best invasion inhibition index. BACKGROUND Cosmos caudatus Kunth is a medicinal herb used traditionally in Latin America and South East Asia to retard aging, rigidify bones and for several cardiovascular uses. OBJECTIVE Is to assess C. caudatus extract/fractions' antioxidant and vascular smooth muscle cells (VSMC) migration and invasion inhibition capacity in vitro. METHODS Cosmos caudatus shoots were extracted by cold maceration in 50% ethanol to produce crude (CEE), and then the extract was fractionated to butanol (Bu.F), and aqueous fractions (Aq.f). Phenolics and saponins were quantified in extract and fractions by colorimetric methods and their antioxidant capacity was assayed in four different tests. Cytotoxic effect and safety level concentrations were determined for the fractions by using MTT assay. Migration and invasion inhibitory potential were measured in vitro at three different concentrations equivalent to (IC10, IC25, and IC50). Finally, invasion inhibitory index was calculated to obtain the best fraction(s) that show(s) the highest ratio of cell invasion inhibition to the total cell migration inhibition. RESULTS Butanol fraction yield was the lowest; nevertheless, its phytochemical contents, antioxidant activities as well as its potency were the highest. Unlike other fractions, Bu.F was strongly correlated with all antioxidant assays experimented. In addition, it has the highest inhibitory effect at IC25 against VSMCs migration and invasion that accounts for 53.93% and 59.94% respectively. Unexpectedly, Bu.F and CEE at IC10 displayed the highest invasion inhibitory index (approx. 68%). CONCLUSION Butanol fraction of C. caudatus offers a potentiality for the discovery of new leads for preventing atherosclerosis.
Collapse
Affiliation(s)
- Said Moshawih
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Manraj S Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zaid O Ibraheem
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nirmala Devi Tailan
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
52
|
Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis 2017; 8:e3151. [PMID: 29072687 PMCID: PMC5680924 DOI: 10.1038/cddis.2017.559] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 02/05/2023]
Abstract
Guanylate-binding protein 2 (GBP2) is a member of the large GTPase superfamily that is strongly induced by interferon-γ (IFN-γ). Although the biochemical characteristics of GBP2 have been reported in detail, its biological function has not been thoroughly elucidated to date. To the best of our knowledge, this study presents the first demonstration that GBP2 inhibits mitochondrial fission and cell metastasis in breast cancer cells both in vitro and in vivo. Our previous work demonstrated that dynamin-related protein 1 (Drp1)-dependent mitochondrial fission has a key role in breast cancer cell invasion. In this study, we demonstrate that GBP2 binds directly to Drp1. Elimination of Drp1 by shRNA or Mdivi-1 (a Drp1-specific inhibitor) suppressed GBP2's regulatory function. Furthermore, GBP2 blocks Drp1 translocation from the cytosol to mitochondria, thereby attenuating Drp1-dependent mitochondrial fission and breast cancer cell invasion. In summary, our data provide new insights into the function and molecular mechanisms underlying GBP2's regulation of breast cancer cell invasion.
Collapse
|
53
|
Morris DC, Popp JL, Tang LK, Gibbs HC, Schmitt E, Chaki SP, Bywaters BC, Yeh AT, Porter WW, Burghardt RC, Barhoumi R, Rivera GM. Nck deficiency is associated with delayed breast carcinoma progression and reduced metastasis. Mol Biol Cell 2017; 28:3500-3516. [PMID: 28954862 PMCID: PMC5683761 DOI: 10.1091/mbc.e17-02-0106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Nck promotes breast carcinoma progression and metastasis by directing the polarized interaction of carcinoma cells with collagen fibrils, decreasing actin turnover, and enhancing the localization and activity of MMP14 at the cell surface through modulation of the spatiotemporal activation of Cdc42 and RhoA. Although it is known that noncatalytic region of tyrosine kinase (Nck) regulates cell adhesion and migration by bridging tyrosine phosphorylation with cytoskeletal remodeling, the role of Nck in tumorigenesis and metastasis has remained undetermined. Here we report that Nck is required for the growth and vascularization of primary tumors and lung metastases in a breast cancer xenograft model as well as extravasation following injection of carcinoma cells into the tail vein. We provide evidence that Nck directs the polarization of cell–matrix interactions for efficient migration in three-dimensional microenvironments. We show that Nck advances breast carcinoma cell invasion by regulating actin dynamics at invadopodia and enhancing focalized extracellular matrix proteolysis by directing the delivery and accumulation of MMP14 at the cell surface. We find that Nck-dependent cytoskeletal changes are mechanistically linked to enhanced RhoA but restricted spatiotemporal activation of Cdc42. Using a combination of protein silencing and forced expression of wild-type/constitutively active variants, we provide evidence that Nck is an upstream regulator of RhoA-dependent, MMP14-mediated breast carcinoma cell invasion. By identifying Nck as an important driver of breast carcinoma progression and metastasis, these results lay the groundwork for future studies assessing the therapeutic potential of targeting Nck in aggressive cancers.
Collapse
Affiliation(s)
- David C Morris
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Julia L Popp
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Leung K Tang
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Emily Schmitt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Briana C Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| |
Collapse
|
54
|
Albini A. Extracellular Matrix Invasion in Metastases and Angiogenesis: Commentary on the Matrigel "Chemoinvasion Assay". Cancer Res 2017; 76:4595-7. [PMID: 27528578 DOI: 10.1158/0008-5472.can-16-1971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
Invasive and metastatic cells must cross the basement membrane's extracellular matrix to disseminate to distant sites. Although in the eighties the concept was well established, no easy in vitro functional assay was available. Working in Hynda Kleinman's and George Martin's laboratory at NIH (Bethesda, MD), where the reconstituted basement membrane Matrigel was discovered, I had the intuition that Matrigel coating of migration filters could represent a valid tool to mimic in vitro biological matrix barriers. The "chemoinvasion assay" using Matrigel in Boyden blind-well chambers was developed in 1985-1986 and published in Cancer Research in 1987. It was a rapid and easy tool for studying invasion, a crucial step in cancer metastasis. Since its conception, the assay has been employed for studies on the metastatic process, angiogenesis, and for the screening of drugs that are potentially able to decrease cell invasion. It was adapted to be easily employed as a routine assay and commercialized. In that historical article, we also described the use of thick layers of Matrigel for the study of morphogenesis of invasive cells, a simple and visual assay, adaptable to reproduce collective cell migration in vitro To date, in its diverse optimized variants, the chemoinvasion assay is still widely used, contributing to novel data production. In the era of precision medicine and next-generation sequencing, the cheap, fast, and reproducible chemoinvasion assay may have further developments, including possible applications in the investigations on cancer stem cells, immunity and immune modulators, applications with siRNA silencing, selection of aggressive cell populations, and phenotypes and genetic evaluations. Cancer Res; 76(16); 4595-7. ©2016 AACR.See related article by Albini A et al., Cancer Res 1987;47:3239-45Visit the Cancer Research 75(th) Anniversary timeline.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
55
|
Nuti E, Bassani B, Camodeca C, Rosalia L, Cantelmo A, Gallo C, Baci D, Bruno A, Orlandini E, Nencetti S, Noonan DM, Albini A, Rossello A. Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues. Eur J Med Chem 2017; 138:890-899. [PMID: 28750311 DOI: 10.1016/j.ejmech.2017.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/29/2022]
Abstract
Angiogenesis induction is a hallmark of cancer. Antiangiogenic properties of Xanthohumol (XN), a naturally occurring prenylated chalcone from hops, have been widely reported. Here we describe the synthesis and study the antiangiogenic activity in vitro of a series of XN derivatives, where different substituents on the B-ring of the chalcone scaffold were inserted. The new XN derivatives inhibited human umbilical-vein endothelial cell (HUVEC) proliferation, adhesion, migration, invasion and their ability to form capillary-like structures in vitro at 10 μM concentration. The preliminary results indicate that the phenolic OH group in R, present in natural XN, is not necessary for having antiangiogenic activity. In fact, the most effective compound from this series, 13, was characterized by a para-methoxy group in R and a fluorine atom in R2 on B-ring. This study paves the way for future development of synthetic analogues of XN to be used as cancer angiopreventive and chemopreventive agents.
Collapse
Affiliation(s)
- Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Barbara Bassani
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Caterina Camodeca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lea Rosalia
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - AnnaRita Cantelmo
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Cristina Gallo
- Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42121 Reggio Emilia, Italy
| | - Denisa Baci
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Elisabetta Orlandini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Dipartimento di Scienze Della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Nencetti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; Department of Biotechnologies and Life Sciencies, University of Insubria, Viale O. Rossi 9, 21100 Varese, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy.
| | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
56
|
Zhang L, Liu X, Liu J, Zhou Z, Song Y, Cao B, An X. miR-182 aids in receptive endometrium development in dairy goats by down-regulating PTN expression. PLoS One 2017; 12:e0179783. [PMID: 28678802 PMCID: PMC5497977 DOI: 10.1371/journal.pone.0179783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/04/2017] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has shown that miRNAs play important roles in endometrium development during the menstrual cycle in humans and many other animals. Our previous data indicated that miR-182 levels increase 15.55-fold and pleiotrophin (PTN) levels decrease 20.97-fold in the receptive endometrium (RE, D15) compared with the pre-receptive endometrium (PE, D5) in dairy goats. The present study shows that miR-182 is widely expressed in different tissues of dairy goats and that its expression levels are regulated by E2 and P4 in endometrial epithelium cells (EECs). We confirmed that PTN is a target of miR-182 and that miR-182 regulates the protein levels of AKT, Bcl-2, FAS, MAPK, Caspase-3 and SP1 in EECs. Furthermore, miR-182 up-regulates or maintains the expression levels of osteopontin (OPN), cyclooxygenase-2 (COX-2) and prolactin receptor (PRLR) in EECs, suggesting that miR-182 is an important regulatory factor in the construction of endometrial receptivity in dairy goats. In conclusion, miR-182 participates in the development of endometrial receptivity by down-regulating PTN and affecting the expression of select apoptosis-related genes and increasing or maintaining the expression levels of OPN, COX-2 and PRLR in the EECs of dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Junze Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
57
|
Vigneshwaran V, Thirusangu P, Vijay Avin BR, Krishna V, Pramod SN, Prabhakar BT. Immunomodulatory glc/man-directed Dolichos lablab lectin (DLL) evokes anti-tumour response in vivo by counteracting angiogenic gene expressions. Clin Exp Immunol 2017; 189:21-35. [PMID: 28268243 DOI: 10.1111/cei.12959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
Neovascularization and jeopardized immunity has been critically emphasized for the establishment of malignant progression. Lectins are the diverse class of carbohydrate interacting proteins, having great potential as immunopotentiating and anti-cancer agents. The present investigation sought to demonstrate the anti-proliferative activity of Dolichos lablab lectin (DLL) encompassing immunomodulatory attributes. DLL specific to glucose and mannose carbohydrate moieties has been purified to homogeneity from the common dietary legume D. lablab. Results elucidated that DLL agglutinated blood cells non-specifically and displayed striking mitogenicity to human and murine lymphocytes in vitro with interleukin (IL)-2 production. The DLL-conditioned medium exerted cytotoxicity towards malignant cells and neoangiogenesis in vitro. Similarly, in-vivo anti-tumour investigation of DLL elucidated the regressed proliferation of ascitic and solid tumour cells, which was paralleled with blockade of tumour neovasculature. DLL-treated mice showed an up-regulated immunoregulatory cytokine IL-2 in contrast to severely declined levels in control mice. Mechanistic validation revealed that DLL has abrogated the microvessel formation by weakening the proangiogenic signals, specifically nuclear factor kappa B (NF-κB), hypoxia inducible factor 1α (HIF-1 α), matrix metalloproteinase (MMP)-2 and 9 and vascular endothelial growth factor (VEGF) in malignant cells leading to tumour regression. In summary, it is evident that the dietary lectin DLL potentially dampens the malignant establishment by mitigating neoangiogenesis and immune shutdown. For the first time, to our knowledge, this study illustrates the critical role of DLL as an immunostimulatory and anti-angiogenic molecule in cancer therapeutics.
Collapse
Affiliation(s)
- V Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - P Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - V Krishna
- Postgraduate Department of Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, India
| | - S N Pramod
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| |
Collapse
|
58
|
On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 2017; 12:865-880. [PMID: 28358393 DOI: 10.1038/nprot.2017.018] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Distant metastasis, which results in >90% of cancer-related deaths, is enabled by hematogenous dissemination of tumor cells via the circulation. This requires the completion of a sequence of complex steps including transit, initial arrest, extravasation, survival and proliferation. Increased understanding of the cellular and molecular players enabling each of these steps is key to uncovering new opportunities for therapeutic intervention during early metastatic dissemination. As a protocol extension, this article describes an adaptation to our existing protocol describing a microfluidic platform that offers additional applications. This protocol describes an in vitro model of the human microcirculation with the potential to recapitulate discrete steps of early metastatic seeding, including arrest, transendothelial migration and early micrometastases formation. The microdevice features self-organized human microvascular networks formed over 4-5 d, after which the tumor can be perfused and extravasation events are easily tracked over 72 h via standard confocal microscopy. Contrary to most in vivo and in vitro extravasation assays, robust and rapid scoring of extravascular cells, combined with high-resolution imaging, can be easily achieved because of the confinement of the vascular network to one plane close to the surface of the device. This renders extravascular cells clearly distinct and allows tumor cells of interest to be identified quickly as compared with those in thick tissues. The ability to generate large numbers of devices (∼36) per experiment further allows for highly parametric studies, which are required when testing multiple genetic or pharmacological perturbations. This is coupled with the capability for live tracking of single-cell extravasation events, allowing both tumor and endothelial morphological dynamics to be observed in high detail with a moderate number of data points.
Collapse
|
59
|
Resonant Waveguide Grating Imager for Single Cell Monitoring of the Invasion of 3D Speheroid Cancer Cells Through Matrigel. Methods Mol Biol 2017. [PMID: 28281255 DOI: 10.1007/978-1-4939-6848-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The invasion of cancer cells through their surrounding extracellular matrices is the first critical step to metastasis, a devastating event to cancer patients. However, in vitro cancer cell invasion is mostly studied using two-dimensional (2D) models. Three-dimensional (3D) multicellular spheroids may offer an advantageous cell model for cancer research and oncology drug discovery. This chapter describes a label-free, real-time, and single-cell approach to quantify the invasion of 3D spheroid colon cancer cells through Matrigel using a spatially resolved resonant waveguide grating imager.
Collapse
|
60
|
Hao R, Wei Y, Li C, Chen F, Chen D, Zhao X, Luan S, Fan B, Guo W, Wang J, Chen J. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities. Sci Rep 2017; 7:43390. [PMID: 28240272 PMCID: PMC5327465 DOI: 10.1038/srep43390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
This paper presents a 96-well microfabricated assay to study three-dimensional (3D) invasion of tumor cells. A 3D cluster of tumor cells was first generated within each well by seeding cells onto a micro-patterned surface consisting of a central fibronectin-coated area that promotes cellular attachment, surrounded by a poly ethylene glycol (PEG) coated area that is resistant to cellular attachment. Following the formation of the 3D cell clusters, a 3D collagen extracellular matrix was formed in each well by thermal-triggered gelation. Invasion of the tumor cells into the extracellular matrix was subsequently initiated and monitored. Two modes of cellular infiltration were observed: A549 cells invaded into the extracellular matrix following the surfaces previously coated with PEG molecules in a pseudo-2D manner, while H1299 cells invaded into the extracellular matrix in a truly 3D manner including multiple directions. Based on the processing of 2D microscopic images, a key parameter, namely, equivalent invasion distance (the area of invaded cells divided by the circumference of the initial cell cluster) was obtained to quantify migration capabilities of these two cell types. These results validate the feasibility of the proposed platform, which may function as a high-throughput 3D cellular invasion assay.
Collapse
Affiliation(s)
- Rui Hao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yuanchen Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chaobo Li
- Microelectronics Equipment Research and Development Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Feng Chen
- Department of Vascular Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Shaoliang Luan
- Department of Vascular Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Beiyuan Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Guo
- Department of Vascular Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
61
|
Merkher Y, Weihs D. Proximity of Metastatic Cells Enhances Their Mechanobiological Invasiveness. Ann Biomed Eng 2017; 45:1399-1406. [DOI: 10.1007/s10439-017-1814-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/11/2017] [Indexed: 12/23/2022]
|
62
|
Li X, Deng SJ, Zhu S, Jin Y, Cui SP, Chen JY, Xiang C, Li QY, He C, Zhao SF, Chen HY, Niu Y, Liu Y, Deng SC, Wang CY, Zhao G. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget 2017; 7:6000-14. [PMID: 26755660 PMCID: PMC4868736 DOI: 10.18632/oncotarget.6830] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/26/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies indicate that long non-coding RNAs (lncRNAs) play crucial roles in numerous cancers, while their function in pancreatic cancer is rarely elucidated. The present study identifies a functional lncRNA and its potential role in tumorigenesis of pancreatic cancer. Microarray co-assay for lncRNAs and mRNAs demonstrates that lncRNA-NUTF2P3-001 is remarkably overexpressed in pancreatic cancer and chronic pancreatitis tissues, which positively correlates with KRAS mRNA expression. After downregulating lncRNA-NUTF2P3-001, the proliferation and invasion of pancreatic cancer cell are significantly inhibited both in vitro and vivo, accompanying with decreased KRAS expression. The dual-luciferase reporter assay further validates that lncRNA-NUTF2P3-001 and 3′UTR of KRAS mRNA competitively bind with miR-3923. Furthermore, miR-3923 overexpression simulates the inhibiting effects of lncRNA-NUTF2P3-001-siRNA on pancreatic cancer cell, which is rescued by miR-3923 inhibitor. Specifically, the present study further reveals that lncRNA-NUTF2P3-001 is upregulated in pancreatic cancer cells under hypoxia and CoCl2 treatment, which is attributed to the binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the upstream of KRAS promoter. Data from pancreatic cancer patients show a positive correlation between lncRNA-NUTF2P3-001 and KRAS, which is associated with advanced tumor stage and worse prognosis. Hence, our data provide a new lncRNA-mediated regulatory mechanism for the tumor oncogene KRAS and implicate that lncRNA-NUTF2P3-001 and miR-3923 can be applied as novel predictors and therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Xiang Li
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-jiang Deng
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-peng Cui
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-yuan Chen
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xiang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun-ying Li
- Department of Medical Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi He
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-feng Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-yu Chen
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-chang Deng
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-you Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
63
|
Bassani B, Rossi T, De Stefano D, Pizzichini D, Corradino P, Macrì N, Noonan DM, Albini A, Bruno A. Potential chemopreventive activities of a polyphenol rich purified extract from olive mill wastewater on colon cancer cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
64
|
Ma Y, Pan JZ, Zhao SP, Lou Q, Zhu Y, Fang Q. Microdroplet chain array for cell migration assays. LAB ON A CHIP 2016; 16:4658-4665. [PMID: 27833945 DOI: 10.1039/c6lc00823b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Establishing cell migration assays in multiple different microenvironments is important in the study of tissue repair and regeneration, cancer progression, atherosclerosis, and arthritis. In this work, we developed a miniaturized and massive parallel microfluidic platform for multiple cell migration assays combining the traditional membrane-based cell migration technique and the droplet-based microfluidic technique. Nanoliter-scale droplets are flexibly assembled as building blocks based on a porous membrane to form microdroplet chains with diverse configurations for different assay modes. Multiple operations including in-droplet 2D/3D cell culture, cell co-culture and cell migration induced by a chemoattractant concentration gradient in droplet chains could be flexibly performed with reagent consumption in the nanoliter range for each assay and an assay scale-up to 81 assays in parallel in one microchip. We have applied the present platform to multiple modes of cell migration assays including the accurate cell migration assay, competitive cell migration assay, biomimetic chemotaxis assay, and multifactor cell migration assay based on the organ-on-a-chip concept, for demonstrating its versatility, applicability, and potential in cell migration-related research.
Collapse
Affiliation(s)
- Yan Ma
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Ping Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
65
|
A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression. Biochem Pharmacol 2016; 125:26-40. [PMID: 27838496 DOI: 10.1016/j.bcp.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022]
Abstract
Hypoxia is an important module in all solid tumours to promote angiogenesis, invasion and metastasis. Stabilization and subsequent nuclear localization of HIF-1α subunits result in the activation of tumour promoting target genes such as VEGF, MMPs, Flt-1, Ang-1 etc. which plays a pivotal role in adaptation of tumour cells to hypoxia. Increased HIF-α and its nuclear translocation have been correlated with pronounced angiogenesis, aggressive tumour growth and poor patient prognosis leading to current interest in HIF-1α as an anticancer drug target. Benzophenone-1B ([4-(1H-benzimidazol-2-ylmethoxy)-3,5-dimethylphenyl]-(4-methoxyphenyl) methanone, or BP-1B) is a new antineoplastic agent with potential angiopreventive effects. Current investigation reports the cellular biochemical modulation underlying BP-1B cytotoxic/antiangiogenic effects. Experimental evidences postulate that BP-1B exhibits the tumour specific cytotoxic actions against various cancer types with prolonged action. Moreover BP-1B efficiently counteracts endothelial cell capillary formation in in-vitro, in-vivo non-tumour and tumour angiogenic systems. Molecular signaling studies reveal that BP-1B arrests nuclear translocation of HIF-1α devoid of p42/44 pathway under CoCl2 induced hypoxic conditions in various cancer cells thereby leading to abrogated HIF-1α dependent activation of VEGF-A, Flt-1, MMP-2, MMP -9 and Ang-1 angiogenic factors resulting in retarded cell migration and invasions. The in-vitro results were reproducible in the reliable in-vivo solid tumour model. Taken together, we conclude that BP-1B impairs angiogenesis by blocking nuclear localization of HIF-1α which can be translated into a potent HIF-1α inhibitor.
Collapse
|
66
|
Zhu SY, Wang PL, Liao CS, Yang YQ, Yuan CY, Wang S, Dissanayaka WL, Heng BC, Zhang CF. Transgenic expression of ephrinB2 in periodontal ligament stem cells (PDLSCs) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and pre-osteoblasts within co-culture. J Periodontal Res 2016; 52:562-573. [DOI: 10.1111/jre.12424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- S. Y. Zhu
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Hong Kon China
- Dental Implant Center; Xuzhou Stomatological Hospital; Xuzhou China
| | - P. L. Wang
- Dental Implant Center; Xuzhou Stomatological Hospital; Xuzhou China
| | - C. S. Liao
- Orthodontics; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - Y. Q. Yang
- Orthodontics; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - C. Y. Yuan
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - S. Wang
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - W. L. Dissanayaka
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - B. C. Heng
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - C. F. Zhang
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Hong Kon China
| |
Collapse
|
67
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
68
|
Gallego-Perez D, Chang L, Shi J, Ma J, Kim SH, Zhao X, Malkoc V, Wang X, Minata M, Kwak KJ, Wu Y, Lafyatis GP, Lu W, Hansford DJ, Nakano I, Lee LJ. On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance. NANO LETTERS 2016; 16:5326-32. [PMID: 27420544 PMCID: PMC5040341 DOI: 10.1021/acs.nanolett.6b00902] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, 395 West 12th Avenue, Columbus, Ohio 43210
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
- Corresponding Authors:.;
| | - Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Junfeng Shi
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210
| | - Junyu Ma
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama, 1824 6th Avenuce South, Birmingham, Alabama 35294
| | - Xi Zhao
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Veysi Malkoc
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Xinmei Wang
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama, 1824 6th Avenuce South, Birmingham, Alabama 35294
| | - Kwang J. Kwak
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
| | - Yun Wu
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Gregory P. Lafyatis
- Department of Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210
| | - Derek J. Hansford
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, Ohio 43210
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama, 1824 6th Avenuce South, Birmingham, Alabama 35294
| | - L. James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210
- Corresponding Authors:.;
| |
Collapse
|
69
|
Bassani B, Bartolini D, Pagani A, Principi E, Zollo M, Noonan DM, Albini A, Bruno A. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids. PLoS One 2016; 11:e0154111. [PMID: 27367907 PMCID: PMC4930187 DOI: 10.1371/journal.pone.0154111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB.
Collapse
Affiliation(s)
- Barbara Bassani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | | | - Arianna Pagani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Elisa Principi
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Douglas M. Noonan
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- * E-mail:
| | - Antonino Bruno
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| |
Collapse
|
70
|
Medeiros PSC, Batista de Carvalho ALM, Ruano C, Otero JC, Marques MPM. Raman microspectroscopy for probing the impact of a dietary antioxidant on human breast cancer cells. Food Funct 2016; 7:2800-10. [PMID: 27227510 DOI: 10.1039/c6fo00209a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is the second most common type of cancer worldwide and the most frequent among women, being the fifth cause of death from neoplastic disease. Since this is an oxidative-stress related neoplasia, it is largely preventable. A dietary isoflavone abundant in soybean - daidzein - is currently being investigated owing to its chemopreventive and/or chemotherapeutic properties towards the human MDA-MB-231 (metastatic, estrogen-unresponsive) and MCF-7 (estrogen-responsive) breast cancer cell lines. Biological assays for evaluation of antitumour and anti-invasive activities were combined with state-of-the-art vibrational microspectroscopy techniques. At 50 and 100 μM concentrations and 48 h incubation time, daidzein was found to induce a marked decrease in cell viability (ca. 50%) for MDA-MB-231 and MCF-7 cells (respectively ca. 50% and 42%) and 40% inhibition of cell migration. MicroRaman analysis of fixed cells upon exposure to this isoflavone unveiled its metabolic impact on both cell lines. Multivariate data analysis (unsupervised PCA) led to a clear discrimination between the control and DAID-exposed cells, with distinctive effects on their biochemical profile, particularly regarding DNA, lipids and protein components, in a cell-dependent way. This is the first reported study on the impact of dietary antioxidants on cancer cells by microRaman techniques.
Collapse
Affiliation(s)
- P S C Medeiros
- Química-Física Molecular, Univ. Coimbra, 3004-535 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
71
|
Sanz-Nogués C, O'Brien T. In vitro models for assessing therapeutic angiogenesis. Drug Discov Today 2016; 21:1495-1503. [PMID: 27262402 DOI: 10.1016/j.drudis.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 01/05/2023]
Abstract
Arterial obstruction leading to ischemia causes a reduction of oxygen and nutrient supply to distal tissues. The physiological response to tissue ischemia triggers a cascade of events that results in the development of accessory vasculature to increase local tissue perfusion and to salvage tissue. However, this adaptive mechanism of repair is suboptimal in some patients. Therapeutic angiogenesis aims to stimulate new blood vessel formation via the local administration of proangiogenic agents or cell therapy products (CTPs). In this review, we provide a summary of the current understanding of in vitro models for assessing the angiogenic potential of a product.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, National University of Ireland Galway, Newcastle Road, Galway, Ireland.
| |
Collapse
|
72
|
Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc 2016; 11:937-48. [PMID: 27101515 DOI: 10.1038/nprot.2016.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Karla C Williams
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Carson T Gavin
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Emily Jardine
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Ann F Chambers
- Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
73
|
Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, Lerchl T, Luckner-Minden C, Ulrich A, Koch M, Weitz J, Schneider M, Buechler MW, Zitvogel L, Herrmann T, Benner A, Kunz C, Luecke S, Springfeld C, Grabe N, Falk CS, Jaeger D. Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients. Cancer Cell 2016; 29:587-601. [PMID: 27070705 DOI: 10.1016/j.ccell.2016.03.005] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/27/2016] [Accepted: 03/11/2016] [Indexed: 11/24/2022]
Abstract
The immune response influences the clinical course of colorectal cancer (CRC). Analyzing the invasive margin of human CRC liver metastases, we identified a mechanism of immune cell exploitation by tumor cells. While two distinct subsets of myeloid cells induce an influx of T cells into the invasive margin via CXCL9/CXCL10, CCL5 is produced by these T cells and stimulates pro-tumoral effects via CCR5. CCR5 blockade in patient-derived functional in vitro organotypic culture models showed a macrophage repolarization with anti-tumoral effects. These anti-tumoral effects were then confirmed in a phase I trial with a CCR5 antagonist in patients with liver metastases of advanced refractory CRC. Mitigation of tumor-promoting inflammation within the tumor tissue and objective tumor responses in CRC were observed.
Collapse
Affiliation(s)
- Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, 69120 Heidelberg, Germany; Institute for Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Inka Zoernig
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Anna Berthel
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Kahlert
- Department of Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Department of Surgery, University Hospital Dresden, 01307 Dresden, Germany
| | - Fee Klupp
- Department of Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Meggy Suarez-Carmona
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Suetterlin
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karsten Brand
- Institute for Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Juergen Krauss
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Felix Lasitschka
- Institute for Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tina Lerchl
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, 69120 Heidelberg, Germany
| | - Claudia Luckner-Minden
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alexis Ulrich
- Department of Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Moritz Koch
- Department of Surgery, University Hospital Dresden, 01307 Dresden, Germany
| | - Juergen Weitz
- Department of Surgery, University Hospital Dresden, 01307 Dresden, Germany
| | - Martin Schneider
- Department of Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Markus W Buechler
- Department of Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Laurence Zitvogel
- INSERM U1015, Institut Gustave Roussy (IGR), 94805 Villejuif, France
| | - Thomas Herrmann
- Department of Internal Medicine I, Klinikum Idar-Oberstein, 55743 Idar Oberstein, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christina Kunz
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Luecke
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Niels Grabe
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
74
|
He XH, Zhu W, Yuan P, Jiang S, Li D, Zhang HW, Liu MF. miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 2016; 35:6015-6025. [PMID: 27065318 DOI: 10.1038/onc.2016.132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
ErbB2 is a vital breast cancer gene and its overexpression has a decisive role in breast tumor initiation and malignant progression. However, the molecular mechanisms that underlie ErbB2 dysregulation in breast cancer cells remain incompletely understood. In this study, we found that ErbB2 expression is inversely correlated with the level of miR-155, a well-documented oncogenic miRNA, in ErbB2-positive breast tumors. We further determined that miR-155 potently suppresses ErbB2 in breast cancer cells. Mechanistically, miR-155 acts to downregulate ErbB2 via two distinct mechanisms. First, miR-155 represses ErbB2 transcription by targeting HDAC2, a transcriptional activator of ErbB2. Second, miR-155 directly targets ErbB2 via a regulatory element in its coding region. Intriguingly, miR-155 is upregulated by trastuzumab and in turn leads to a reduction of ErbB2 expression in trastuzumab-treated ErbB2-positive breast cancer cells. Functional studies showed that miR-155 inhibits ErbB2-induced malignant transformation of human breast epithelial cells. Thus, our findings reveal an intriguing miR-155-ErbB2 context in regulating the malignant transformation of breast epithelial cells, and thereby indicate a novel mode of action for miR-155 in ErbB2-positive breast cancer.
Collapse
Affiliation(s)
- X-H He
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Zhu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - P Yuan
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - S Jiang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H-W Zhang
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - M-F Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
75
|
Williams JD, Aggarwal A, Swami S, Krishnan AV, Ji L, Albertelli MA, Feldman BJ. Tumor Autonomous Effects of Vitamin D Deficiency Promote Breast Cancer Metastasis. Endocrinology 2016; 157:1341-7. [PMID: 26934299 PMCID: PMC4816742 DOI: 10.1210/en.2015-2036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Patients with breast cancer (BCa) frequently have preexisting vitamin D deficiency (low serum 25-hydroxyvitamin D) when their cancer develops. A number of epidemiological studies show an inverse association between BCa risk and vitamin D status in humans, although some studies have failed to find an association. In addition, several studies have reported that BCa patients with vitamin D deficiency have a more aggressive molecular phenotype and worse prognostic indicators. However, it is unknown whether this association is mechanistically causative and, if so, whether it results from systemic or tumor autonomous effects of vitamin D signaling. We found that ablation of vitamin D receptor expression within BCa cells accelerates primary tumor growth and enables the development of metastases, demonstrating a tumor autonomous effect of vitamin D signaling to suppress BCa metastases. We show that vitamin D signaling inhibits the expression of the tumor progression gene Id1, and this pathway is abrogated in vitamin D deficiency in vivo in 2 murine models of BCa. These findings are relevant to humans, because we discovered that the mechanism of VDR regulation of Inhibitor of differentiation 1 (ID1) is conserved in human BCa cells, and there is a negative correlation between serum 25-hydroxyvitamin D levels and the level of ID1 in primary tumors from patients with BCa.
Collapse
Affiliation(s)
- Jasmaine D Williams
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| | - Abhishek Aggarwal
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| | - Srilatha Swami
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| | - Aruna V Krishnan
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| | - Lijuan Ji
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| | - Megan A Albertelli
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| | - Brian J Feldman
- Department of Pediatrics (J.D.W., A.A., A.V.K., L.J., B.J.F.), Stanford School of Medicine, Stanford, California 94305; Department of Medicine (S.S.), Stanford School of Medicine, Stanford, California 94305; Department of Comparative Medicine (M.A.A.), Stanford School of Medicine, Stanford, California 94305; and Stanford Cancer Institute (B.J.F.), Stanford School of Medicine, Stanford, California 94305
| |
Collapse
|
76
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
77
|
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One 2016; 11:e0147236. [PMID: 26800519 PMCID: PMC4723257 DOI: 10.1371/journal.pone.0147236] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Exosomes are 30-150nM membrane-bound secreted vesicles that are readily isolated from biological fluids such as urine (UEs). Exosomes contain proteins, micro RNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) from their cells of origin. Although miRNA, protein and lncRNA have been isolated from serum as potential biomarkers for benign and malignant disease, it is unknown if lncRNAs in UEs from urothelial bladder cancer (UBC) patients can serve as biomarkers. lncRNAs are > 200 nucleotide long transcripts that do not encode protein and play critical roles in tumor biology. As the number of recognized tumor-associated lncRNAs continues to increase, there is a parallel need to include lncRNAs into biomarker discovery and therapeutic target algorithms. The lncRNA HOX transcript antisense RNA (HOTAIR) has been shown to facilitate tumor initiation and progression and is associated with poor prognosis in several cancers. The importance of HOTAIR in cancer biology has sparked interest in using HOTAIR as a biomarker and potential therapeutic target. Here we show HOTAIR and several tumor-associated lncRNAs are enriched in UEs from UBC patients with high-grade muscle-invasive disease (HGMI pT2-pT4). Knockdown of HOTAIR in UBC cell lines reduces in vitro migration and invasion. Importantly, loss of HOTAIR expression in UBC cell lines alters expression of epithelial-to-mesenchyme transition (EMT) genes including SNAI1, TWIST1, ZEB1, ZO1, MMP1 LAMB3, and LAMC2. Finally, we used RNA-sequencing to identify four additional lncRNAs enriched in UBC patient UEs. These data, suggest that UE-derived lncRNA may potentially serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Claudia Berrondo
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Jonathan Flax
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Victor Kucherov
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Aisha Siebert
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas Osinski
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Alex Rosenberg
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Christopher Fucile
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Samuel Richheimer
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Carla J. Beckham
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
78
|
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One 2016. [PMID: 26800519 DOI: 10.1371/journal.pone.0147236.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 30-150nM membrane-bound secreted vesicles that are readily isolated from biological fluids such as urine (UEs). Exosomes contain proteins, micro RNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) from their cells of origin. Although miRNA, protein and lncRNA have been isolated from serum as potential biomarkers for benign and malignant disease, it is unknown if lncRNAs in UEs from urothelial bladder cancer (UBC) patients can serve as biomarkers. lncRNAs are > 200 nucleotide long transcripts that do not encode protein and play critical roles in tumor biology. As the number of recognized tumor-associated lncRNAs continues to increase, there is a parallel need to include lncRNAs into biomarker discovery and therapeutic target algorithms. The lncRNA HOX transcript antisense RNA (HOTAIR) has been shown to facilitate tumor initiation and progression and is associated with poor prognosis in several cancers. The importance of HOTAIR in cancer biology has sparked interest in using HOTAIR as a biomarker and potential therapeutic target. Here we show HOTAIR and several tumor-associated lncRNAs are enriched in UEs from UBC patients with high-grade muscle-invasive disease (HGMI pT2-pT4). Knockdown of HOTAIR in UBC cell lines reduces in vitro migration and invasion. Importantly, loss of HOTAIR expression in UBC cell lines alters expression of epithelial-to-mesenchyme transition (EMT) genes including SNAI1, TWIST1, ZEB1, ZO1, MMP1 LAMB3, and LAMC2. Finally, we used RNA-sequencing to identify four additional lncRNAs enriched in UBC patient UEs. These data, suggest that UE-derived lncRNA may potentially serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Claudia Berrondo
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Jonathan Flax
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Victor Kucherov
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Aisha Siebert
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas Osinski
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Alex Rosenberg
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Christopher Fucile
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Samuel Richheimer
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Carla J Beckham
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| |
Collapse
|
79
|
Dhruv HD, Roos A, Tomboc PJ, Tuncali S, Chavez A, Mathews I, Berens ME, Loftus JC, Tran NL. Propentofylline inhibits glioblastoma cell invasion and survival by targeting the TROY signaling pathway. J Neurooncol 2015; 126:397-404. [PMID: 26559543 DOI: 10.1007/s11060-015-1981-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the CNS and carries a dismal prognosis. The aggressive invasion of GBM cells into the surrounding normal brain makes complete resection impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to 8 months for patients with recurrent GBM. New therapeutic strategies that target the molecular drivers of invasion are required for improved clinical outcome. We have demonstrated that TROY (TNFRSF19), a member of the TNFR super-family, plays an important role in GBM invasion and resistance. Knockdown of TROY expression inhibits GBM cell invasion, increases sensitivity to temozolomide, and prolongs survival in an intracranial xenograft model. Propentofylline (PPF), an atypical synthetic methylxanthine compound, has been extensively studied in Phase II and Phase III clinical trials for Alzheimer's disease and vascular dementia where it has demonstrated blood-brain permeability and minimal adverse side effects. Here we showed that PPF decreased GBM cell expression of TROY, inhibited glioma cell invasion, and sensitized GBM cells to TMZ. Mechanistically, PPF decreased glioma cell invasion by modulating TROY expression and downstream signaling, including AKT, NF-κB, and Rac1 activation. Thus, PPF may provide a pharmacologic approach to target TROY, inhibit cell invasion, and reduce therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Alison Roos
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Patrick J Tomboc
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA.,Medical Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, 85006, USA
| | - Serdar Tuncali
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Ashley Chavez
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Ian Mathews
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Nhan L Tran
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA.
| |
Collapse
|
80
|
Chen YX, Yang S, Yan J, Hsieh MH, Weng L, Ouderkirk JL, Krendel M, Soman P. A Novel Suspended Hydrogel Membrane Platform for Cell Culture. J Nanotechnol Eng Med 2015. [DOI: 10.1115/1.4031467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cell-culture is largely performed on synthetic two-dimensional (2D) petri dishes or permeable supports such as Boyden chambers, mostly because of their ease of use and established protocols. It is generally accepted that modern cell biology research requires new physiologically relevant three-dimensional (3D) cell culture platform to mimic in vivo cell responses. To that end, we report the design and development of a suspended hydrogel membrane (ShyM) platform using gelatin methacrylate (GelMA) hydrogel. ShyM thickness (0.25–1 mm) and mechanical properties (10–70 kPa) can be varied by controlling the size of the supporting grid and concentration of GelMA prepolymer, respectively. GelMA ShyMs, with dual media exposure, were found to be compatible with both the cell-seeding and the cell-encapsulation approach as tested using murine 10T1/2 cells and demonstrated higher cellular spreading and proliferation as compared to flat GelMA unsuspended control. The utility of ShyM was also demonstrated using a case-study of invasion of cancer cells. ShyMs, similar to Boyden chambers, are compatible with standard well-plates designs and can be printed using commonly available 3D printers. In the future, ShyM can be potentially extended to variety of photosensitive hydrogels and cell types, to develop new in vitro assays to investigate complex cell–cell and cell–extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Yong X. Chen
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Shihao Yang
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Jiahan Yan
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Ming-Han Hsieh
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Lingyan Weng
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Jessica L. Ouderkirk
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 e-mail:
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| |
Collapse
|
81
|
Nuti E, Cantelmo AR, Gallo C, Bruno A, Bassani B, Camodeca C, Tuccinardi T, Vera L, Orlandini E, Nencetti S, Stura EA, Martinelli A, Dive V, Albini A, Rossello A. N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity. J Med Chem 2015; 58:7224-40. [DOI: 10.1021/acs.jmedchem.5b00367] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elisa Nuti
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Anna Rita Cantelmo
- Science
and Technological Park, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Cristina Gallo
- Laboratory
of Translational Research, IRCCS Arcispedale Santa Maria Nuova, viale
Risorgimento 80, 42121 Reggio Emilia, Italy
| | - Antonino Bruno
- Science
and Technological Park, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Barbara Bassani
- Science
and Technological Park, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Caterina Camodeca
- Division
of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele, via Olgettina 60, 20132 Milano, Italy
| | - Tiziano Tuccinardi
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Laura Vera
- CEA,
iBiTec-S, Service d’Ingenierie Moleculaire des Proteines (SIMOPRO), CE-Saclay 91191 Gif sur Yvette Cedex, France
| | | | - Susanna Nencetti
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Enrico A. Stura
- CEA,
iBiTec-S, Service d’Ingenierie Moleculaire des Proteines (SIMOPRO), CE-Saclay 91191 Gif sur Yvette Cedex, France
| | - Adriano Martinelli
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Vincent Dive
- CEA,
iBiTec-S, Service d’Ingenierie Moleculaire des Proteines (SIMOPRO), CE-Saclay 91191 Gif sur Yvette Cedex, France
| | - Adriana Albini
- Laboratory
of Translational Research, IRCCS Arcispedale Santa Maria Nuova, viale
Risorgimento 80, 42121 Reggio Emilia, Italy
| | - Armando Rossello
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
82
|
Jiang WG, Ye L, Ruge F, Owen S, Martin T, Sun PH, Sanders AJ, Lane J, Satherley L, Weeks HP, Gao Y, Wei C, Wu Y, Mason MD. YangZheng XiaoJi exerts anti-tumour growth effects by antagonising the effects of HGF and its receptor, cMET, in human lung cancer cells. J Transl Med 2015; 13:280. [PMID: 26310485 PMCID: PMC4551384 DOI: 10.1186/s12967-015-0639-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a cytokine that has a profound effect on cancer cells by stimulating migration and invasion and acting as an angiogenic factor. In lung cancer, the factor also plays a pivotal role and is linked to a poor outcome in patients. In particular, HGF is known to work in combination with EGF on lung cancer cells. In the present study, we investigated the effect of a traditional Chinese medicine reported in cancer therapies, namely YangZheng XiaoJi (YZXJ) on lung cancer and on HGF mediated migration and invasion of lung cancer cells. METHODS Human lung cancer cells, SKMES1 and A549 were used in the study. An extract from the medicine was used. Cell migration was investigated using the EVOS and by ECIS. Cell-matrix adhesion and in vitro invasion were assessed. In vivo growth of lung cancer was tested using an in vivo xenograft tumour model and activation of the HGF receptor in lung tumours by an immunofluorescence method. RESULTS Both lung cancer cells increased their migration in response to HGF and responded to YZXJ by reducing their speed of migration. YZXJ markedly reduced the migration and in vitro invasiveness induced by HGF. It worked synergistically with PHA665752 and SU11274, HGF receptor inhibitors on the lung cancer cells both on HGF receptor activation and on cell functions. A combination of HGF and EGF resulted in a greater increase in cell migration, which was similarly inhibited by YZXJ, and in combination with the HGF receptor and EGF receptor inhibitors. In vivo, YZXJ reduced the rate of tumour growth and potentiated the effects of PHA665752 on tumour growth. It was further revealed that YZXJ significantly reduced the degree of phosphorylation of the HGF receptor in lung tumours. CONCLUSION YZXJ has a significant role in reducing the migration, invasion and in vivo tumour growth of lung cancer and acts to inhibit the migratory and invasive effects induced by HGF and indeed by HGF/EGF. This effect is likely attributed to the inhibition of the HGF receptor activation. These results indicate that YZXJ has a therapeutic role in lung cancer and that combined strategy with methods to block HGF and EGF should be considered.
Collapse
Affiliation(s)
- Wen G Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Lin Ye
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Fiona Ruge
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Sioned Owen
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Tracey Martin
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Ping-Hui Sun
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Andrew J Sanders
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Jane Lane
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Lucy Satherley
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Hoi P Weeks
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Yong Gao
- Yiling Medical Research Institute, No. 238 TianShan DaJie, Shijianzhuang, HeBei Province, China.
| | - Cong Wei
- Yiling Medical Research Institute, No. 238 TianShan DaJie, Shijianzhuang, HeBei Province, China.
| | - Yiling Wu
- Yiling Medical Research Institute, No. 238 TianShan DaJie, Shijianzhuang, HeBei Province, China.
| | - Malcolm D Mason
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
83
|
Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer. Int J Mol Sci 2015; 16:19612-30. [PMID: 26295387 PMCID: PMC4581315 DOI: 10.3390/ijms160819612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.
Collapse
|
84
|
Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells. Mol Cell Biol 2015; 35:2684-98. [PMID: 26012550 DOI: 10.1128/mcb.00019-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
We provide evidence that human SLFN5, an interferon (IFN)-inducible member of the Schlafen (SLFN) family of proteins, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of the matrix metalloproteinase 1 gene (MMP-1), MMP-13, and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression.
Collapse
|
85
|
Liu B, Yu HH, Ye HL, Luo ZY, Xiao F. Effects of stromal interacting molecule 1 gene silencing by short hairpin RNA on the biological behavior of human gastric cancer cells. Mol Med Rep 2015; 12:3047-54. [PMID: 25976311 DOI: 10.3892/mmr.2015.3778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/16/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer worldwide. It has been reported that stromal interacting molecule 1 (STIM1) is associated with tumor progression and metastatic spread, including in cervical cancer, breast carcinoma and prostatic cancer. The present study investigated whether STIM1, an endoplasmic reticulum Ca(2+) sensor and activator of store-operated channel entry, contributed to SGC7901 cell progression. The pGPU6-shSTIM1 recombinant plasmid was constructed, and the effects of downregulation of STIM1 on the proliferation, apoptosis, migration and invasion of SGC7901 cells were examined. Western blot analysis revealed that transfection with the pGPU6-shSTIM1 plasmid successfully inhibited the expression of STIM1. STIM1 silencing in the gastric cancer cells significantly inhibited cell proliferation by arresting the cell cycle at the G0/G1 phase, and increasing the apoptotic rate following treatment of the SGC7901 cells with pGPU6-shSTIM1, indicated using an MTT cell viability assay and flow cytometery, respectively. As expected, STIM1 knock down also reduced the migration and invasion of the SGC7901 cells, demonstrated using a Transwell assay. The possible molecular mechanism involved the regulation of several signaling pathways involved in the biological behavior of cell survival, apoptosis, migration and metastasis. Together, these finding suggested that the expression of STIM1 is crucial for the proliferation and invasion of SGC7901 cells, providing a foundation for the development of novel type‑specific diagnostic strategies and treatments for gastric cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Pathology, Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Hai-Hong Yu
- Ji'an Key Laboratory of Pharmaceutical Biotechnology, School of Medicine, Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Hong-Li Ye
- Department of Pathology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Ying Luo
- Department of Pathology, School of Medicine, Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Feng Xiao
- Department of Pathology, School of Medicine, Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| |
Collapse
|
86
|
Kristal-Muscal R, Dvir L, Schvartzer M, Weihs D. Mechanical Interaction of Metastatic Cancer Cells with a Soft Gel. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.piutam.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
87
|
Cmoch A, Podszywalow-Bartnicka P, Palczewska M, Piwocka K, Groves P, Pikula S. Stimulators of mineralization limit the invasive phenotype of human osteosarcoma cells by a mechanism involving impaired invadopodia formation. PLoS One 2014; 9:e109938. [PMID: 25314307 PMCID: PMC4196965 DOI: 10.1371/journal.pone.0109938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). RESULTS In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. CONCLUSIONS Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma.
Collapse
Affiliation(s)
- Anna Cmoch
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Malgorzata Palczewska
- Department of Biological Chemistry, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrick Groves
- Department of Biological Chemistry, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
88
|
Acosta MA, Jiang X, Huang PK, Cutler KB, Grant CS, Walker GM, Gamcsik MP. A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia. BIOMICROFLUIDICS 2014; 8:054117. [PMID: 25584114 PMCID: PMC4290574 DOI: 10.1063/1.4898788] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/08/2014] [Indexed: 05/12/2023]
Abstract
Metastatic cancer cells must traverse a microenvironment ranging from extremely hypoxic, within the tumor, to highly oxygenated, within the host's vasculature. Tumor hypoxia can be further characterized by regions of both chronic and intermittent hypoxia. We present the design and characterization of a microfluidic device that can simultaneously mimic the oxygenation conditions observed within the tumor and model the cell migration and intravasation processes. This device can generate spatial oxygen gradients of chronic hypoxia and produce dynamically changing hypoxic microenvironments in long-term culture of cancer cells.
Collapse
Affiliation(s)
- Miguel A Acosta
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Xiao Jiang
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Pin-Kang Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology , No. 43, Sec. 4, Keelung Road, Da'an District, Taipei City 106, Taiwan
| | - Kyle B Cutler
- Department of Biomedical Engineering, Beckman Laser Institute, University of California Irvine , 1002 Health Services Road, Irvine, California 92617, USA
| | - Christine S Grant
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Glenn M Walker
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Michael P Gamcsik
- Department of Chemical Engineering, National Taiwan University of Science and Technology , No. 43, Sec. 4, Keelung Road, Da'an District, Taipei City 106, Taiwan
| |
Collapse
|
89
|
Febles NK, Ferrie AM, Fang Y. Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 2014; 86:8842-9. [PMID: 25118958 DOI: 10.1021/ac502269v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reports label-free, real-time, and single-cell quantification of the invasion of spheroidal colon cancer cells through three-dimensional (3D) Matrigel using a resonant waveguide grating (RWG) imager. This imager employs a time-resolved swept wavelength interrogation scheme to monitor cell invasion and adhesion with a temporal resolution up to 3 s and a spatial resolution of 12 μm. As the model system, spheroids of human colorectal adenocarcinoma HT-29 cells are generated by culturing the cells in 96-well round-bottom ultralow attachment plates. 3D Matrigel is formed by its gelation in 384-well RWG biosensor microplates. The invasion and adhesion of spheroidal HT29 cells is initiated by placing individual spheroids onto the Matrigel-coated biosensors. The time series RWG images are obtained and used to extract the optical signatures arising from the adhesion after the cells are dissociated from the spheroids and invade through the 3D Matrigel. Compound profiling shows that epidermal growth factor accelerates cancer cell invasion, while vandetanib, a multitarget kinase inhibitor, dose-dependently inhibits invasion. This study demonstrates that the label-free imager can monitor in real-time the invasion of spheroidal cancer cells through 3D matrices.
Collapse
Affiliation(s)
- Nicole K Febles
- Biochemical Technologies, Science and Technology Division, Corning Incorporated , Corning, New York 14831, United States
| | | | | |
Collapse
|
90
|
Kazemi-Lomedasht F, Behdani M, Pooshang Bagheri K, Habibi Anbouhi M, Abolhassani M, Khanahmad H, Shahbazzadeh D, Mirzahoseini H. Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Adv Pharm Bull 2014; 4:323-8. [PMID: 25436186 DOI: 10.5681/apb.2014.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/05/2014] [Accepted: 04/19/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Angiogenesis or formation of new blood vessels is an essential process for tumor growth, invasion and metastasis. Vascular Endothelial Growth Factor (VEGF) and its receptors play an important role in angiogenesis-dependent tumors. VEGF-A is the most important factor in angiogenesis process. Human VEGF-A gene consists of eight exons that undergoes alternative exon splicing and produce five different proteins consisting of 121, 145, 165, 189 and 206 amino acids (named VEGF121, VEGF145, VEGF165, VEGF189, and VEGF206). METHODS In this study, VEGF121 gene synthesized and cloned into the pET-26b plasmid. The recombinant plasmid was transferred into appropriate expression strain of BL-21. Expression of VEGF121 induced by IPTG (Isopropyl β-D-1-thiogalactopyranoside) and confirmed by SDS-PAGE and Western-Blotting. Recombinant VEGF121 was purified by nickel affinity chromatography. HUVECs (Human Umbilical Vein Endothelia Cells) cells were isolated from umbilical vein and the effect of VEGF121 on tube formation of endothelial cells was investigated. RESULTS SDS-PAGE and Western-Blotting results verified the purification of VEGF121. The final yield of recombinant protein was about 5mg per liter. Endothelial cell tube formation assay results showed that VEGF121 leads to tube formation of endothelial cell on matrix and induces angiogenesis in vitro. CONCLUSION Recombinant VEGF121 is important factor in tube formation of endothelial cell, so it could be used in different cancer researches and angiogenesis assay.
Collapse
Affiliation(s)
- Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohsen Abolhassani
- Departmentof Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Khanahmad
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Delavar Shahbazzadeh
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Mirzahoseini
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
91
|
Liu ZC, Wang HS, Zhang G, Liu H, Chen XH, Zhang F, Chen DY, Cai SH, Du J. AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of prostate cancer cells. Biochim Biophys Acta Gen Subj 2014; 1840:3096-105. [PMID: 25088797 DOI: 10.1016/j.bbagen.2014.07.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/10/2014] [Accepted: 07/28/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of metastatic cancers. Basic fibroblast growth factor (bFGF) is significantly elevated in metastatic prostate cancers, which has been mentioned mainly to induce EMT in normal cells. However, there is no description about bFGF induced EMT and its underlying mechanism in prostate cancer cells. METHODS Western blotting, immunofluorescence and qRT-PCR assays were used to study protein or mRNA expression profiles of the EMT. Wound healing scratch, migration and invasion assays were used to test the motility of cells undergoing EMT. More methods were used to explore the underlying mechanisms. RESULTS We demonstrated that bFGF promoted EMT and motility of human prostate cancer PC-3 cells. Both protein and mRNA expression of Snail were rapidly increased after bFGF treatment. Ectopic expression of Snail triggered EMT and enhanced cell motility in PC-3 cells, and knockdown of Snail almost abolished bFGF induced EMT, suggesting the critical role of Snail. Mechanistic study demonstrated that bFGF promoted the stability, nuclear localization and transcription of Snail by inhibiting the activity of glycogen synthase kinase 3 beta (GSK-3β) through phosphatidylinositide 3 kinases (PI3K)/protein kinase B (AKT) signaling pathway. CONCLUSIONS It is concluded that bFGF can promote EMT and motility of PC-3 cells, and AKT/GSK-3β signaling pathway controls the stability, localization and transcription of Snail which is crucial for this bFGF induced EMT. GENERAL SIGNIFICANCE To our knowledge, this is the first study to demonstrate that bFGF can induce EMT via AKT/GSK-3β/Snail signaling pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Zong-Cai Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Hao Liu
- Cancer Research Institute, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Xiao-Hui Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Fan Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Dan-Yang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Shao-Hui Cai
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
92
|
Giordano A, D'Angelillo A, Romano S, D'Arrigo P, Corcione N, Bisogni R, Messina S, Polimeno M, Pepino P, Ferraro P, Romano MF. Tirofiban induces VEGF production and stimulates migration and proliferation of endothelial cells. Vascul Pharmacol 2014; 61:63-71. [PMID: 24751361 DOI: 10.1016/j.vph.2014.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 11/17/2022]
Abstract
Tirofiban is a fibrinogen receptor antagonist, generated using the tripeptide Arg-Gly-Asp (RGD) as a template. RGD activates integrin receptors and integrin-mediated signals are necessary for normal cells to promote survival and stimulate cell cycle progression. We investigated whether tirofiban activated growth-stimulatory signals in endothelium. For this study human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC) were used. Analysis of cell proliferation, by cell counts, showed that the number of endothelial cells doubled after 72 h of culture in the absence of tirofiban, while they were tripled and even quadrupled, in the presence of increasing doses of the drug. Moreover, tirofiban-stimulated cells had a greater ability to migrate through the transwell filters of Boyden chamber, compared to unstimulated cells. The scratch assay, which mimics cell migration during wound healing, showed that tirofiban stimulated HUVECs to migrate into the leading hedge of the scratch. Western blot showed that tirofiban increased the expression levels of VEGF and the downstream effectors Erk and cyclin D. An inhibitor of VEGFR2 counteracted tirofiban-induced-proliferation, suggesting a role for VEGF in such effect. Our study shows that tirofiban stimulates the migration and proliferation of endothelial cells suggesting that it can promote endothelial repair. Ex vivo cultures of arterial rings confirmed the growth stimulatory effect of tirofiban on endothelium. Thus, the benefits of tirofiban in those with acute coronary syndromes undergoing PTCA may be due to rapid endothelization of damaged vessel, besides antiplatelet effects.
Collapse
Affiliation(s)
- Arturo Giordano
- Invasive Cardiology Unit, Pineta Grande Hospital, Castelvolturno, Italy
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicola Corcione
- Invasive Cardiology Unit, Pineta Grande Hospital, Castelvolturno, Italy
| | - Rita Bisogni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefano Messina
- Invasive Cardiology Unit, Pineta Grande Hospital, Castelvolturno, Italy
| | - Michele Polimeno
- Invasive Cardiology Unit, Pineta Grande Hospital, Castelvolturno, Italy
| | - Paolo Pepino
- Cardiovascular Surgery, Pineta Grande Hospital, Castelvolturno, Italy
| | - Paolo Ferraro
- Invasive Cardiology Unit, Pineta Grande Hospital, Castelvolturno, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
93
|
Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, Scosyrev E, Messing EM, Lee YF. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol 2014; 192:583-92. [PMID: 24530986 DOI: 10.1016/j.juro.2014.02.035] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE High grade bladder cancer is an extremely aggressive malignancy associated with high rates of morbidity and mortality. Understanding how exosomes may affect bladder cancer progression could reveal novel therapeutic targets. MATERIALS AND METHODS Exosomes derived from human bladder cancer cell lines and the urine of patients with high grade bladder cancer were assessed for the ability to promote cancer progression in standard assays. Exosomes purified from the high grade bladder cancer cell line TCC-SUP and the nonmalignant urothelial cell line SV-HUC were submitted for mass spectrometry analysis. EDIL-3 was identified and selected for further analysis. Western blot was done to determine EDIL-3 levels in urinary exosomes from patients with high grade bladder cancer. shRNA gene knockdown and recombinant EDIL-3 were applied to study EDIL-3 function. RESULTS Exosomes isolated from high grade bladder cancer cells and the urine of patients with high grade bladder cancer promoted angiogenesis and migration of bladder cancer cells and endothelial cells. We silenced EDIL-3 expression and found that shEDIL-3 exosomes did not facilitate angiogenesis, and urothelial and endothelial cell migration. Moreover, exosomes purified from the urine of patients with high grade bladder cancer contained significantly higher EDIL-3 levels than exosomes from the urine of healthy controls. EDIL-3 activated epidermal growth factor receptor signaling while blockade of epidermal growth factor receptor signaling abrogated this EDIL-3 induced bladder cell migration. CONCLUSIONS Exosomes derived from the urine of patients with bladder cancer contains bioactive molecules such as EDIL-3. Identifying these components and their associated oncogenic pathways could lead to novel therapeutic targets and treatment strategies.
Collapse
Affiliation(s)
- Carla J Beckham
- Department of Urology, University of Rochester, Rochester, New York.
| | - Jayme Olsen
- Department of Genetics, University of Rochester, Rochester, New York
| | - Peng-Nien Yin
- Department of Urology, University of Rochester, Rochester, New York
| | - Chia-Hao Wu
- Department of Urology, University of Rochester, Rochester, New York
| | - Huei-Ju Ting
- Department of Biological Science and Technology, National University of Tainan, Taiwan, Republic of China
| | - Fred K Hagen
- Department of Biochemistry and Biophysics Proteomics Center, University of Rochester, Rochester, New York
| | - Emelian Scosyrev
- Department of Urology, University of Rochester, Rochester, New York
| | - Edward M Messing
- Department of Urology, University of Rochester, Rochester, New York
| | - Yi-Fen Lee
- Department of Urology, University of Rochester, Rochester, New York.
| |
Collapse
|
94
|
Mele V, Muraro MG, Calabrese D, Pfaff D, Amatruda N, Amicarella F, Kvinlaug B, Bocelli-Tyndall C, Martin I, Resink TJ, Heberer M, Oertli D, Terracciano L, Spagnoli GC, Iezzi G. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β. Int J Cancer 2014; 134:2583-94. [PMID: 24214914 PMCID: PMC4338537 DOI: 10.1002/ijc.28598] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem/stromal cells (MSC) are multipotent precursors endowed with the ability to home to primary and metastatic tumor sites, where they can integrate into the tumor-associated stroma. However, molecular mechanisms and outcome of their interaction with cancer cells have not been fully clarified. In this study, we investigated the effects mediated by bone marrow-derived MSC on human colorectal cancer (CRC) cells in vitro and in vivo. We found that MSC triggered epithelial-to-mesenchymal transition (EMT) in tumor cells in vitro, as indicated by upregulation of EMT-related genes, downregulation of E-cadherin and acquisition of mesenchymal morphology. These effects required cell-to-cell contact and were mediated by surface-bound TGF-β newly expressed on MSC upon coculture with tumor cells. In vivo tumor masses formed by MSC-conditioned CRC cells were larger and characterized by higher vessel density, decreased E-cadherin expression and increased expression of mesenchymal markers. Furthermore, MSC-conditioned tumor cells displayed increased invasiveness in vitro and enhanced capacity to invade peripheral tissues in vivo. Thus, by promoting EMT-related phenomena, MSC appear to favor the acquisition of an aggressive phenotype by CRC cells.
Collapse
Affiliation(s)
- Valentina Mele
- Institute of Surgical Research and Hospital Management (ICFS) and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Institute of Pathology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lv Q, Hua F, Hu ZW. Use of the tumor repressor DEDD as a prognostic marker of cancer metastasis. Methods Mol Biol 2014; 1165:197-222. [PMID: 24839027 DOI: 10.1007/978-1-4939-0856-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DEDD, a member of a family of death effector domain-containing proteins, plays crucial roles in mediating apoptosis, regulating cell cycle, and inhibiting cell mitosis. Our recent work demonstrates that DEDD is a novel tumor repressor, which impedes metastasis by reversing the epithelial-mesenchymal transition (EMT) process in breast and colon cancers. DEDD expression therefore may represent a prognostic marker and potential therapeutic target for the prevention and treatment of cancer metastasis. To reveal the anti-metastatic roles of DEDD in these cancer cells, a number of experiments, including immunohistochemistry, the establishment of stably overexpressing or silencing cancer cells, chemoinvasion assay, soft agar assay, protein degradation, and protein-protein interaction were used in our in vitro and in vivo studies. This chapter focuses on the details of these experiments to provide references for the researchers to investigate the function of a gene in the regulation of tumor metastasis.
Collapse
Affiliation(s)
- Qi Lv
- Molecular Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | | | | |
Collapse
|
96
|
Abstract
OBJECTIVES Resistance to gemcitabine is one of the main causes of treatment failure in pancreatic cancer. Compelling evidences have shown the involvement of nuclear factor κB (NF-κB) activation in such phenomenon. The protease inhibitor gabexate mesilate has been shown to inhibit NF-κB. We here investigated if combined treatment with this drug could improve gemcitabine antitumoral efficacy in pancreatic cancer cells. METHODS The effect of gabexate mesilate and gemcitabine, both used at concentrations achievable in human plasma, was assessed on in vitro pancreatic cancer cell growth, invasion, and tumor angiogenesis. The molecular mechanism at the basis of these effects was also investigated. RESULTS Gabexate mesilate significantly increased gemcitabine anti-invasive and antiangiogenic efficacy. This effect was related to inhibition of gemcitabine-induced NF-κB activation by gabexate mesilate, which prevented RelA/p65 nuclear translocation and resulted in metalloproteinase 2, metalloproteinase 9, vascular endothelial growth factor, and interleukin 8 down-regulation. Combined treatment with gabexate mesilate also inhibited gemcitabine-induced extracellular-regulated kinase 1/2 and AKT activation by increased expression of Raf kinase inhibitor protein and phosphatase and tensin homolog. CONCLUSIONS Combined treatment with gabexate mesilate sensitizes pancreatic cancer cells to gemcitabine by inhibition of the NF-κB pathway. The efficacy of this therapeutic strategy in pancreatic cancer patients remains to be established and deserves future clinical investigation.
Collapse
|
97
|
Abstract
Tumor invasion is the outcome of a complex interplay between cancer cells and the stromal environment and requires the infiltration of a dense, cross-linked meshwork of collagen type I extracellular matrix. We use a membrane-free single-cell and spheroid-based complementary model to study cancer invasion through native collagen type I matrices. Cell morphology is preserved during the assays allowing real-time monitoring of invasion-induced changes in cell structure and F-actin organization. Combination of these models with computerized quantification permits the calculation of highly reproducible and operator-independent data. These assays are versatile in the use of fluorescent probes and have a flexible kinetic endpoint. Once the optimal experimental conditions are empirically determined, the collagen type I invasion assays can be used for preclinical validation of small-molecule inhibitors targeting invasion. Initiation and monitoring of the single-cell and spheroid invasion model can be achieved in 8 h (over 3 days) and in 14 h (over 5 days), respectively.
Collapse
|
98
|
Feng B, Li K, Zhong H, Ren G, Wang H, Shang Y, Bai M, Liang J, Wang X, Fan D. RhoE promotes metastasis in gastric cancer through a mechanism dependent on enhanced expression of CXCR4. PLoS One 2013; 8:e81709. [PMID: 24312338 PMCID: PMC3843694 DOI: 10.1371/journal.pone.0081709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
RhoE, a novel member of the Rho protein family, is a key regulator of the cytoskeleton and cell migration. Our group has previously shown that RhoE as a direct target for HIF-1α and mediates hypoxia-induced epithelial to mesenchymal transition in gastric cancer cells. Therefore, we assumed that RhoE might play an important role in gastric cancer metastasis. In the present study, we have explored the role of RhoE expression in gastric cancer, cell invasion and metastasis, and the influence of RhoE on regulating the potential expression of down-stream genes. RhoE expression was elevated in gastric cancer tissues as compared with normal gastric tissues. We also found a close correlation between the histological grade and the diagnosis of the patient. Up-regulation of RhoE significantly enhanced the migratory and invasive abilities of gastric cancer cells both in vitro and in vivo. Moreover, down-regulation of RhoE diminished the metastatic potential of cancer cells. PCR array and subsequent transwell assay showed that the regulation of gastric cancer metastasis by RhoE was partially mediated by CXCR4. This observation suggested that CXCR4 might be a downstream effector for RhoE. In summary, our study identified RhoE as a novel prognostic biomarker and metastatic-promoting gene of gastric cancer.
Collapse
Affiliation(s)
- Bin Feng
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kai Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Gui Ren
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hefei Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ming Bai
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JL); (XW); (DF)
| | - Xin Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JL); (XW); (DF)
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JL); (XW); (DF)
| |
Collapse
|
99
|
Pereira RC, Scaranari M, Benelli R, Strada P, Reis RL, Cancedda R, Gentili C. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Tissue Eng Part A 2013; 19:1476-88. [PMID: 23360471 DOI: 10.1089/ten.tea.2012.0225] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Platelet-rich plasma (PRP), a cocktail of platelet growth factors and bioactive proteins, has been proposed as a therapeutic agent to restore damaged articular cartilage. We report the biological effect of the platelet lysate (PL), a PRP derivative, on primary human articular chondrocytes cultured under both physiological and inflammatory conditions. When added to the culture medium, PL induced a strong mitogenic response in the chondrocytes. The in vitro expanded cell population maintained a chondrogenic redifferentiation potential as revealed by micromass culture in vitro and ectopic cartilage formation in vivo. Further, in chondrocytes cultured in the presence of the proinflammatory cytokine interleukin-1α (IL-1α), the PL induced a drastic enhancement of the synthesis of the cytokines IL-6 and IL-8 and of neutrophil-gelatinase associated lipocalin, a lipocalin expressed during chondrocyte differentiation and inflammation. These events were mediated by the p38 MAP kinase and NF-κB pathways. We observed that inflammatory stimuli activated phospo-MAP kinase-activated protein kinase 2, a direct target of p38. The proinflammatory effect of the PL was a transient phenomenon; after an initial upregulation, we observed significant reduction of the NF-κB activity together with the repression of the inflammatory enzyme cyclooxygenase-2. Moreover, the medium of chondrocytes cultured in the simultaneous presence of PL and IL-1α, showed a significant enhancement of the chemoattractant activity versus untreated chondrocytes. Our findings support the concept that the platelet products have a direct beneficial effect on articular chondrocytes and could drive in sequence a transient activation and the resolution of the inflammatory process, thus providing a rational for their use as therapeutic agents in cartilage inflammation and damage.
Collapse
Affiliation(s)
- Rui Cruz Pereira
- Dipartimento di Medicina Sperimentale, Universita' di Genova, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
100
|
Jules J, Maiguel D, Hudson BI. Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One 2013; 8:e78267. [PMID: 24260107 PMCID: PMC3832623 DOI: 10.1371/journal.pone.0078267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Abstract
The Receptor for Advanced Glycation End-products (RAGE) is a multi-ligand receptor present on most cell types. Upregulation of RAGE is seen in a number of pathological states including, inflammatory and vascular disease, dementia, diabetes and various cancers. We previously demonstrated that alternative splicing of the RAGE gene is an important mechanism which regulates RAGE signaling through the production of soluble ligand decoy isoforms. However, no studies have identified any alternative splice variants within the intracellular region of RAGE, a region critical for RAGE signaling. Herein, we have cloned and characterized a novel splice variant of RAGE that has a truncated intracellular domain (RAGEΔICD). RAGEΔICD is prevalent in both human and mouse tissues including lung, brain, heart and kidney. Expression of RAGEΔICD in C6 glioma cells impaired RAGE-ligand induced signaling through various MAP kinase pathways including ERK1/2, p38 and SAPK/JNK. Moreover, RAGEΔICD significantly affected tumor cell properties through altering cell migration, invasion, adhesion and viability in C6 glioma cells. Furthermore, C6 glioma cells expressing RAGEΔICD exhibited drastic inhibition on tumorigenesis in soft agar assays. Taken together, these data indicate that RAGEΔICD represents a novel endogenous mechanism to regulate RAGE signaling. Significantly, RAGEΔICD could play an important role in RAGE related disease states through down regulation of RAGE signaling.
Collapse
Affiliation(s)
- Joel Jules
- Division of Endocrinology, Diabetes & Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Dony Maiguel
- Division of Nephrology and Hypertension, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Barry I. Hudson
- Division of Endocrinology, Diabetes & Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|