51
|
England WE, Garfio CM, Spitale RC. Chemical Approaches To Analyzing RNA Structure Transcriptome-Wide. Chembiochem 2021; 22:1114-1121. [PMID: 32737940 PMCID: PMC8769560 DOI: 10.1002/cbic.202000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Indexed: 11/09/2022]
Abstract
RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide. Within this review, we outline the recent advancements in chemical probe design for interrogating RNA structures inside cells and discuss the recent advances in our understanding of RNA biology through the lens of chemical probing.
Collapse
Affiliation(s)
- Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Chely M Garfio
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cellular Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
52
|
Andrzejewska A, Zawadzka M, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. In vivo structure of the Ty1 retrotransposon RNA genome. Nucleic Acids Res 2021; 49:2878-2893. [PMID: 33621339 PMCID: PMC7969010 DOI: 10.1093/nar/gkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
Collapse
Affiliation(s)
- Angelika Andrzejewska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
53
|
Abzhanova A, Hirschi A, Reiter NJ. An exon-biased biophysical approach and NMR spectroscopy define the secondary structure of a conserved helical element within the HOTAIR long non-coding RNA. J Struct Biol 2021; 213:107728. [PMID: 33753203 DOI: 10.1016/j.jsb.2021.107728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
HOTAIR is a large, multi-exon spliced non-coding RNA proposed to function as a molecular scaffold and competes with chromatin to bind to histone modification enzymes. Previous sequence analysis and biochemical experiments identified potential conserved regions and characterized the full length HOTAIR secondary structure. Here, we examine the thermodynamic folding properties and structural propensity of the individual exonic regions of HOTAIR using an array of biophysical methods and NMR spectroscopy. We demonstrate that different exons of HOTAIR contain variable degrees of heterogeneity, and identify one exonic region, exon 4, that adopts a stable and compact fold under low magnesium concentrations. Close agreement of NMR spectroscopy and chemical probing unambiguously confirm conserved base pair interactions within the structural element, termed helix 10 of exon 4, located within domain I of human HOTAIR. This combined exon-biased and integrated biophysical approach introduces a new strategy to examine conformational heterogeneity in lncRNAs and emphasizes NMR as a key method to validate base pair interactions and corroborate large RNA secondary structures.
Collapse
Affiliation(s)
- Ainur Abzhanova
- Department of Chemistry, Marquette University, Milwaukee 53233, WI, United States
| | - Alexander Hirschi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville 37205-0146, TN, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee 53233, WI, United States.
| |
Collapse
|
54
|
Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods 2021; 196:56-67. [PMID: 33662561 DOI: 10.1016/j.ymeth.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Exonic circular RNAs (circRNAs) are RNA molecules that are covalently closed by back-splicing via canonical splicing machinery. Despite overlapping sequences, exon circularization generates RNA secondary structures through intramolecular base-pairing that are different from the linear transcript. Here we review factors that may affect circRNA structure and how structure affects circRNA function and regulation. We highlight considerations for RNA sequencing and expression measurement to ensure highly structured circRNAs are accurately represented by the data and discuss issues that need to be addressed in generating circRNAs to recapitulate their endogenous structures. We conclude our review by discussing experimental strategies on revealing the varied roles of RNA structure in circRNA biogenesis, function and decay.
Collapse
|
55
|
Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 2021; 22:183-195. [PMID: 32632317 PMCID: PMC7785677 DOI: 10.1038/s41580-020-0264-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid-liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA-protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.
Collapse
Affiliation(s)
- Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Whitman Center, Marine Biology Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
56
|
Schmidt K, Weidmann CA, Hilimire TA, Yee E, Hatfield BM, Schneekloth JS, Weeks KM, Novina CD. Targeting the Oncogenic Long Non-coding RNA SLNCR1 by Blocking Its Sequence-Specific Binding to the Androgen Receptor. Cell Rep 2021; 30:541-554.e5. [PMID: 31940495 DOI: 10.1016/j.celrep.2019.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/30/2018] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators of numerous physiological processes and diseases, especially cancers. However, development of lncRNA-based therapies is limited because the mechanisms of many lncRNAs are obscure, and interactions with functional partners, including proteins, remain uncharacterized. The lncRNA SLNCR1 binds to and regulates the androgen receptor (AR) to mediate melanoma invasion and proliferation in an androgen-independent manner. Here, we use biochemical analyses coupled with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing to show that the N-terminal domain of AR binds a pyrimidine-rich motif in an unstructured region of SLNCR1. This motif is predictive of AR binding, as we identify an AR-binding motif in lncRNA HOXA11-AS-203. Oligonucleotides that bind either the AR N-terminal domain or the AR RNA motif block the SLNCR1-AR interaction and reduce SLNCR1-mediated melanoma invasion. Delivery of oligos that block SLNCR1-AR interaction thus represent a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Thomas A Hilimire
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Elaine Yee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
57
|
Hurst T, Chen SJ. Sieving RNA 3D Structures with SHAPE and Evaluating Mechanisms Driving Sequence-Dependent Reactivity Bias. J Phys Chem B 2021; 125:1156-1166. [PMID: 33497570 DOI: 10.1021/acs.jpcb.0c11365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemical probing provides local RNA flexibility information at single-nucleotide resolution. In general, SHAPE is thought of as a secondary structure (2D) technology, but we find evidence that robust tertiary structure (3D) information is contained in SHAPE data. Here, we report a new model that achieves a higher correlation between SHAPE data and native RNA 3D structures than the previous 3D structure-SHAPE relationship model. Furthermore, we demonstrate that the new model improves our ability to discern between SHAPE-compatible and -incompatible structures on model decoys. After identifying sequence-dependent bias in SHAPE experiments, we propose a mechanism driving sequence-dependent bias in SHAPE experiments, using replica-exchange umbrella sampling simulations to confirm that the SHAPE sequence bias is largely explained by the stability of the unreacted SHAPE reagent in the binding pocket. Taken together, this work represents multiple practical advances in our mechanistic and predictive understanding of SHAPE technology.
Collapse
Affiliation(s)
- Travis Hurst
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
58
|
Corley M, Flynn RA, Lee B, Blue SM, Chang HY, Yeo GW. Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces. Mol Cell 2020; 80:903-914.e8. [PMID: 33242392 PMCID: PMC8074864 DOI: 10.1016/j.molcel.2020.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
Discovering the interaction mechanism and location of RNA-binding proteins (RBPs) on RNA is critical for understanding gene expression regulation. Here, we apply selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) on in vivo transcripts compared to protein-absent transcripts in four human cell lines to identify transcriptome-wide footprints (fSHAPE) on RNA. Structural analyses indicate that fSHAPE precisely detects nucleobases that hydrogen bond with protein. We demonstrate that fSHAPE patterns predict binding sites of known RBPs, such as iron response elements in both known loci and previously unknown loci in CDC34, SLC2A4RG, COASY, and H19. Furthermore, by integrating SHAPE and fSHAPE with crosslinking and immunoprecipitation (eCLIP) of desired RBPs, we interrogate specific RNA-protein complexes, such as histone stem-loop elements and their nucleotides that hydrogen bond with stem-loop-binding proteins. Together, these technologies greatly expand our ability to study and understand specific cellular RNA interactions in RNA-protein complexes.
Collapse
Affiliation(s)
- Meredith Corley
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Byron Lee
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
59
|
Madden EA, Plante KS, Morrison CR, Kutchko KM, Sanders W, Long KM, Taft-Benz S, Cruz Cisneros MC, White AM, Sarkar S, Reynolds G, Vincent HA, Laederach A, Moorman NJ, Heise MT. Using SHAPE-MaP To Model RNA Secondary Structure and Identify 3'UTR Variation in Chikungunya Virus. J Virol 2020; 94:e00701-20. [PMID: 32999019 PMCID: PMC7925192 DOI: 10.1128/jvi.00701-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus associated with debilitating arthralgia in humans. RNA secondary structure in the viral genome plays an important role in the lifecycle of alphaviruses; however, the specific role of RNA structure in regulating CHIKV replication is poorly understood. Our previous studies found little conservation in RNA secondary structure between alphaviruses, and this structural divergence creates unique functional structures in specific alphavirus genomes. Therefore, to understand the impact of RNA structure on CHIKV biology, we used SHAPE-MaP to inform the modeling of RNA secondary structure throughout the genome of a CHIKV isolate from the 2013 Caribbean outbreak. We then analyzed regions of the genome with high levels of structural specificity to identify potentially functional RNA secondary structures and identified 23 regions within the CHIKV genome with higher than average structural stability, including four previously identified, functionally important CHIKV RNA structures. We also analyzed the RNA flexibility and secondary structures of multiple 3'UTR variants of CHIKV that are known to affect virus replication in mosquito cells. This analysis found several novel RNA structures within these 3'UTR variants. A duplication in the 3'UTR that enhances viral replication in mosquito cells led to an overall increase in the amount of unstructured RNA in the 3'UTR. This analysis demonstrates that the CHIKV genome contains a number of unique, specific RNA secondary structures and provides a strategy for testing these secondary structures for functional importance in CHIKV replication and pathogenesis.IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that causes febrile illness and debilitating arthralgia in humans. CHIKV causes explosive outbreaks but there are no approved therapies to treat or prevent CHIKV infection. The CHIKV genome contains functional RNA secondary structures that are essential for proper virus replication. Since RNA secondary structures have only been defined for a small portion of the CHIKV genome, we used a chemical probing method to define the RNA secondary structures of CHIKV genomic RNA. We identified 23 highly specific structured regions of the genome, and confirmed the functional importance of one structure using mutagenesis. Furthermore, we defined the RNA secondary structure of three CHIKV 3'UTR variants that differ in their ability to replicate in mosquito cells. Our study highlights the complexity of the CHIKV genome and describes new systems for designing compensatory mutations to test the functional relevance of viral RNA secondary structures.
Collapse
Affiliation(s)
- Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth S Plante
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Clayton R Morrison
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrina M Kutchko
- Biology Department, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Bioinformatics and Computational Biology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin M Long
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon Taft-Benz
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Sanjay Sarkar
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grace Reynolds
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather A Vincent
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alain Laederach
- Biology Department, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathanial J Moorman
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
60
|
Abstract
RNA helicases function in all aspects of RNA biology mainly through remodeling structures of RNA and RNA-protein (RNP) complexes. Among them, DEAD-box proteins form the largest family in eukaryotes and have been shown to remodel RNA/RNP structures and clamping of RNA-binding proteins, both in vitro and in vivo. Nevertheless, for the majority of these enzymes, it is largely unclear what RNAs are targeted and where they modulate RNA/RNP structures to promote RNA metabolism. Several methods have been developed to probe secondary and tertiary structures of specific transcripts or whole transcriptomes in vivo. In this chapter, we describe a protocol for identification of RNA structural changes that are dependent on a Saccharomyces cerevisiae DEAD-box helicase Dbp2. Experiments detailed here can be adapted to the study of other RNA helicases and identification of putative remodeling targets in vivo.
Collapse
|
61
|
Graf J, Kretz M. From structure to function: Route to understanding lncRNA mechanism. Bioessays 2020; 42:e2000027. [PMID: 33164244 DOI: 10.1002/bies.202000027] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Indexed: 12/13/2022]
Abstract
RNAs have emerged as a major target for diagnostics and therapeutics approaches. Regulatory nonprotein-coding RNAs (ncRNAs) in particular display remarkable versatility. They can fold into complex structures and interact with proteins, DNA, and other RNAs, thus modulating activity, localization, or interactome of multi-protein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of regulatory control. Interestingly, long noncoding RNAs (lncRNAs) tend to acquire complex secondary and tertiary structures and their function-in many cases-is dependent on structural conservation rather than primary sequence conservation. Whereas for many proteins, structure and its associated function are closely connected, for lncRNAs, the structural domains that determine functionality and its interactome are still not well understood. Numerous approaches for analyzing the structural configuration of lncRNAs have been developed recently. Here, will provide an overview of major experimental approaches used in the field, and discuss the potential benefit of using combinatorial strategies to analyze lncRNA modes of action based on structural information.
Collapse
Affiliation(s)
- Johannes Graf
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
62
|
Li B, Cao Y, Westhof E, Miao Z. Advances in RNA 3D Structure Modeling Using Experimental Data. Front Genet 2020; 11:574485. [PMID: 33193680 PMCID: PMC7649352 DOI: 10.3389/fgene.2020.574485] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
RNA is a unique bio-macromolecule that can both record genetic information and perform biological functions in a variety of molecular processes, including transcription, splicing, translation, and even regulating protein function. RNAs adopt specific three-dimensional conformations to enable their functions. Experimental determination of high-resolution RNA structures using x-ray crystallography is both laborious and demands expertise, thus, hindering our comprehension of RNA structural biology. The computational modeling of RNA structure was a milestone in the birth of bioinformatics. Although computational modeling has been greatly improved over the last decade showing many successful cases, the accuracy of such computational modeling is not only length-dependent but also varies according to the complexity of the structure. To increase credibility, various experimental data were integrated into computational modeling. In this review, we summarize the experiments that can be integrated into RNA structure modeling as well as the computational methods based on these experimental data. We also demonstrate how computational modeling can help the experimental determination of RNA structure. We highlight the recent advances in computational modeling which can offer reliable structure models using high-throughput experimental data.
Collapse
Affiliation(s)
- Bing Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| |
Collapse
|
63
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
64
|
Yang M, Woolfenden HC, Zhang Y, Fang X, Liu Q, Vigh ML, Cheema J, Yang X, Norris M, Yu S, Carbonell A, Brodersen P, Wang J, Ding Y. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res 2020; 48:8767-8781. [PMID: 32652041 PMCID: PMC7470952 DOI: 10.1093/nar/gkaa577] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNA (miRNA)-mediated cleavage is involved in numerous essential cellular pathways. miRNAs recognize target RNAs via sequence complementarity. In addition to complementarity, in vitro and in silico studies have suggested that RNA structure may influence the accessibility of mRNAs to miRNA-induced silencing complexes (miRISCs), thereby affecting RNA silencing. However, the regulatory mechanism of mRNA structure in miRNA cleavage remains elusive. We investigated the role of in vivo RNA secondary structure in miRNA cleavage by developing the new CAP-STRUCTURE-seq method to capture the intact mRNA structurome in Arabidopsis thaliana. This approach revealed that miRNA target sites were not structurally accessible for miRISC binding prior to cleavage in vivo. Instead, we found that the unfolding of the target site structure plays a key role in miRISC activity in vivo. We found that the single-strandedness of the two nucleotides immediately downstream of the target site, named Target Adjacent nucleotide Motif, can promote miRNA cleavage but not miRNA binding, thus decoupling target site binding from cleavage. Our findings demonstrate that mRNA structure in vivo can modulate miRNA cleavage, providing evidence of mRNA structure-dependent regulation of biological processes.
Collapse
Affiliation(s)
- Minglei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiaofeng Fang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qi Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria L Vigh
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Norris
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sha Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, People's Republic of China
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, 46022, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jiawei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, People's Republic of China
- ShanghaiTech University, Shanghai 200031, People’s Republic of China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
65
|
Jara-Espejo M, Fleming AM, Burrows CJ. Potential G-Quadruplex Forming Sequences and N6-Methyladenosine Colocalize at Human Pre-mRNA Intron Splice Sites. ACS Chem Biol 2020; 15:1292-1300. [PMID: 32396327 PMCID: PMC7309266 DOI: 10.1021/acschembio.0c00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maturation of mRNA in humans involves modifying the 5' and 3' ends, splicing introns, and installing epitranscriptomic modifications that are essential for mRNA biogenesis. With respect to epitranscriptomic modifications, they are usually installed in specific consensus motifs, although not all sequences are modified suggesting a secondary structural component to site selection. Using bioinformatic analysis of published data, we identify in human mature-mRNA that potential RNA G-quadruplex (rG4) sequences colocalize with the epitranscriptomic modifications N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). Using the only available pre-mRNA data sets from the literature, we demonstrate colocalization of potential rG4s and m6A was greatest overall and occurred in introns near 5' and 3' splice sites. The loop lengths and sequence context of the m6A-bearing potential rG4s exhibited short loops most commonly comprised of single A nucleotides. This observation is consistent with a literature report of intronic m6A found in SAG (S = C or G) consensus motifs that are also recognized by splicing factors. The localization of m6A and potential rG4s in pre-mRNA at intron splice junctions suggests that these features could function together in alternative splicing. A similar analysis for potential rG4s around sites of Ψ installation or A-to-I editing in mRNA also found a colocalization; however, the frequency was less than that observed with m6A. These bioinformatic analyses guide a discussion of future experiments to understand how noncanonical rG4 structures may collaborate with epitranscriptomic modifications in the human cellular context to impact cellular phenotype.
Collapse
Affiliation(s)
- Manuel Jara-Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
- Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, Piracicaba, CEP 13414-018 Sao Paulo, Brazil
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
66
|
Yu B, Lu Y, Zhang QC, Hou L. Prediction and differential analysis of RNA secondary structure. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0205-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Tomezsko P, Swaminathan H, Rouskin S. Viral RNA structure analysis using DMS-MaPseq. Methods 2020; 183:68-75. [PMID: 32251733 DOI: 10.1016/j.ymeth.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
RNA structure is critically important to RNA viruses in every part of the replication cycle. RNA structure is also utilized by DNA viruses in order to regulate gene expression and interact with host factors. Advances in next-generation sequencing have greatly enhanced the utility of chemical probing in order to analyze RNA structure. This review will cover some recent viral RNA structural studies using chemical probing and next-generation sequencing as well as the advantages of dimethyl sulfate (DMS)-mutational profiling and sequencing (MaPseq). DMS-MaPseq is a robust assay that can easily modify RNA in vitro, in cell and in virion. A detailed protocol for whole-genome DMS-MaPseq from cells transfected with HIV-1 and the structure of TAR as determined by DMS-MaPseq is presented. DMS-MaPseq has the ability to answer a variety of integral questions about viral RNA, including how they change in different environments and when interacting with different host factors.
Collapse
Affiliation(s)
- Phillip Tomezsko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Program in Virology, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | | | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
68
|
Gawroński P, Pałac A, Scharff LB. Secondary Structure of Chloroplast mRNAs In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2020; 9:E323. [PMID: 32143324 PMCID: PMC7154907 DOI: 10.3390/plants9030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023]
Abstract
mRNA secondary structure can influence gene expression, e.g., by influencing translation initiation. The probing of in vivo mRNA secondary structures is therefore necessary to understand what determines the efficiency and regulation of gene expression. Here, in vivo mRNA secondary structure was analyzed using dimethyl sulfate (DMS)-MaPseq and compared to in vitro-folded RNA. We used an approach to analyze specific, full-length transcripts. To test this approach, we chose low, medium, and high abundant mRNAs. We included both monocistronic and multicistronic transcripts. Because of the slightly alkaline pH of the chloroplast stroma, we could probe all four nucleotides with DMS. The structural information gained was evaluated using the known structure of the plastid 16S rRNA. This demonstrated that the results obtained for adenosines and cytidines were more reliable than for guanosines and uridines. The majority of mRNAs analyzed were less structured in vivo than in vitro. The in vivo secondary structure of the translation initiation region of most tested genes appears to be optimized for high translation efficiency.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Pałac
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
69
|
Fessler AB, Dey A, Finis DS, Fowler AJ, Chakrabarti K, Ogle CA. Innately Water-Soluble Isatoic Anhydrides with Modulated Reactivities for RNA SHAPE Analysis. Bioconjug Chem 2020; 31:884-888. [DOI: 10.1021/acs.bioconjchem.0c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
70
|
Mitchell D, Assmann SM, Bevilacqua PC. Probing RNA structure in vivo. Curr Opin Struct Biol 2019; 59:151-158. [PMID: 31521910 DOI: 10.1016/j.sbi.2019.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023]
Abstract
RNA structure underpins many essential functions in biology. New chemical reagents and techniques for probing RNA structure in living cells have emerged in recent years. High-throughput, genome-wide techniques such as Structure-seq2 and DMS-MaPseq exploit nucleobase modification by dimethylsulfate (DMS) to obtain complete structuromes, and are applicable to multiple domains of life and conditions. New reagents such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), glyoxal, and nicotinoyl azide (NAz) greatly expand the capabilities of nucleobase probing in cells. Additionally, ribose-targeting reagents in selective 2'-hydroxyl acylation and primer extension (SHAPE) detect RNA flexibility in vivo. These techniques, coupled with crosslinking nucleobases in psoralen analysis of RNA interactions and structures (PARIS), provide new and diverse ways to elucidate RNA secondary and tertiary structure in vivo and genome-wide.
Collapse
Affiliation(s)
- David Mitchell
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sarah M Assmann
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
71
|
Barik S. In silico structure analysis of alphaviral RNA genomes shows diversity in the evasion of IFIT1-mediated innate immunity. J Biosci 2019; 44:79. [PMID: 31502557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The IFIT (interferon-induced proteins with tetratricopeptide repeats) family constitutes a major arm of the antiviral function of type I interferon (IFN). Human IFIT1, the earliest discovered member of this family, inhibits several viruses of positivestrand RNA genome. IFIT1 specifically recognizes single-stranded RNAwith canonical 7-methylguanylate cap at the 50 end (Cap0), and inhibits their translation by competing with eIF4E (eukaryotic initiation factor 4E), an essential factor for 50Cap recognition. Recently, a novel viral mechanism of IFIT1 suppression was reported, in which an RNA hairpin in the 50 untranslated region (50UTR) of the viral genome prevented recognition by IFIT1 and enhanced virus growth. Here, I have analyzed the in silico predicted structures in the 50UTR of the genomes of the Alphaviruses, a large group of enveloped RNA virus with positive-sense single-stranded genome. The results uncovered a large ensemble of RNA secondary structures of diverse size and shape in the different viruses, which showed little correspondence to the phylogeny of the viruses. Unexpectedly, the 50UTR of several viral genomes in this family did not fold into any structure, suggesting either their extreme sensitivity to IFIT1 or the existence of alternative viral mechanisms of subverting IFIT1 function.
Collapse
|
72
|
Martin S, Blankenship C, Rausch JW, Sztuba-Solinska J. Using SHAPE-MaP to probe small molecule-RNA interactions. Methods 2019; 167:105-116. [DOI: 10.1016/j.ymeth.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023] Open
|
73
|
In silico structure analysis of alphaviral RNA genomes shows diversity in the evasion of IFIT1-mediated innate immunity. J Biosci 2019. [DOI: 10.1007/s12038-019-9897-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
74
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
75
|
Wang J, Williams B, Chirasani VR, Krokhotin A, Das R, Dokholyan NV. Limits in accuracy and a strategy of RNA structure prediction using experimental information. Nucleic Acids Res 2019; 47:5563-5572. [PMID: 31106330 PMCID: PMC6582333 DOI: 10.1093/nar/gkz427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
RNA structural complexity and flexibility present a challenge for computational modeling efforts. Experimental information and bioinformatics data can be used as restraints to improve the accuracy of RNA tertiary structure prediction. Regarding utilization of restraints, the fundamental questions are: (i) What is the limit in prediction accuracy that one can achieve with arbitrary number of restraints? (ii) Is there a strategy for selection of the minimal number of restraints that would result in the best structural model? We address the first question by testing the limits in prediction accuracy using native contacts as restraints. To address the second question, we develop an algorithm based on the distance variation allowed by secondary structure (DVASS), which ranks restraints according to their importance to RNA tertiary structure prediction. We find that due to kinetic traps, the greatest improvement in the structure prediction accuracy is achieved when we utilize only 40-60% of the total number of native contacts as restraints. When the restraints are sorted by DVASS algorithm, using only the first 20% ranked restraints can greatly improve the prediction accuracy. Our findings suggest that only a limited number of strategically selected distance restraints can significantly assist in RNA structure modeling.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Venkata R Chirasani
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rajeshree Das
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
76
|
Busan S, Weidmann CA, Sengupta A, Weeks KM. Guidelines for SHAPE Reagent Choice and Detection Strategy for RNA Structure Probing Studies. Biochemistry 2019; 58:2655-2664. [PMID: 31117385 DOI: 10.1021/acs.biochem.8b01218] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical probing is an important tool for characterizing the complex folded structures of RNA molecules, many of which play key cellular roles. Electrophilic SHAPE reagents create adducts at the 2'-hydroxyl position on the RNA backbone of flexible ribonucleotides with relatively little dependence on nucleotide identity. Strategies for adduct detection such as mutational profiling (MaP) allow accurate, automated calculation of relative adduct frequencies for each nucleotide in a given RNA or group of RNAs. A number of alternative reagents and adduct detection strategies have been proposed, especially for use in living cells. Here we evaluate five SHAPE reagents: three previously well-validated reagents 1M7 (1-methyl-7-nitroisatoic anhydride), 1M6 (1-methyl-6-nitroisatoic anhydride), and NMIA ( N-methylisatoic anhydride), one more recently proposed NAI (2-methylnicotinic acid imidazolide), and one novel reagent 5NIA (5-nitroisatoic anhydride). We clarify the importance of carefully designed software in reading out SHAPE experiments using massively parallel sequencing approaches. We examine SHAPE modification in living cells in diverse cell lines, compare MaP and reverse transcription-truncation as SHAPE adduct detection strategies, make recommendations for SHAPE reagent choice, and outline areas for future development.
Collapse
Affiliation(s)
- Steven Busan
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Chase A Weidmann
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Arnab Sengupta
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
77
|
Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods 2019; 167:66-77. [PMID: 31128236 DOI: 10.1016/j.ymeth.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Exciting discoveries of naturally occurring ligand-sensing and disease-linked noncoding RNAs have promoted significant interests in understanding RNA-small molecule interactions. NMR spectroscopy is a powerful tool for characterizing intermolecular interactions. In this review, we describe protocols and approaches for applying NMR spectroscopy to investigate interactions between RNA and small molecules. We review protocols for RNA sample preparation, methods for identifying RNA-binding small molecules, approaches for mapping RNA-small molecule interactions, determining complex structures, and characterizing binding kinetics. We hope this review will provide a guideline to streamline NMR applications in studying RNA-small molecule interactions, facilitating both basic mechanistic understandings of RNA functions and translational efforts in developing RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
78
|
Dans PD, Gallego D, Balaceanu A, Darré L, Gómez H, Orozco M. Modeling, Simulations, and Bioinformatics at the Service of RNA Structure. Chem 2019. [DOI: 10.1016/j.chempr.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
79
|
3′-UTRs and the Control of Protein Expression in Space and Time. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:133-148. [DOI: 10.1007/978-3-030-31434-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
80
|
Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis. Methods 2018; 155:30-40. [PMID: 30503825 DOI: 10.1016/j.ymeth.2018.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Transcripts have intrinsic propensity to form stable secondary structure that is fundamental to regulate RNA transcription, splicing, translation, RNA localization and turnover. Numerous methods that integrate chemical reactions with next-generation sequencing (NGS) have been applied to study in vivo RNA structure, providing new insights into RNA biology. Dimethyl sulfate (DMS) probing coupled with mutational profiling through NGS (DMS-MaPseq) is a newly developed method for revealing genome-wide or target-specific RNA structure. Herein, we present our experimental protocol of a modified DMS-MaPseq method for plant materials. The DMS treatment condition was optimized, and library preparation procedures were simplified. We also provided custom scripts for bioinformatic analysis of genome-wide DMS-MaPseq data. Bioinformatic results showed that our method could generate high-quality and reproducible data. Further, we assessed sequencing depth and coverage for genome-wide RNA structure profiling in Arabidopsis, and provided two examples of in vivo structure of mobile RNAs. We hope that our modified DMS-MaPseq method will serve as a powerful tool for analyzing in vivo RNA structurome in plants.
Collapse
|
81
|
Lozano G, Francisco-Velilla R, Martinez-Salas E. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Open Biol 2018; 8:rsob.180155. [PMID: 30487301 PMCID: PMC6282068 DOI: 10.1098/rsob.180155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Beyond the general cap-dependent translation initiation, eukaryotic organisms use alternative mechanisms to initiate protein synthesis. Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of translation using a cap-independent mechanism. However, their lack of primary sequence and secondary RNA structure conservation, as well as the diversity of host factor requirement to recruit the ribosomal subunits, suggest distinct types of IRES elements. In spite of this heterogeneity, conserved motifs preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES-driven translation. This conservation brings the question of whether IRES elements could consist of basic building blocks, which upon evolutionary selection result in functional elements with different properties. Although RNA-binding proteins (RBPs) perform a crucial role in the assembly of ribonucleoprotein complexes, the versatility and plasticity of RNA molecules, together with their high flexibility and dynamism, determines formation of macromolecular complexes in response to different signals. These properties rely on the presence of short RNA motifs, which operate as modular entities, and suggest that decomposition of IRES elements in short modules could help to understand the different mechanisms driven by these regulatory elements. Here we will review evidence suggesting that model IRES elements consist of the combination of short modules, providing sites of interaction for ribosome subunits, eIFs and RBPs, with implications for definition of criteria to identify novel IRES-like elements genome wide.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
82
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|