51
|
Zhang P, Niemelä E, López Cerdá S, Sorvisto P, Virtanen J, Santos HA. Host-Directed Virus-Mimicking Particles Interacting with the ACE2 Receptor Competitively Block Coronavirus SARS-CoV-2 Entry. NANO LETTERS 2024; 24:4064-4071. [PMID: 38466130 PMCID: PMC11010226 DOI: 10.1021/acs.nanolett.3c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Herein, we fabricate host-directed virus-mimicking particles (VMPs) to block the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells through competitive inhibition enabled by their interactions with the angiotensin-converting enzyme 2 (ACE2) receptor. A microfluidic platform is developed to fabricate a lipid core of the VMPs with a narrow size distribution and a low level of batch-to-batch variation. The resultant solid lipid nanoparticles are decorated with an average of 231 or 444 Spike S1 RBD protrusions mimicking either the original SARS-CoV-2 or its delta variant, respectively. Compared with that of the nonfunctionalized core, the cell uptake of the functionalized VMPs is enhanced with ACE2-expressing cells due to their strong interactions with the ACE2 receptor. The fabricated VMPs efficiently block the entry of SARS-CoV-2 pseudovirions into host cells and suppress viral infection. Overall, this study provides potential strategies for preventing the spread of SARS-CoV-2 or other coronaviruses employing the ACE2 receptor to enter into host cells.
Collapse
Affiliation(s)
- Pei Zhang
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- Finncure
Oy, Lars Sonckin Kaari
14, Espoo 02600, Finland
| | - Erik Niemelä
- Finncure
Oy, Lars Sonckin Kaari
14, Espoo 02600, Finland
| | - Sandra López Cerdá
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Pasi Sorvisto
- Finncure
Oy, Lars Sonckin Kaari
14, Espoo 02600, Finland
| | - Jani Virtanen
- Finncure
Oy, Lars Sonckin Kaari
14, Espoo 02600, Finland
| | - Hélder A. Santos
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- Department
of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
52
|
Chiamah OC, Atieno D, Karani L, Chepng'etich J, Osano M, Gachie B, Kipkoech G, Jepkorir M, Ndungu JW, Kuria J, Kimani F, Njeru SN, Gathirwa JW. Evaluation of the antimalarial properties of Solanum incanum L. leaf extract fractions and its ability to downregulate delta aminolevulinate dehydratase to prevent the establishment of malaria infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117613. [PMID: 38185259 DOI: 10.1016/j.jep.2023.117613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum incanum L. is commonly used in traditional herbal medicine (THM) in Kenya for treating various ailments. Recent developments in disease treatment have introduced the concept of host-directed therapy (HDT). This approach involves targeting factors within the host cell that can impede the growth or replication of a pathogen. One such host factor is delta aminolevulinate dehydratase (δ-ALAD), the second enzyme in the heme biosynthesis pathway utilized by Plasmodium for growth. Studies using mice models have shown an increase in δ-ALAD expression during Plasmodium berghei infection. Another plant in the Solanum genus, S. guaranticum, has been found to inhibit δ-ALAD in red blood cells in vitro and in the brain in vivo. Is it possible that the bioactive compounds in S. incanum extracts could also be effective in HDT for malaria treatment? AIM OF STUDY To better assess the effectiveness of S. incanum leaf extracts as a curative and prophylaxis in malaria parasite infection, and to test the plant's ability to decrease δ-ALAD expression. MATERIALS AND METHODS The leaves of S. incanum were collected, dried, and pulverized before being subjected to a successive extraction protocol to obtain crude, hexane, ethyl acetate, and aqueous extract fractions. Phytochemical analysis was conducted on all extract fractions, followed by GC-MS analysis of the fraction with the most potent antimalarial activity. An acute toxicity study was also performed on the extracted fractions. The potency of the extract fractions as curative and prophylactic antimalarial was then evaluated in THM using Plasmodium berghei-infected mice at a dose of 100 mg/kg. The extract fraction with the highest activity was further evaluated at varying doses and its effect on δ-ALAD was measured using RT-qPCR. The percentage of parasitemia and chemosuppression, and mean survival time were used as indices of activity. RESULTS Phytochemical analysis revealed that the ethyl acetate and aqueous extract fractions contained high terpenoids, flavonoids, and phenols levels. However, alkaloids were only present in moderate quantities in the aqueous extract, and quinones were found in high levels only in the crude extract. Additionally, all extract fractions contained saponins in high levels but lacked tannins. While the plant extracts were found to be non-toxic, they did not exhibit curative antimalarial activity. However, all extract fractions showed prophylactic antimalarial activity, with the ethyl acetate extract having the highest percentage of chemosuppression even at doses of 250 and 1000 mg/kg. In the negative control, the expression of δ-ALAD was 5.4-fold, but this was significantly reduced to 2.3-fold when mice were treated with 250 mg/kg of the ethyl acetate fraction. GC-MS analysis of the ethyl acetate fraction revealed high percentages of 2-methyloctacosane, tetracosane, and decane. CONCLUSION The fractions extracted from S. incanum leaves have been found to possess only antimalarial prophylactic properties, with the ethyl acetate extract fraction showing the most effective results. The activity of this fraction may be attributed to its ability to decrease the expression of δ-ALAD, as it contains an alkane compound implicated with enzyme-inhibitory activity.
Collapse
Affiliation(s)
- Ogocukwu Caroline Chiamah
- Department of Biology, Faculty of Biological Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Diana Atieno
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lewis Karani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jean Chepng'etich
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Maureen Osano
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Beatrice Gachie
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gilbert Kipkoech
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Mercy Jepkorir
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jecinta Wanjiru Ndungu
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - James Kuria
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sospeter Ngoci Njeru
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jeremiah Waweru Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
53
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
54
|
Maure A, Lawarée E, Fiorentino F, Pawlik A, Gona S, Giraud-Gatineau A, Eldridge MJG, Danckaert A, Hardy D, Frigui W, Keck C, Gutierrez C, Neyrolles O, Aulner N, Mai A, Hamon M, Barreiro LB, Brodin P, Brosch R, Rotili D, Tailleux L. A host-directed oxadiazole compound potentiates antituberculosis treatment via zinc poisoning in human macrophages and in a mouse model of infection. PLoS Biol 2024; 22:e3002259. [PMID: 38683873 PMCID: PMC11081512 DOI: 10.1371/journal.pbio.3002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/09/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.
Collapse
Affiliation(s)
- Alexandra Maure
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Emeline Lawarée
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Alexandre Pawlik
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Saideep Gona
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | | | | | - Anne Danckaert
- Institut Pasteur, Université Paris Cité, UTechS BioImaging-C2RT, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Camille Keck
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Aulner
- Institut Pasteur, Université Paris Cité, UTechS BioImaging-C2RT, Paris, France
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Mélanie Hamon
- Institut Pasteur, Université Paris Cité, Chromatine et Infection unit, Paris, France
| | - Luis B. Barreiro
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Priscille Brodin
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Ludovic Tailleux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| |
Collapse
|
55
|
Wu Y, Gong X, Shen J, Zhu K. Postantibiotic leukocyte enhancement-mediated reduction of intracellular bacteria by macrophages. J Adv Res 2024; 58:117-128. [PMID: 37290606 PMCID: PMC10982861 DOI: 10.1016/j.jare.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Potentiation of the bactericidal activities of leukocytes, including macrophages, upon antibacterial agent administration has been observed for several decades and is summarized as the postantibiotic leukocyte enhancement (PALE) theory. Antibiotics-induced bacterial sensitization to leukocytes is commonly recognized as the mechanism of PALE. However, the degree of sensitization drastically varies with antibiotic classes, and little is known about whether and how the potentiation of leukocytes contributes to PALE. OBJECTIVES In this study, we aim to develop a mechanistic understanding of PALE by investigating the immunoregulation of traditional antibiotics on macrophages. METHODS Interaction models between bacteria and macrophages were constructed to identify the effects of different antibiotics on the bactericidal activities of macrophages. Oxygen consumption rate, expression of oxidases, and antioxidants were then measured to evaluate the effects of fluoroquinolones (FQs) on the oxidative stress of macrophages. Furthermore, the modulation in endoplasmic reticulum stress and inflammation upon antibiotic treatment was detected to analyze the mechanisms. At last, the peritoneal infection model was utilized to verify the PALE in vivo. RESULTS Enrofloxacin significantly reduced the intracellular burden of diverse bacterial pathogens through promoting the accumulation of reactive oxygen species (ROS). The upregulated oxidative response accordingly reprograms the electron transport chain with decreased production of antioxidant enzymes to reduce internalized pathogens. Additionally, enrofloxacin modulated the expression and spatiotemporal localization of myeloperoxidase (MPO) to facilitate ROS accumulation to target invaded bacteria and downregulated inflammatory response to alleviate cellular injury. CONCLUSION Our findings demonstrate the crucial role of leukocytes in PALE, shedding light on the development of new host-directed antibacterial therapies and the design of rational dosage regimens.
Collapse
Affiliation(s)
- Yifan Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Gong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
56
|
Winstel V, Abt ER, Le TM, Radu CG. Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation. eLife 2024; 12:RP91157. [PMID: 38512723 PMCID: PMC10957174 DOI: 10.7554/elife.91157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anticancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.
Collapse
Affiliation(s)
- Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection ResearchHannoverGermany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
57
|
Groomes PV, Paul AS, Duraisingh MT. Inhibition of malaria and babesiosis parasites by putative red blood cell targeting small molecules. Front Cell Infect Microbiol 2024; 14:1304839. [PMID: 38572319 PMCID: PMC10988762 DOI: 10.3389/fcimb.2024.1304839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024] Open
Abstract
Background Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.
Collapse
Affiliation(s)
| | | | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
58
|
Nieuwenhuizen NE, Nouailles G, Sutherland JS, Zyla J, Pasternack AH, Heyckendorf J, Frye BC, Höhne K, Zedler U, Bandermann S, Abu Abed U, Brinkmann V, Gutbier B, Witzenrath M, Suttorp N, Zissel G, Lange C, Ritvos O, Kaufmann SHE. Activin A levels are raised during human tuberculosis and blockade of the activin signaling axis influences murine responses to M. tuberculosis infection. mBio 2024; 15:e0340823. [PMID: 38376260 PMCID: PMC10936190 DOI: 10.1128/mbio.03408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Activin A strongly influences immune responses; yet, few studies have examined its role in infectious diseases. We measured serum activin A levels in two independent tuberculosis (TB) patient cohorts and in patients with pneumonia and sarcoidosis. Serum activin A levels were increased in TB patients compared to healthy controls, including those with positive tuberculin skin tests, and paralleled severity of disease, assessed by X-ray scores. In pneumonia patients, serum activin A levels were also raised, but in sarcoidosis patients, levels were lower. To determine whether blockade of the activin A signaling axis could play a functional role in TB, we harnessed a soluble activin type IIB receptor fused to human IgG1 Fc, ActRIIB-Fc, as a ligand trap in a murine TB model. The administration of ActRIIB-Fc to Mycobacterium tuberculosis-infected mice resulted in decreased bacterial loads and increased numbers of CD4 effector T cells and tissue-resident memory T cells in the lung. Increased frequencies of tissue-resident memory T cells corresponded with downregulated T-bet expression in lung CD4 and CD8 T cells. Altogether, the results suggest a disease-exacerbating role of ActRIIB signaling pathways. Serum activin A may be useful as a biomarker for diagnostic triage of active TB or monitoring of anti-tuberculosis therapy. IMPORTANCE Tuberculosis remains the leading cause of death by a bacterial pathogen. The etiologic agent of tuberculosis, Mycobacterium tuberculosis, can remain dormant in the infected host for years before causing disease. Significant effort has been made to identify biomarkers that can discriminate between latently infected and actively diseased individuals. We found that serum levels of the cytokine activin A were associated with increased lung pathology and could discriminate between active tuberculosis and tuberculin skin-test-positive healthy controls. Activin A signals through the ActRIIB receptor, which can be blocked by administration of the ligand trap ActRIIB-Fc, a soluble activin type IIB receptor fused to human IgG1 Fc. In a murine model of tuberculosis, we found that ActRIIB-Fc treatment reduced mycobacterial loads. Strikingly, ActRIIB-Fc treatment significantly increased the number of tissue-resident memory T cells. These results suggest a role for ActRIIB signaling pathways in host responses to Mycobacterium tuberculosis and activin A as a biomarker of ongoing disease.
Collapse
Affiliation(s)
- Natalie E. Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jayne S. Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Joanna Zyla
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Arja H. Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn C. Frye
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Höhne
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Ulrike Abu Abed
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Gernot Zissel
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - the CAPNETZ Study group
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - the DZIF TB study group
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
59
|
Kumar S, Dubey R, Mishra R, Gupta S, Dwivedi VD, Ray S, Jha NK, Verma D, Tsai LW, Dubey NK. Repurposing of SARS-CoV-2 compounds against Marburg Virus using MD simulation, mm/GBSA, PCA analysis, and free energy landscape. J Biomol Struct Dyn 2024:1-20. [PMID: 38450706 DOI: 10.1080/07391102.2024.2323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
The significant mortality rate associated with Marburg virus infection made it the greatest hazard among infectious diseases. Drug repurposing using in silico methods has been crucial in identifying potential compounds that could prevent viral replication by targeting the virus's primary proteins. This study aimed at repurposing the drugs of SARS-CoV-2 for identifying potential candidates against the matrix protein VP40 of the Marburg virus. Virtual screening was performed where the control compound, Nilotinib, showed a binding score of -9.99 kcal/mol. Based on binding scores, hit compounds 9549298, 11960895, 44545852, 51039094, and 89670174 were selected that had a lower binding score than the control. Subsequent molecular dynamics (MD) simulation revealed that compound 9549298 consistently formed a hydrogen bond with the residue Gln290. This was observed both in molecular docking and MD simulation poses, indicating a strong and significant interaction with the protein. 11960895 had the most stable and consistent RMSD pattern exhibited in 100 ns simulation, while 9549298 had the most identical RMSD plot compared to the control molecule. MM/PBSA analysis showed that the binding free energy (ΔG) of 9549298 and 11960895 was lower than the control, with -30.84 and -38.86 kcal/mol, respectively. It was observed by the PCA (principal component analysis) and FEL (free energy landscape) analysis that compounds 9549298 and 11960895 had lesser conformational variation. Overall, this study proposed 9549298 and 11960895 as potential binders of VP40 MARV that can cause its inhibition, however it inherently lacks experimental validation. Furthermore, the study proposes in-vitro experiments as the next step to validate these computational findings, offering a practical approach to further explore these compounds' potential as antiviral agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Greater Noida, UP, India
| | - Subhasree Ray
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
60
|
Khatana K, Gupta A, Ghosal A, Dey P, Zafar F, Srivastava A, Verma P. In silico identification and validation of phenolic lipids as potential inhibitor against bacterial and viral strains. J Biomol Struct Dyn 2024; 42:2525-2538. [PMID: 37211872 DOI: 10.1080/07391102.2023.2212811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/16/2023] [Indexed: 05/23/2023]
Abstract
The recurrence of coronavirus disease and bacterial resistant strains has drawn attention to naturally occurring bioactive molecules that can demonstrate broad-spectrum efficacy against bacteria as well as viral strains. The drug-like abilities of naturally available "anacardic acids" (AA) and their derivatives against different bacterial and viral protein targets through in-silico tools were explored. Three viral protein targets [P DB: 6Y2E (SARS-CoV-2), 1AT3 (Herpes) and 2VSM (Nipah)] and four bacterial protein targets [P DB: 2VF5 (Escherichia coli), 2VEG (Streptococcus pneumoniae), 1JIJ (Staphylococcus aureus) and 1KZN (E. coli)] were selected to evaluate the activity of bioactive AA molecules. The potential ability to inhibit the progression of microbes has been discussed based on the structure, functionality and interaction ability of these molecules on the selected protein targets for multi-disease remediation. The number of interactions, full-fitness value and energy of the ligand-target system were determined from the docked structure in SwissDock and Autodock Vina. In order to compare the efficacy of these active derivatives to that of commonly used drugs against bacteria and viruses, a few of the selected molecules were subjected to 100 ns long MD simulations. It was found that the phenolic groups and alkyl chains of AA derivatives are more likely to bind with microbial targets, that could be responsible for the improved activity against these targets. The results suggest that the proposed AA derivatives have demonstrated potential to become active drug ingredients against microbial protein targets. Further, experimental investigations are essential for clinical verification of the drug-like abilities of AA derivatives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kavita Khatana
- Department of Chemical Engineering, School of Engineering, Shiv Nadar Institutions of Eminence Deemed to be University, Greater Noida, India
| | - Anjali Gupta
- School of Basic and Applied Science, Galgotias University, Greater Noida, India
| | - Anujit Ghosal
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
- Department of Food and Human Nutritional Sciences, The University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, The University of Manitoba, Winnipeg, MB, Canada
| | - Pinki Dey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fahmina Zafar
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | | | - Priya Verma
- Department of Physics, University of Lucknow, Lucknow, India
| |
Collapse
|
61
|
Kelishomi FZ, Nikkhahi F, Amereh S, Ghayyaz F, Marashi SMA, Javadi A, Shahbazi G, Khakpour M. Evaluation of the therapeutic effect of a novel bacteriophage in the healing process of infected wounds with Klebsiella pneumoniae in mice. J Glob Antimicrob Resist 2024; 36:371-378. [PMID: 38307250 DOI: 10.1016/j.jgar.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/23/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Bacterial wound infections have recently become a threat to public health. The emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae highlights the need for a new treatment method. The effectiveness of bacteriophages has been observed for several infections in animal models and human trials. In this study, we assessed the effectiveness of bacteriophages in the treatment of wound infections associated with MDR and biofilm-producing K. pneumoniae and compared its effectiveness with that of gentamicin. METHODS A lytic phage against MDR K. pneumoniae was isolated and identified. The effectiveness of phages in the treatment of wound infection in mice was investigated and its effectiveness was compared with gentamicin. RESULTS The results showed that the isolated phage belonged to the Drexlerviridae family. This phage acts like gentamicin and effectively eliminates bacteria from wounds. In addition, mice in the phage therapy group were in better physical condition. CONCLUSION Our results demonstrated the success of phage therapy in the treatment of mice wounds infected with K. pneumoniae. These results indicate the feasibility of topical phage therapy for the safe treatment of wound infections.
Collapse
Affiliation(s)
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Samira Amereh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Ghayyaz
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Amir Javadi
- Department of Community Medicine, School of Medicine, Qazvin University of medical Sciences, Qazvin, Iran
| | - Gholamhassan Shahbazi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohadeseh Khakpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
62
|
Chung E, Jeong D, Mok J, Jeon D, Kang HY, Kim H, Kim H, Choi H, Kang YA. Relationship between metformin use and mortality in tuberculosis patients with diabetes: a nationwide cohort study. Korean J Intern Med 2024; 39:306-317. [PMID: 38317270 PMCID: PMC10918385 DOI: 10.3904/kjim.2023.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND/AIMS To determine whether metformin, which is considered a host-directed therapy for tuberculosis (TB), is effective in improving the prognosis of patients with TB and diabetes mellitus (DM), who have higher mortality than those without DM. METHODS This cohort study included patients who were registered as having TB in the National Tuberculosis Surveillance System. The medical and death records of matched patients were obtained from the National Health Information Database and Statistics Korea, respectively, and data from 2011 to 2017 were collected retrospectively. We classified patients according to metformin use among participants who used diabetes drugs for more than 28 days. The primary outcome was all-cause mortality during TB treatment. Double propensity score adjustment was applied to reduce the effects of confounding and multivariable Cox proportional hazard models were used to estimate adjusted hazard ratio (aHR) with 95% confidence interval (CI). RESULTS The all-cause mortality rate during TB treatment was lower (9.5% vs. 12.4%, p < 0.01) in the metformin user group. The hazard of death due to all causes after double propensity score adjustment was also lower in the metformin user group (aHR 0.76, 95% CI 0.67-0.86, p < 0.01). There was no significant difference in mortality between metformin users and non-users for TB-related deaths (p = 0.22); however, there was a significant difference in the non-TB-related deaths (p < 0.01). CONCLUSION Metformin use in patients with TB-DM co-prevalence is associated with reduced all-cause mortality, suggesting the potential for metformin adjuvant therapy in these patients.
Collapse
Affiliation(s)
- Eunki Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Dawoon Jeong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Jeongha Mok
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan,
Korea
| | - Doosoo Jeon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan,
Korea
| | - Hee-Yeon Kang
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang,
Korea
| | - Heejin Kim
- Jeju Double Cross Clinic, Korean National Tuberculosis Association, Jeju,
Korea
| | - Heesun Kim
- Department of Health Policy Research, National Evidence-Based Healthcare Collaborating Agency, Seoul,
Korea
| | - Hongjo Choi
- Department of Preventive Medicine, Konyang University College of Medicine, Daejeon,
Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
63
|
Yang W, Li Z, Yang T, Li Y, Xie Z, Feng L, Peng Z, Liu J. Experts' Consensus on the Management of Respiratory Disease Syndemic. China CDC Wkly 2024; 6:131-138. [PMID: 38476822 PMCID: PMC10926044 DOI: 10.46234/ccdcw2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Affiliation(s)
- Weizhong Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Zhongjie Li
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Ting Yang
- National Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yanming Li
- Department of Pulmonary and Critical Care Medicine, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Zhibin Peng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of PublicHealth, Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health,Peking University, Beijing, China
| |
Collapse
|
64
|
Weigert Muñoz A, Zhao W, Sieber SA. Monitoring host-pathogen interactions using chemical proteomics. RSC Chem Biol 2024; 5:73-89. [PMID: 38333198 PMCID: PMC10849124 DOI: 10.1039/d3cb00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.
Collapse
Affiliation(s)
- Angela Weigert Muñoz
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Germany
| |
Collapse
|
65
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
66
|
Sager P, Kaiser A, Schumann S, Ludescher B, Niedermaier M, Schmidt I, Och K, Dings C, Lehr T, Brysch W. Efficacy and safety of MP1032 plus standard-of-care compared to standard-of-care in hospitalised patients with COVID-19: a multicentre, randomised double-blind, placebo-controlled phase 2a trial. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100810. [PMID: 38076629 PMCID: PMC10704330 DOI: 10.1016/j.lanepe.2023.100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 06/27/2024]
Abstract
BACKGROUND SARS-CoV-2 infections still have a significant impact on the global population. The existing vaccinations have contributed to reducing the severe disease courses, decreasing hospitalisations, and lowering the mortality rate. However, due to the variability of COVID-19 symptoms, the emergence of new variants and the uneven global distribution of vaccines there is still a great need for new therapy options. One promising approach is provided by host-directed therapies. We assessed here the efficacy and safety of MP1032, a host-directed anti-viral/anti-inflammatory drug in hospitalised patients with moderate to severe COVID-19. METHODS In a randomised, double-blind, placebo-controlled, Phase IIa study, patients were randomised 2:1 to receive either 300 mg MP032 bid + Standard-of-Care (SoC) or placebo bid + SoC for 28 days. Eligible patients were ≥18 years old, tested positive for SARS-CoV-2, and had moderate to severe COVID-19 symptoms. The study spanned 20 sites in six countries (Bulgaria, France, Hungary, Italy, Romania, Spain), assessing disease progression according the NIAID scale as the primary outcome on day 14. Secondary objectives included disease progression (day 28), disease resolution (days 14 and 28), mortality rate, COVID-19 related parameters and safety. Exposure-response analyses were performed, linking MP1032 to COVID-19 biomarkers (eGFR, D-dimer). FINDINGS 132 patients were enrolled to receive MP1032 + SoC (n = 87) or placebo + SoC (n = 45). The patients were all white or Caucasian with a mean (median) age of 60.5 (63) years. Overall, only 10 patients were vaccinated, 5 in each group. No significant risk difference of disease progression could be detected between groups on both day 14 (9.8% MP1032 vs. 11.6% placebo) and day 28 with MH common risk differences of -0.276% (95% CI, -11.634 to 11.081; p = 0.962) and 1.722% (95% CI, -4.576 to 8.019; p = 0.592), respectively.The treatment with MP1032 + SoC was safe and well-tolerated. Overall, 182 TEAEs including 10 SAEs were reported in 53.5% (46/86) of patients of the verum group and in 57.8% (26/45) of patients of the placebo group; the SAEs occurred in 5.8% (5/86) and 6.7% (3/45) of verum and placebo patients, respectively. None of the SAEs was considered as related. INTERPRETATION Despite the study's limitation in size and the variation in concurrent SoCs, these findings warrant further investigation of MP1032 as a host-directed anti-viral drug candidate. FUNDING The study was funded by the COVID-19 Horizon Europe work programme and MetrioPharm AG.
Collapse
Affiliation(s)
- Petra Sager
- MetrioPharm Deutschland GmbH, Am Borsigturm 100, 13507, Berlin, Germany
| | - Astrid Kaiser
- MetrioPharm Deutschland GmbH, Am Borsigturm 100, 13507, Berlin, Germany
| | - Sara Schumann
- MetrioPharm Deutschland GmbH, Am Borsigturm 100, 13507, Berlin, Germany
| | - Beate Ludescher
- MetrioPharm Deutschland GmbH, Am Borsigturm 100, 13507, Berlin, Germany
| | | | - Ivo Schmidt
- MetrioPharm Deutschland GmbH, Am Borsigturm 100, 13507, Berlin, Germany
| | - Katharina Och
- Saarmetrics GmbH, Starterzentrum 1, Universität des Saarlandes, 66123, Saarbrücken, Germany
- Department of Clinical Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Christiane Dings
- Saarmetrics GmbH, Starterzentrum 1, Universität des Saarlandes, 66123, Saarbrücken, Germany
- Department of Clinical Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Thorsten Lehr
- Saarmetrics GmbH, Starterzentrum 1, Universität des Saarlandes, 66123, Saarbrücken, Germany
- Department of Clinical Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Wolfgang Brysch
- MetrioPharm Deutschland GmbH, Am Borsigturm 100, 13507, Berlin, Germany
- MetrioPharm AG, Europaallee 41, Zurich 8004, Switzerland
| |
Collapse
|
67
|
Han J, Wang Z, Han F, Peng B, Du J, Zhang C. Microtubule disruption synergizes with STING signaling to show potent and broad-spectrum antiviral activity. PLoS Pathog 2024; 20:e1012048. [PMID: 38408104 PMCID: PMC10919859 DOI: 10.1371/journal.ppat.1012048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The activation of stimulator of interferon genes (STING) signaling induces the production of type I interferons (IFNs), which play critical roles in protective innate immunity for the host to defend against viral infections. Therefore, achieving sustained or enhanced STING activation could become an antiviral immune strategy with potential broad-spectrum activities. Here, we discovered that various clinically used microtubule-destabilizing agents (MDAs) for the treatment of cancer showed a synergistic effect with the activation of STING signaling in innate immune response. The combination of a STING agonist cGAMP and a microtubule depolymerizer MMAE boosted the activation of STING innate immune response and showed broad-spectrum antiviral activity against multiple families of viruses. Mechanistically, MMAE not only disrupted the microtubule network, but also switched the cGAMP-mediated STING trafficking pattern and changed the distribution of Golgi apparatus and STING puncta. The combination of cGAMP and MMAE promoted the oligomerization of STING and downstream signaling cascades. Importantly, the cGAMP plus MMAE treatment increased STING-mediated production of IFNs and other antiviral cytokines to inhibit viral propagation in vitro and in vivo. This study revealed a novel role of the microtubule destabilizer in antiviral immune responses and provides a previously unexploited strategy based on STING-induced innate antiviral immunity.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhimeng Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Peng
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Du
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University Beijing, China
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
68
|
Yu R, Chen H, He J, Zhang Z, Zhou J, Zheng Q, Fu Z, Lu C, Lin Z, Caruso F, Zhang X. Engineering Antimicrobial Metal-Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307680. [PMID: 37997498 DOI: 10.1002/adma.202307680] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Antibiotic-resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal-phenolic network (am-MPN) NPs through the one-step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+ ) in aqueous solution. The Cu2+ -based am-MPN NPs display lower Cu2+ antimicrobial concentrations (by 10-1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol-based am-MPN NPs. The NPs exhibit excellent performance against multidrug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA-infected skin wounds. This study provides insights on the antimicrobial properties of metal-phenolic materials and the rational design of antimicrobial metal-organic materials.
Collapse
Affiliation(s)
- Rongxin Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jian He
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhouping Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
69
|
Rosowski EE. mSphere of Influence: How host genetics impact microbial pathogenesis and treatment of infectious disease. mSphere 2024; 9:e0062923. [PMID: 38095416 PMCID: PMC10826357 DOI: 10.1128/msphere.00629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Emily Rosowski works in the field of host-pathogen interactions, studying how host innate immune mechanisms control pathogens. In this mSphere of Influence article, she reflects on how "Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections" by D. M. Tobin, F. J. Roca, S. F. Oh, R. McFarland, et al. (Cell 148:434-446, 2012, https://doi.org/10.1016/j.cell.2011.12.023) made an impact on her by investigating how differences in host genetics can affect modes of microbial pathogenesis and inform treatments for infectious disease.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
70
|
Huang FC, Huang SC. The Hazards of Probiotics on Gut-Derived Pseudomonas aeruginosa Sepsis in Mice Undergoing Chemotherapy. Biomedicines 2024; 12:253. [PMID: 38397855 PMCID: PMC10886725 DOI: 10.3390/biomedicines12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
71
|
Xiang T, Zou Y, Jiang X, Xu L, Zhang L, Zhou C, Hu Y, Ye X, Yang XD, Jiang X, Zheng Y. Irisflorentin promotes bacterial phagocytosis and inhibits inflammatory responses in macrophages during bacterial infection. Heliyon 2024; 10:e23225. [PMID: 38170002 PMCID: PMC10758777 DOI: 10.1016/j.heliyon.2023.e23225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial infection remains a big concern in the patients of ICU, which is the main cause of life-threatening organ dysfunction, or even sepsis. The poor control of bacterial infection caused by antibiotic resistance, etc. or the overwhelming immune response are the most important patho genic factors in intensive care unit (ICU) patients. As main pathogens, antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), impose serious challenges during sepsis and require alternative therapeutic options. Irisflorentin (IFL) is one of the major bioactive compounds isolated from the roots of Belamcanda chinensis (Shegan). In this study, IFL could suppress inflammatory response induced by MRSA or a synthetic mimic of bacterial lipoprotein (Pam3CSK4). IFL treatment enhanced the ability of macrophages to phagocytose bacteria likely through up-regulating the expression of phagocytic receptors SR-A1 and FcγR2a. Furthermore, IFL inhibited Pam3CSK4-induced production of pro-inflammatory cytokines, including IL-6 and TNF-α in Raw 264.7 cells, mouse primary macrophages or dendritic cells. IFL treatment also inhibited heat-killed MRSA-induced secretion of IL-6 and TNF-α in mouse bone marrow-derived macrophages. Moreover, IFL attenuated M1 polarization of macrophages as indicated by the down-regulated expression of its polarization markers CD86 and iNOS. Mechanistically, IFL markedly decreased the Pam3CSK4-induced activation of ERK, JNK or p38 MAPK pathways in macrophages. Taken together, IFL may serve as a promising compound for the therapy of bacterial infection, particularly those caused by antibiotic-resistant bacteria, such as MRSA.
Collapse
Affiliation(s)
- Tiannan Xiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingxiang Zou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinru Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunxian Zhou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolan Ye
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
72
|
Meng M, Wang J, Li H, Wang J, Wang X, Li M, Gao X, Li W, Ma C, Wei L. Eliminating the invading extracellular and intracellular FnBp + bacteria from respiratory epithelial cells by autophagy mediated through FnBp-Fn-Integrin α5β1 axis. Front Cell Infect Microbiol 2024; 13:1324727. [PMID: 38264727 PMCID: PMC10803403 DOI: 10.3389/fcimb.2023.1324727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5β1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5β1 axis a common event in respiratory epithelial cells? Methods We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5β1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin β1 chain, is highly expressed upon activation of integrin α5β1, which in turn up-regulates autophagy. Conclusions Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5β1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5β1 in this autophagy pathway.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
- Clinical Laboratory, the Second Hospital of Hebei Medical University, Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, China
| | - Miao Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
73
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
74
|
Wang R, Li N, Liu H, Li R, Zhang L, Liu Z, Peng Q, Ren L, Liu J, Li B, Jiao T. Construction of cellulose acetate-based composite nanofiber films with effective antibacterial and filtration properties. Int J Biol Macromol 2024; 254:128102. [PMID: 37972842 DOI: 10.1016/j.ijbiomac.2023.128102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In recent years, the safety of public health has attracted more and more attention. In order to avoid the spread of bacteria and reduce the diseases caused by their invasion of the human body, novel filtration and antibacterial materials have attracted more and more attention. In this work, the antibacterial agents silver nanoparticles (AgNPs) and cetylpyridine bromide (CPB) were introduced into a cellulose acetate (CA) nanofiber film by electrospinning technology to prepare CA-based composite films with good antibacterial and filtration properties. The results of the antibacterial test of the composite nanofiber films showed that AgNPs and CPB had synergistic antibacterial effects and exhibited good antibacterial properties against a variety of bacteria. In addition, in vitro cytotoxicity, skin irritation and skin sensitization experiments proved that the CA/AgNPs, CA/CPB and CA/CPB/AgNPs films produced no skin irritation or sensitization in the short term. These are expected to become potential materials for the preparation of new antibacterial masks. This work provides a new idea for developing materials with good antibacterial properties for enhancing protection via filtration masks.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Hui Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Li
- School of Basic Medicine, Chengde Medical College, Chengde 067000, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Liqun Ren
- School of Basic Medicine, Chengde Medical College, Chengde 067000, China.
| | - Jinxia Liu
- School of Basic Medicine, Chengde Medical College, Chengde 067000, China.
| | - Bingfan Li
- School of Vehicles and Energy, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
75
|
Suresh S, Begum RF, Singh SA, Vellapandian C. An Update to Novel Therapeutic Options for Combating Tuberculosis: Challenges and Future Prospectives. Curr Pharm Biotechnol 2024; 25:1778-1790. [PMID: 38310450 DOI: 10.2174/0113892010246389231012041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 02/05/2024]
Abstract
Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - S Ankul Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
76
|
Barros GS, Barreto DM, Cavalcanti SGS, Oliveira TB, Rodrigues RP, de Aragão Batista MV. In Silico Screening and Molecular Dynamics Simulations against Tyrosine-protein Kinase Fyn Reveal Potential Novel Therapeutic Candidates for Bovine Papillomatosis. Curr Med Chem 2024; 31:6172-6186. [PMID: 37855345 DOI: 10.2174/0109298673263039231009101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Decreased beef productivity due to papillomatosis has led to the development and identification of novel targets and molecules to treat the disease. Protein kinases are promising targets for the design of numerous chemotherapy drugs. OBJECTIVE This study aimed to screen and design new inhibitors of bovine Fyn, a protein kinase, using structure-based computational methods, such as molecular docking and molecular dynamics simulation (MDS). METHODS To carry out the molecular docking analysis, five ligands obtained through structural similarity between active compounds along with the cross-inhibition function between the ChEMBL and Drugbank databases were used. Molecular modeling was performed, and the generated models were validated using PROCHECK and Verify 3D. Molecular docking was performed using Autodock Vina. The complexes formed between Fyn and the three best ligands had their stability assessed by MDS. In these simulations, the complexes were stabilized for 100 ns in relation to a pressure of 1 atm, with an average temperature of 300 k and a potential energy of 1,145,336 kJ/m converged in 997 steps. RESULTS Docking analyses showed that all selected ligands had a high binding affinity with Fyn and presented hydrogen bonds at important active sites. MDS results support the docking results, as the ligand showed similar and stable interactions with amino acids present at the binding site of the protein. In all simulations, sorafenib obtained the best results of interaction with the bovine Fyn. CONCLUSION The results highlight the identification of possible bovine Fyn inhibitors; however, further studies are important to confirm these results experimentally.
Collapse
Affiliation(s)
- Gerlane Salgueiro Barros
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Débora Machado Barreto
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Sandy Gabrielly Souza Cavalcanti
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Tiago Branquinho Oliveira
- Department of Pharmacy, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
77
|
Winstel V, Abt ER, Le TM, Radu CG. Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553822. [PMID: 37645972 PMCID: PMC10462150 DOI: 10.1101/2023.08.18.553822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anti-cancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.
Collapse
Affiliation(s)
- Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Evan R. Abt
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| |
Collapse
|
78
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
79
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Mulvey MA. Plant Phenolics Inhibit Focal Adhesion Kinase and Suppress Host Cell Invasion by Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568486. [PMID: 38045282 PMCID: PMC10690256 DOI: 10.1101/2023.11.23.568486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic and polyphenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here we tested a panel of four well-studied phenolic compounds - caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate - for effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses, and likely contribute to the development of chronic and recurrent infections. Using cell culture-based assays, we found that only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK, or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model, and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
80
|
Obeid S, Berbel-Manaia E, Nicolas V, Dennemont I, Barbier J, Cintrat JC, Gillet D, Loiseau PM, Pomel S. Deciphering the mechanism of action of VP343, an antileishmanial drug candidate, in Leishmania infantum. iScience 2023; 26:108144. [PMID: 37915600 PMCID: PMC10616420 DOI: 10.1016/j.isci.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Antileishmanial chemotherapy is currently limited due to severe toxic side effects and drug resistance. Hence, new antileishmanial compounds based on alternative approaches, mainly to avoid the emergence of drug resistance, are needed. The present work aims to decipher the mechanism of action of an antileishmanial drug candidate, named VP343, inhibiting intracellular Leishmania infantum survival via the host cell. Cell imaging showed that VP343 interferes with the fusion of parasitophorous vacuoles and host cell late endosomes and lysosomes, leading to lysosomal cholesterol accumulation and ROS overproduction within host cells. Proteomic analyses showed that VP343 perturbs host cell vesicular trafficking as well as cholesterol synthesis/transport pathways. Furthermore, a knockdown of two selected targets involved in vesicle-mediated transport, Pik3c3 and Sirt2, resulted in similar antileishmanial activity to VP343 treatment. This work revealed potential host cell pathways and targets altered by VP343 that would be of interest for further development of host-directed antileishmanial drugs.
Collapse
Affiliation(s)
- Sameh Obeid
- Université Paris-Saclay, CNRS BioCIS, 91400 Orsay, France
| | | | - Valérie Nicolas
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | | | - Julien Barbier
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
81
|
Tripp RA, Martin DE. Screening Drugs for Broad-Spectrum, Host-Directed Antiviral Activity: Lessons from the Development of Probenecid for COVID-19. Viruses 2023; 15:2254. [PMID: 38005930 PMCID: PMC10675723 DOI: 10.3390/v15112254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the early stages of drug discovery, researchers develop assays that are compatible with high throughput screening (HTS) and structure activity relationship (SAR) measurements. These assays are designed to evaluate the effectiveness of new and known molecular entities, typically targeting specific features within the virus. Drugs that inhibit virus replication by inhibiting a host gene or pathway are often missed because the goal is to identify active antiviral agents against known viral targets. Screening efforts should be sufficiently robust to identify all potential targets regardless of the antiviral mechanism to avoid misleading conclusions.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
82
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
83
|
Simonis A, Kreer C, Albus A, Rox K, Yuan B, Holzmann D, Wilms JA, Zuber S, Kottege L, Winter S, Meyer M, Schmitt K, Gruell H, Theobald SJ, Hellmann AM, Meyer C, Ercanoglu MS, Cramer N, Munder A, Hallek M, Fätkenheuer G, Koch M, Seifert H, Rietschel E, Marlovits TC, van Koningsbruggen-Rietschel S, Klein F, Rybniker J. Discovery of highly neutralizing human antibodies targeting Pseudomonas aeruginosa. Cell 2023; 186:5098-5113.e19. [PMID: 37918395 DOI: 10.1016/j.cell.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany.
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Alexandra Albus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Biao Yuan
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; Deutsches Elektronen-Synchrotron Zentrum (DESY), 22607 Hamburg, Germany
| | - Dmitriy Holzmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Joana A Wilms
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sylvia Zuber
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meike Meyer
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Kristin Schmitt
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Anna-Maria Hellmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department of Experimental Pediatric Oncology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christina Meyer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Cramer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, 30625 Hannover, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany; Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Ernst Rietschel
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; Deutsches Elektronen-Synchrotron Zentrum (DESY), 22607 Hamburg, Germany
| | - Silke van Koningsbruggen-Rietschel
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Florian Klein
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany.
| |
Collapse
|
84
|
Murase LS, Perez de Souza JV, Meneguello JE, Palomo CT, Fernandes Herculano Ramos Milaré ÁC, Negri M, Dias Siqueira VL, Demarchi IG, Vieira Teixeira JJ, Cardoso RF. Antibacterial and immunological properties of piperine evidenced by preclinical studies: a systematic review. Future Microbiol 2023; 18:1279-1299. [PMID: 37882762 DOI: 10.2217/fmb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Carolina Trevisolli Palomo
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | | | - Melyssa Negri
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Izabel Galhardo Demarchi
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Santa Catarina, 88040-900, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
85
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
86
|
Petrova NV, Tarasov SA, Kiseleva EA. Anti-Inflammatory Effect of Technologically Processed Antibodies to the Molecules of the Major Histocompatibility Complex in a Model of Acute Inflammation In Vivo. Bull Exp Biol Med 2023; 176:68-71. [PMID: 38091141 DOI: 10.1007/s10517-023-05968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 12/19/2023]
Abstract
The anti-inflammatory effect of technologically processed antibodies (TPA) to immune targets (MHC I and MHC II) was assessed in the carrageenan-induced rat paw edema model. The parameters "increase in edema" and "suppression of edema" significantly decreased (p<0.05) against the background of treatment with TPA and the reference drug indomethacin compared to the placebo group. The tested TPA produced an anti-inflammatory effect.
Collapse
Affiliation(s)
- N V Petrova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
- LLC "MATERIA MEDICA HOLDING", Moscow, Russia.
| | - S A Tarasov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
- LLC "MATERIA MEDICA HOLDING", Moscow, Russia
| | - E A Kiseleva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
87
|
Son SH, Lee J, Cho SN, Choi JA, Kim J, Nguyen TD, Lee SA, Son D, Song CH. Herp regulates intracellular survival of Mycobacterium tuberculosis H37Ra in macrophages by regulating reactive oxygen species-mediated autophagy. mBio 2023; 14:e0153523. [PMID: 37800958 PMCID: PMC10653826 DOI: 10.1128/mbio.01535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Several studies have suggested that endoplasmic reticulum (ER) stress is important in the pathogenesis of infectious diseases; however, the precise function of ER stress regulation and the role of Herp as a regulator in Mtb H37Ra-induced ER stress remain elusive. Therefore, our study investigated ER stress and autophagy associated with Herp expression in Mycobacterium tuberculosis-infected macrophages to determine the role of Herp in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Jaewhan Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Tam Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Doyi Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
88
|
Berkowitz RL, Bluhm AP, Knox GW, McCurdy CR, Ostrov DA, Norris MH. Sigma Receptor Ligands Prevent COVID Mortality In Vivo: Implications for Future Therapeutics. Int J Mol Sci 2023; 24:15718. [PMID: 37958703 PMCID: PMC10647780 DOI: 10.3390/ijms242115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.
Collapse
Affiliation(s)
- Reed L. Berkowitz
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Andrew P. Bluhm
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Glenn W. Knox
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Michael H. Norris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
89
|
Fernández-Ruiz M, Sánchez Moreno B, Santiago Almeda J, Rodríguez-Goncer I, Ruiz-Merlo T, Redondo N, López-Medrano F, San Juan R, Andrés A, Aguado JM. Previous use of statins does not improve the outcome of bloodstream infection after kidney transplantation. Transpl Infect Dis 2023; 25:e14132. [PMID: 37605530 DOI: 10.1111/tid.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Previous studies have suggested that exposure to statins confers a protective effect in bloodstream infection (BSI) due to the anti-inflammatory and immunomodulatory properties attributed to these lipid-lowering drugs. Scarce evidence is available for the solid organ transplant population. Therefore, we compared the time to clinical cure (primary outcome) and the time to fever resolution, new requirement of intensive care unit admission or renal replacement therapy, and 30-day all-cause mortality (secondary outcomes) between kidney transplant (KT) recipients with post-transplant BSI that were receiving or not statin therapy for at least the previous 30 days. We included 80 KT recipients that developed 109 BSI episodes (43 [39.4%] and 66 [60.6%] episodes within the statin and non-statin groups, respectively). The median interval since the initial prescription to BSI was 512 days (interquartile range [IQR]: 172-1388). Most episodes were of urinary source and due to Enterobacterales. There were no differences in the median time to clinical cure in the statin and non-statin groups (3.4 [IQR: 3-6.8] versus 4 [IQR: 2-6] days; p-value = .112). The lack of effect was confirmed by multiple linear regression analysis adjusted for confounding factors (standardized β coefficient = 0.040; p-value = .709). No significant differences were observed for any of the secondary outcomes either. Vital signs and laboratory values at BSI onset and after 72-96 h were similar in both groups. In conclusion, previous statin therapy had no apparent protective effect on the outcome of post-transplant BSI among KT recipients.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Beatriz Sánchez Moreno
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Santiago Almeda
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
90
|
Saini S, Gangwar A, Sharma R. Harnessing host-pathogen interactions for innovative drug discovery and host-directed therapeutics to tackle tuberculosis. Microbiol Res 2023; 275:127466. [PMID: 37531813 DOI: 10.1016/j.micres.2023.127466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Tuberculosis (TB) is a highly contagious bacterial infection caused by Mycobacterium tuberculosis (Mtb), which has been ranked as the second leading cause of death worldwide from a single infectious agent. As an intracellular pathogen, Mtb has well adapted to the phagocytic host microenvironment, influencing diverse host processes such as gene expression, trafficking, metabolism, and signaling pathways of the host to its advantage. These responses are the result of dynamic interactions of the bacteria with the host cell signaling pathways, whereby the bacteria attenuate the host cellular processes for their survival. Specific host genes and the mechanisms involved in the entry and subsequent stabilization of M. tuberculosis intracellularly have been identified in various genetic and chemical screens recently. The present understanding of the co-evolution of Mtb and macrophage system presented us the new possibilities for exploring host-directed therapeutics (HDT). Here, we discuss the host-pathogen interaction for Mtb, including the pathways adapted by Mtb to escape immunity. The review sheds light on different host-directed therapies (HDTs) such as repurposed drugs and vitamins, along with their targets such as granuloma, autophagy, extracellular matrix, lipids, and cytokines, among others. The article also examines the available clinical data on these drug molecules. In conclusion, the review presents a perspective on the current knowledge in the field of HDTs and the need for additional research to overcome the challenges associated HDTs.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
91
|
Prado NDR, Brilhante-Da-Silva N, Sousa RMO, Morais MSDS, Roberto SA, Luiz MB, Assis LCD, Marinho ACM, Araujo LFLD, Pontes RDS, Stabeli RG, Fernandes CFC, Pereira SDS. Single-domain antibodies applied as antiviral immunotherapeutics. J Virol Methods 2023; 320:114787. [PMID: 37516366 DOI: 10.1016/j.jviromet.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Collapse
Affiliation(s)
- Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | - Nairo Brilhante-Da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil
| | - Rosa Maria Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Rondônia Campus Guajará-Mirim, IFRO, Guajará-Mirim, RO, Brazil
| | - Livia Coelho de Assis
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil
| | - Anna Carolina M Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rafael de Souza Pontes
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
92
|
Zhao W, Li J, Wang X, Xu W, Gao B, Xiang J, Hou Y, Liu W, Wu J, Qi Q, Wei J, Yang X, Lu L, Yang L, Chen J, Yang B. Prime editor-mediated functional reshaping of ACE2 prevents the entry of multiple human coronaviruses, including SARS-CoV-2 variants. MedComm (Beijing) 2023; 4:e356. [PMID: 37701533 PMCID: PMC10492923 DOI: 10.1002/mco2.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
The spike protein of SARS-CoV-2 hijacks the host angiotensin converting enzyme 2 (ACE2) to meditate its entry and is the primary target for vaccine development. Nevertheless, SARS-CoV-2 keeps evolving and the latest Omicron subvariants BQ.1 and XBB have gained exceptional immune evasion potential through mutations in their spike proteins, leading to sharply reduced efficacy of current spike-focused vaccines and therapeutics. Compared with the fast-evolving spike protein, targeting host ACE2 offers an alternative antiviral strategy that is more resistant to viral evolution and can even provide broad prevention against SARS-CoV and HCoV-NL63. Here, we use prime editor (PE) to precisely edit ACE2 at structurally selected sites. We demonstrated that residue changes at Q24/D30/K31 and/or K353 of ACE2 could completely ablate the binding of tested viruses while maintaining its physiological role in host angiotensin II conversion. PE-mediated ACE2 editing at these sites suppressed the entry of pseudotyped SARS-CoV-2 major variants of concern and even SARS-CoV or HCoV-NL63. Moreover, it significantly inhibited the replication of the Delta variant live virus. Our work investigated the unexplored application potential of prime editing in high-risk infectious disease control and demonstrated that such gene editing-based host factor reshaping strategy can provide broad-spectrum antiviral activity and a high barrier to viral escape or resistance.
Collapse
Affiliation(s)
- Wenwen Zhao
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
| | - Jifang Li
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
| | - Xiao Wang
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesFudan UniversityShanghaiChina
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- Biosafety Level 3 LaboratoryShanghai Medical CollegeShanghai Frontiers Science Center of Pathogenic Microbes and InfectionFudan UniversityShanghaiChina
| | - Bao‐Qing Gao
- Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiangchao Xiang
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
| | - Yaofeng Hou
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
| | - Wei Liu
- School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Jing Wu
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Qilian Qi
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Jia Wei
- Center for Molecular MedicineChildren's HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Medical EpigeneticsInternational Laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Li Yang
- Center for Molecular MedicineChildren's HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Medical EpigeneticsInternational Laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jia Chen
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
- Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Bei Yang
- Shanghai Frontiers Science Center for Biomacromolecules and Precision MedicineShanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
| |
Collapse
|
93
|
Taya T, Teruyama F, Gojo S. Host-directed therapy for bacterial infections -Modulation of the phagolysosome pathway. Front Immunol 2023; 14:1227467. [PMID: 37841276 PMCID: PMC10570837 DOI: 10.3389/fimmu.2023.1227467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial infections still impose a significant burden on humanity, even though antimicrobial agents have long since been developed. In addition to individual severe infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-resistant bacteria grows with time, putting us at inferiority. Although tremendous resources have been devoted to the development of antimicrobial agents, we have yet to recover from the lost ground we have been driven into. Looking back at the evolution of treatment for cancer, which, like infectious diseases, has the similarity that host immunity eliminates the lesion, the development of drugs to eliminate the tumor itself has shifted from a single-minded focus on drug development to the establishment of a treatment strategy in which the de-suppression of host immunity is another pillar of treatment. In infectious diseases, on the other hand, the development of therapies that strengthen and support the immune system has only just begun. Among innate immunity, the first line of defense that bacteria encounter after invading the host, the molecular mechanisms of the phagolysosome pathway, which begins with phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a large number of strategies to escape and survive the pathway. Although the full picture is still unfathomable, the molecular mechanisms have been elucidated for some of them, providing sufficient clues for intervention. In this article, we review the host defense mechanisms and bacterial evasion mechanisms and discuss the possibility of host-directed therapy for bacterial infection by intervening in the phagolysosome pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
94
|
Haas KM, McGregor MJ, Bouhaddou M, Polacco BJ, Kim EY, Nguyen TT, Newton BW, Urbanowski M, Kim H, Williams MAP, Rezelj VV, Hardy A, Fossati A, Stevenson EJ, Sukerman E, Kim T, Penugonda S, Moreno E, Braberg H, Zhou Y, Metreveli G, Harjai B, Tummino TA, Melnyk JE, Soucheray M, Batra J, Pache L, Martin-Sancho L, Carlson-Stevermer J, Jureka AS, Basler CF, Shokat KM, Shoichet BK, Shriver LP, Johnson JR, Shaw ML, Chanda SK, Roden DM, Carter TC, Kottyan LC, Chisholm RL, Pacheco JA, Smith ME, Schrodi SJ, Albrecht RA, Vignuzzi M, Zuliani-Alvarez L, Swaney DL, Eckhardt M, Wolinsky SM, White KM, Hultquist JF, Kaake RM, García-Sastre A, Krogan NJ. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets. Nat Commun 2023; 14:6030. [PMID: 37758692 PMCID: PMC10533562 DOI: 10.1038/s41467-023-41442-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.
Collapse
Affiliation(s)
- Kelsey M Haas
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Michael J McGregor
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Thong T Nguyen
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Matthew Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Heejin Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael A P Williams
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Alexandra Hardy
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Andrea Fossati
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Erica J Stevenson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Ellie Sukerman
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tiffany Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sudhir Penugonda
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Yuan Zhou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavya Harjai
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Tia A Tummino
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - James E Melnyk
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Laura Martin-Sancho
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Infectious Disease, Imperial College London, London, SW7 2BX, UK
| | - Jared Carlson-Stevermer
- Synthego Corporation, Redwood City, CA, 94063, USA
- Serotiny Inc., South San Francisco, CA, 94080, USA
| | - Alexander S Jureka
- Molecular Virology and Vaccine Team, Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, 30333, USA
- General Dynamics Information Technology, Federal Civilian Division, Atlanta, GA, 30329, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Brian K Shoichet
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Western Cape, South Africa
| | - Sumit K Chanda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tonia C Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Leah C Kottyan
- Center of Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Rex L Chisholm
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Maureen E Smith
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Vignuzzi
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Lorena Zuliani-Alvarez
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kris M White
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Judd F Hultquist
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| | - Robyn M Kaake
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| | - Adolfo García-Sastre
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| |
Collapse
|
95
|
Pacl HT, Chinta KC, Reddy VP, Nadeem S, Sevalkar RR, Nargan K, Lumamba K, Naidoo T, Glasgow JN, Agarwal A, Steyn AJC. NAD(H) homeostasis underlies host protection mediated by glycolytic myeloid cells in tuberculosis. Nat Commun 2023; 14:5472. [PMID: 37673914 PMCID: PMC10482943 DOI: 10.1038/s41467-023-40545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Eastern Cape, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa.
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
96
|
Quan H, Chung H, Je S, Hong JJ, Kim BJ, Na YR, Seok SH. Pyruvate dehydrogenase kinase inhibitor dichloroacetate augments autophagy mediated constraining the replication of Mycobacteroides massiliense in macrophages. Microbes Infect 2023; 25:105139. [PMID: 37085043 DOI: 10.1016/j.micinf.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Increasing evidence indicates a strong interaction between cellular metabolism and innate macrophage immunity. Here, we show that the intracellular replication of Mycobacteroides massiliense in macrophages depends on host pyruvate dehydrogenase kinase (PDK) activity. Infection with M. massiliense induced a metabolic switch in macrophages by increasing glycolysis and decreasing oxidative phosphorylation. Treatment with dichloroacetate (DCA), a PDK inhibitor, converts this switch in M. massiliense-infected macrophages and restricts intracellular bacterial replication. Mechanistically, DCA resulted in AMPKα1 activation via increased AMP/ATP ratio, consequently inducing autophagy to constrain bacterial proliferation in the phagolysosome. This study suggests that the pharmacological inhibition of PDK could be a strategy for host-directed therapy to control virulent M. massiliense infections.
Collapse
Affiliation(s)
- Hailian Quan
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Bio-MAX Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungmo Je
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
97
|
Tsai CN, Massicotte MA, MacNair CR, Perry JN, Brown ED, Coombes BK. Screening under infection-relevant conditions reveals chemical sensitivity in multidrug resistant invasive non-typhoidal Salmonella (iNTS). RSC Chem Biol 2023; 4:600-612. [PMID: 37547457 PMCID: PMC10398353 DOI: 10.1039/d3cb00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bloodstream infections caused by invasive, non-typhoidal Salmonella (iNTS) are a major global health concern, particularly in Africa where the pathogenic variant of Salmonella Typhimurium sequence type (ST) 313 is dominant. Unlike S. Typhimurium strains that cause gastroenteritis, iNTS strains cause bloodstream infections and are resistant to multiple first-line antibiotics, thus limiting current treatment options. Here, we developed and implemented multiple small molecule screens under physiological, infection-relevant conditions to reveal chemical sensitivities in ST313 and to identify host-directed therapeutics as entry points to drug discovery to combat the clinical burden of iNTS. Screening ST313 iNTS under host-mimicking growth conditions identified 92 compounds with antimicrobial activity despite inherent multidrug resistance. We characterized the antimicrobial activity of the nucleoside analog 3'-azido-3'-deoxythymidine as an exemplary compound from this screen, which depended on bacterial thymidine kinase activity for antimicrobial activity. In a companion macrophage-based screening platform designed to enrich for host-directed therapeutics, we identified three compounds (amodiaquine, berbamine, and indatraline) as actives that required the presence of host cells for antibacterial activity. These three compounds had antimicrobial activity only in the presence of host cells that significantly inhibited intracellular ST313 iNTS replication in macrophages. This work provides evidence that despite high invasiveness and multidrug resistance, ST313 iNTS remains susceptible to unconventional drug discovery approaches.
Collapse
Affiliation(s)
- Caressa N Tsai
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Marie-Ange Massicotte
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Craig R MacNair
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Jordyn N Perry
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
| | - Eric D Brown
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Brian K Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
- Farncombe Family Digestive Health Research Institute Hamilton ON Canada
| |
Collapse
|
98
|
Yang D, Ding M, Song Y, Hu Y, Xiu W, Yuwen L, Xie Y, Song Y, Shao J, Song X, Dong H. Nanotherapeutics with immunoregulatory functions for the treatment of bacterial infection. Biomater Res 2023; 27:73. [PMID: 37481650 PMCID: PMC10363325 DOI: 10.1186/s40824-023-00405-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/05/2023] [Indexed: 07/24/2023] Open
Abstract
The advent of drug-resistant pathogens results in the occurrence of stubborn bacterial infections that cannot be treated with traditional antibiotics. Antibacterial immunotherapy by reviving or activating the body's immune system to eliminate pathogenic bacteria has confirmed promising therapeutic strategies in controlling bacterial infections. Subsequent studies found that antimicrobial immunotherapy has its own benefits and limitations, such as avoiding recurrence of infection and autoimmunity-induced side effects. Current studies indicate that the various antibacterial therapeutic strategies inducing immune regulation can achieve superior therapeutic efficacy compared with monotherapy alone. Therefore, summarizing the recent advances in nanomedicine with immunomodulatory functions for combating bacterial infections is necessary. Herein, we briefly introduce the crisis caused by drug-resistant bacteria and the opportunity for antibacterial immunotherapy. Then, immune-involved multimodal antibacterial therapy for the treatment of infectious diseases was systematically summarized. Finally, the prospects and challenges of immune-involved combinational therapy are discussed.
Collapse
Affiliation(s)
- Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| | - Yanling Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Yingnan Song
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
99
|
Dzigba P, Rylski AK, Angera IJ, Banahene N, Kavunja HW, Greenlee-Wacker MC, Swarts BM. Immune Targeting of Mycobacteria through Cell Surface Glycan Engineering. ACS Chem Biol 2023; 18:1548-1556. [PMID: 37306676 PMCID: PMC10782841 DOI: 10.1021/acschembio.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycobacteria and other organisms in the order Mycobacteriales cause a range of significant human diseases, including tuberculosis, leprosy, diphtheria, Buruli ulcer, and non-tuberculous mycobacterial (NTM) disease. However, the intrinsic drug tolerance engendered by the mycobacterial cell envelope undermines conventional antibiotic treatment and contributes to acquired drug resistance. Motivated by the need to augment antibiotics with novel therapeutic approaches, we developed a strategy to specifically decorate mycobacterial cell surface glycans with antibody-recruiting molecules (ARMs), which flag bacteria for binding to human-endogenous antibodies that enhance macrophage effector functions. Mycobacterium-specific ARMs consisting of a trehalose targeting moiety and a dinitrophenyl hapten (Tre-DNPs) were synthesized and shown to specifically incorporate into outer-membrane glycolipids of Mycobacterium smegmatis via trehalose metabolism, enabling recruitment of anti-DNP antibodies to the mycobacterial cell surface. Phagocytosis of Tre-DNP-modified M. smegmatis by macrophages was significantly enhanced in the presence of anti-DNP antibodies, demonstrating proof-of-concept that our strategy can augment the host immune response. Because the metabolic pathways responsible for cell surface incorporation of Tre-DNPs are conserved in all Mycobacteriales organisms but absent from other bacteria and humans, the reported tools may be enlisted to interrogate host-pathogen interactions and develop immune-targeting strategies for diverse mycobacterial pathogens.
Collapse
Affiliation(s)
- Priscilla Dzigba
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Adrian K. Rylski
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Isaac J. Angera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Mallary C. Greenlee-Wacker
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| |
Collapse
|
100
|
Jia C, Wu FG. Antibacterial Chemodynamic Therapy: Materials and Strategies. BME FRONTIERS 2023; 4:0021. [PMID: 37849674 PMCID: PMC10351393 DOI: 10.34133/bmef.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 10/19/2023] Open
Abstract
The wide and frequent use of antibiotics in the treatment of bacterial infection can cause the occurrence of multidrug-resistant bacteria, which becomes a serious health threat. Therefore, it is necessary to develop antibiotic-independent treatment modalities. Chemodynamic therapy (CDT) is defined as the approach employing Fenton and/or Fenton-like reactions for generating hydroxyl radical (•OH) that can kill target cells. Recently, CDT has been successfully employed for antibacterial applications. Apart from the common Fe-mediated CDT strategy, antibacterial CDT strategies mediated by other metal elements such as copper, manganese, cobalt, molybdenum, platinum, tungsten, nickel, silver, ruthenium, and zinc have also been proposed. Furthermore, different types of materials like nanomaterials and hydrogels can be adopted for constructing CDT-involved antibacterial platforms. Besides, CDT can introduce some toxic metal elements and then achieve synergistic antibacterial effects together with reactive oxygen species. Finally, CDT can be combined with other therapies such as starvation therapy, phototherapy, and sonodynamic therapy for achieving improved antibacterial performance. This review first summarizes the advancements in antibacterial CDT and then discusses the present limitations and future research directions in this field, hoping to promote the development of more effective materials and strategies for achieving potentiated CDT.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|