51
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
52
|
Zhang G, Mo S, Fang B, Zeng R, Wang J, Tu M, Zhao J. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2019; 133:58-66. [PMID: 30981773 DOI: 10.1016/j.ijbiomac.2019.04.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticle-based pulmonary delivery of protein therapeutics provides a promising approach for improving protein bioavailability to treat either local or systemic diseases, however high-efficient nanocarrier is a great challenge. Here, biomimetic phosphorylcholine-chitosan nanoparticles (PCCs-NPs) taking advantages of both zwitterionic phosphorylcholine and chitosan were developed as a pulmonary protein delivery platform. msFGFR2c, a potential therapeutic protein for lung fibrosis as model was loaded into PCCs-NPs via ionic gelation. The obtained msFGFR2c/PCCs-NPs inhibited α-SMA expression in fibroblasts induced by TGF-β1, slightly more effective than naked msFGFR2c. After orotracheal administration to bleomycin-induced pulmonary fibrosis model rats, msFGFR2c/PCCs-NPs resulted in a significant antifibrotic efficacy, with reduction in inflammatory cytokines and α-SMA expression, remarkable attenuation of lung fibrosis score and collagen deposition, and significant increase in survival rate, while naked msFGFR2c exhibited a poor efficacy. The in vitro and in vivo results strongly indicated that PCCs-NPs may be a promising nanocarrier for pulmonary protein delivery.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shanyi Mo
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Bangren Fang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.
| | - Ju Wang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Mei Tu
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
53
|
Zhao X, Wei S, Li Z, Lin C, Zhu Z, Sun D, Bai R, Qian J, Gao X, Chen G, Xu Z. Autophagic flux blockage in alveolar epithelial cells is essential in silica nanoparticle-induced pulmonary fibrosis. Cell Death Dis 2019; 10:127. [PMID: 30755584 PMCID: PMC6372720 DOI: 10.1038/s41419-019-1340-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/02/2023]
Abstract
Silica nanoparticles (SiNPs) have been reported to induce pulmonary fibrosis (PF) with an unknown mechanism. Recently, the activation of autophagy, a lysosome-dependent cell degradation pathway, by SiNPs has been identified in alveolar epithelial cells (AECs). However, the underlying mechanism and the relevance of SiNPs-induced autophagy to the development of PF remain elusive. Here, we report that autophagy dysfunction and subsequent apoptosis in AECs are involved in SiNPs-induced PF. SiNPs engulfed by AECs enhance autophagosome accumulation and apoptosis both in vivo and in vitro. Mechanically, SiNPs block autophagy flux through impairing lysosomal degradation via acidification inhibition. Lysosomal reacidification by cyclic-3',5'-adenosine monophosphate (cAMP) significantly enhances autophagic degradation and attenuate apoptosis. Importantly, enhancement of autophagic degradation by rapamycin protects AECs from apoptosis and attenuates SiNPs-induced PF in the mouse model. Altogether, our data demonstrate a repressive effect of SiNPs on lysosomal acidification, contributing to the decreased autophagic degradation in AECs, thus leading to apoptosis and subsequent PF. These findings may provide an improved understanding of SiNPs-induced PF and molecular targets to antagonize it.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong Unversity, Nantong, 226019, China
| | - Saisai Wei
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhijian Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chen Lin
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenfeng Zhu
- State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Desen Sun
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rongpan Bai
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Guangdi Chen
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
54
|
Xiong Y, Nie D, Liu S, Ma H, Su S, Sun A, Zhao J, Zhang Z, Xiang X, Tang G. Apoptotic PET Imaging of Rat Pulmonary Fibrosis With [ 18F]ML-8. Mol Imaging 2019; 17:1536012118795728. [PMID: 30348035 PMCID: PMC6201178 DOI: 10.1177/1536012118795728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: To investigate the value of 2-(3-[18F]fluoropropyl)-2-methyl-malonic acid
([18F]ML-8) positron emission tomography (PET) imaging of rat pulmonary
fibrosis. Methods: Male Sprague-Dawley rats were divided into 2 groups, including pulmonary fibrosis model
group and control group. The rat model was established by an intratracheal instillation
of bleomycin (BLM). Control rats were treated with saline. Positron emission
tomography/computed tomography (CT) with [18F]ML-8 or
18F-fluorodeoxyglucose ([18F]FDG) was performed on 2 groups. After
PET/CT imaging, lung tissues were collected for histologic examination. Data were
analyzed and comparisons between 2 groups were performed using Student
t test. Results: Bleomycin-treated rats showed a higher lung uptake of [18F]ML-8 than control
rats (P < .05). In BLM-treated rats, the lung to muscle relative
uptake ratio of [18F]ML-8 was also higher than that of [18F]FDG
(P < .05). Pathological examination showed overproliferation of
fibroblasts and deposition of collagen in lungs from BLM-treated rats. Compared to
control rats, BLM-treated rats had higher lung hydroxyproline content
(P < .05). Immunofluorescence staining indicated more apoptotic
cells in BLM-treated rats than those in control rats. Moreover, the apoptosis rate of
lung tissues obtained from BLM-treated rats was higher than that from control rats
(P < .05). Conclusions: 2-(3-[18F]fluoropropyl)-2-methyl-malonic acid PET/CT could be used for
noninvasive diagnosis of pulmonary fibrosis in a rat model.
Collapse
Affiliation(s)
- Ying Xiong
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dahong Nie
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Ma
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Su
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Aixia Sun
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhao
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanwen Zhang
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianhong Xiang
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- 1 Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Li G, Jin F, Du J, He Q, Yang B, Luo P. Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol Appl Pharmacol 2019; 366:10-16. [PMID: 30653976 DOI: 10.1016/j.taap.2019.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis is a pathological result of dysfunctional repair response to tissue injury, leading to chronically impaired gas exchange and death. Macrophages are believed to be critical in this disease pathogenesis; However, the exact mechanisms remain enigmatic. Here, we demonstrated that macrophages might contribute to pulmonary fibrosis at the early stage because the aggregation of macrophages appeared earlier than epithelial-mesenchymal transition and fibrosis in mouse and rat experimental models of pulmonary fibrosis. It has been found that macrophages could promote epithelial-mesenchymal transition of alveolar epithelial cells and fibroblast migration in co-culture models between macrophages and alveolar epithelial cells/fibroblasts. Importantly, we used protein micro array to analyze the cytokines that were altered after bleomycin treatment. Only thymic stromal lymphopoietin and matrix metalloproteinase 9 were significantly increased. We further confirmed that TSLP participated in the macrophage-induced epithelial-mesenchymal transition of alveolar epithelial cells using a TSLP recombinant protein. MMP9 was also involved in macrophage-induced fibroblast migration, which can be reversed by an inhibitor of MMP9. Collectively, these findings explained the underlying mechanisms of macrophage-promoted pulmonary fibrosis.
Collapse
Affiliation(s)
- Guanqun Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuquan Jin
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxia Du
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
56
|
Zhou C, Moustafa MR, Cao L, Kriegsmann M, Winter M, Schwager C, Jones B, Wang S, Bäuerle T, Zhou PK, Schnölzer M, Weichert W, Debus J, Abdollahi A. Modeling and multiscale characterization of the quantitative imaging based fibrosis index reveals pathophysiological, transcriptome and proteomic correlates of lung fibrosis induced by fractionated irradiation. Int J Cancer 2019; 144:3160-3173. [PMID: 30536712 PMCID: PMC6590477 DOI: 10.1002/ijc.32059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis represents a leading cause of morbidity and mortality worldwide. Therapy induced lung fibrosis constitutes a pivotal dose‐limiting side effect of radiotherapy and other anticancer agents. We aimed to develop objective criteria for assessment of fibrosis and discover pathophysiological and molecular correlates of lung fibrosis as a function of fractionated whole thoracic irradiation. Dose–response series of fractionated irradiation was utilized to develop a non‐invasive and quantitative measure for the degree of fibrosis – the fibrosis index (FI). The correlation of FI with histopathology, blood‐gas, transcriptome and proteome responses of the lung tissue was analyzed. Macrophages infiltration and polarization was assessed by immunohistochemistry. Fibrosis development followed a slow kinetic with maximum lung fibrosis levels detected at 24‐week post radiation insult. FI favorably correlated with radiation dose and surrogates of lung fibrosis i.e., enhanced pro‐inflammatory response, tissue remodeling and extracellular matrix deposition. The loss of lung architecture correlated with decreased epithelial marker, loss of microvascular integrity with decreased endothelial and elevated mesenchymal markers. Lung fibrosis was further attributed to a switch of the inflammatory state toward a macrophage/T‐helper cell type 2‐like (M2/Th2) polarized phenotype. Together, the multiscale characterization of FI in radiation‐induced lung fibrosis (RILF) model identified pathophysiological, transcriptional and proteomic correlates of fibrosis. Pathological immune response and endothelial/epithelial to mesenchymal transition were discovered as critical events governing lung tissue remodeling. FI will be instrumental for deciphering the molecular mechanisms governing lung fibrosis and discovery of novel targets for treatment of this devastating disease with an unmet medical need. What's new? The development of fibrosis scar tissue in the lungs is a dose‐limiting effect of radiotherapy for thoracic malignancies. Molecular mechanisms driving radiation‐induced lung fibrosis (RILF), however, remain unclear. In this study, a fibrosis index (FI) was devised to quantitatively detect spatial and temporal kinetics of lung fibrosis development. Multi‐scale characterization of FI uncovered mechanisms governing lung fibrosis, including perturbation of immune balance and microvascular integrity. Radiation dose and FI were correlated with an inflammatory switch toward a macrophage/T‐helper cell type 2‐like polarized phenotype. The findings open the way for further mechanistic study and the discovery of therapeutic targets for RILF.
Collapse
Affiliation(s)
- Cheng Zhou
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mahmoud R Moustafa
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Liji Cao
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Winter
- Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Shijun Wang
- Department of Pediatric Nephrology, Gastroenterology & Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Martina Schnölzer
- Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany.,Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Juergen Debus
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
57
|
Habiel DM, Espindola MS, Kitson C, Azzara AV, Coelho AL, Stripp B, Hogaboam CM. Characterization of CD28 null T cells in idiopathic pulmonary fibrosis. Mucosal Immunol 2019; 12:212-222. [PMID: 30315241 PMCID: PMC6301115 DOI: 10.1038/s41385-018-0082-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 02/04/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease, with unknown etiopathogenesis and suboptimal therapeutic options. Previous reports have shown that increased T-cell numbers and CD28null phenotype is predictive of prognosis in IPF, suggesting that these cells might have a role in this disease. Flow cytometric analysis of explanted lung cellular suspensions showed a significant increase in CD8+ CD28null T cells in IPF relative to normal lung explants. Transcriptomic analysis of CD3+ T cells isolated from IPF lung explants revealed a loss of CD28-transcript expression and elevation of pro-inflammatory cytokine expression in IPF relative to normal T cells. IPF lung explant-derived T cells (enriched with CD28null T cells), but not normal donor lung CD28+ T cells induced dexamethasone-resistant lung remodeling in humanized NSG mice. Finally, CD28null T cells expressed similar CTLA4 and significantly higher levels of PD-1 proteins relative to CD28+ T cells and blockade of either proteins in humanized NSG mice, using anti-CTLA4, or anti-PD1, mAb treatment-accelerated lung fibrosis. Together, these results demonstrate that IPF CD28null T cells may promote lung fibrosis but the immune checkpoint proteins, CTLA-4 and PD-1, appears to limit this effect.
Collapse
Affiliation(s)
- David M Habiel
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Milena S Espindola
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Chris Kitson
- Bristol-Myers Squibb, Fibrosis Discovery Biology, Pennington, NJ, 08534, USA
| | - Anthony V Azzara
- Bristol-Myers Squibb, Fibrosis Discovery Biology, Pennington, NJ, 08534, USA
| | - Ana Lucia Coelho
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Barry Stripp
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cory M Hogaboam
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
58
|
Abstract
Lysyl oxidase (LOX) and lysyl oxidase-like proteins (LOXL), a family of extracellular matrix (ECM) crosslinking enzymes that have been recognised as playing an important role in fibrogenesis for more than 40 years, are logical targets for antifibrotic treatments. Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), is a progressive and lethal disease characterised by excessive deposition of ECM in the lung parenchyma. In this review, we discuss the current clinical approaches for IPF and review members of LOX family-LOX, LOXL1, LOXL2, LOXL3 and LOXL4 in IPF patients and in animal models of bleomycin-induced pulmonary fibrosis. Although these findings are controversial and require further validation, LOX/LOXL1/LOXL2 as potential therapeutic targets for IPF deserve continued attention. So far to our knowledge, LOXL3 or LOXL4 has not clearly shown specific therapeutic potential.
Collapse
Affiliation(s)
- Lijun Chen
- a Department of Pharmacology , Zhongshan Medical School, Sun Yat-sen University , Guangzhou , China
| | - Shifeng Li
- a Department of Pharmacology , Zhongshan Medical School, Sun Yat-sen University , Guangzhou , China
| | - Wande Li
- b Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
59
|
Ji YD, Luo ZL, Chen CX, Li B, Gong J, Wang YX, Chen L, Yao SL, Shang Y. BML-111 suppresses TGF-β1-induced lung fibroblast activation in vitro and decreases experimental pulmonary fibrosis in vivo. Int J Mol Med 2018; 42:3083-3092. [PMID: 30280199 PMCID: PMC6202103 DOI: 10.3892/ijmm.2018.3914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fibrosis is an aggressive end‑stage disease. Transforming growth factor‑β1 (TGF‑β1) mediates lung fibroblast activation and is essential for the progress of pulmonary fibrosis. BML‑111, a lipoxinA4 (LXA4) receptor (ALX) agonist, has been reported to possess anti‑fibrotic properties. The present study aimed to elucidate whether BML‑111 inhibits TGF‑β1‑induced mouse embryo lung fibroblast (NIH3T3 cell line) activation in vitro and bleomycin (BLM)‑induced pulmonary fibrosis in vivo. In vitro experiments demonstrated that BML‑111 treatment inhibits TGF‑β1‑induced NIH3T3 cell viability and the expression of smooth muscle α actin (α‑SMA), fibronectin and total collagen. Furthermore, this suppressive effect was associated with mothers against decapentaplegic homolog (Smad)2/3, extracellular signal‑regulated kinase (ERK) and Akt phosphorylation interference. In vivo experiments revealed that BML‑111 treatment markedly improved survival rate and ameliorated the destruction of lung tissue structure. It also reduced interleukin‑1β (IL‑1β), tumor necrosis factor‑α (TNF‑α) and TGF‑β1 expression in the BLM intratracheal mouse model. In addition, the expression ofα‑SMA and extracellular matrix (ECM) deposition (total collagen, hydroxyproline and fibronectin) were also suppressed following BML‑111 treatment. However, BOC‑2, an antagonist of ALX, partially weakened the effects of BML‑111. In conclusion, these results indicated that BML‑111 inhibits TGF‑β1‑induced fibroblasts activation and alleviates BLM‑induced pulmonary fibrosis. Therefore, BML‑111 may be used as a potential therapeutic agent for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yu-Dong Ji
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhen-Long Luo
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chun-Xiu Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bo Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Gong
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
60
|
Xiong Y, Nie D, Liu S, Ma H, Su S, Sun A, Zhao J, Zhang Z, Xiang X, Tang G. Apoptotic PET Imaging of Rat Pulmonary Fibrosis with Small-Molecule Radiotracer. Mol Imaging Biol 2018; 21:491-499. [PMID: 30167994 DOI: 10.1007/s11307-018-1242-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to assess the potential utility of small-molecule apoptotic radiotracer, 2-(5-[18F]fluoropentyl)-2-methyl malonic acid ([18F]ML-10), for positron emission tomography (PET)/computed tomography (CT) monitoring the progression of pulmonary fibrosis in a rat model. PROCEDURES Male Sprague-Dawley rats were used to establish a rat model of pulmonary fibrosis by means of bleomycin (BLM) administration; control rats received saline (n = 12 per group). PET/CT with [18F]ML-10 and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was performed in two groups at different stages of pulmonary fibrosis. The fibrotic response and the cell apoptosis were assessed with histologic examination. Differences in the apoptosis rate, fibrotic activity, and the lung uptake of [18F]ML-10 and [18F]FDG between two groups were determined with Student t test. RESULTS Compared with control group, BLM group showed a higher lung uptake of [18F]ML-10 at all imaging time points (all P < 0.001). During the fibrotic phase of this disease model (days 21 and 28), the lung uptake of [18F]ML-10 was higher than that of [18F]FDG in the BLM group (all P < 0.001). Moreover, accumulation of [18F]ML-10 in the lung tissues increased in proportion to the apoptosis rate (R2 = 0.9863, P < 0.0001) and fibrotic activity (R2 = 0.9631, P < 0.0001) of rat pulmonary fibrosis. Conversely, no correlation between [18F]FDG uptake and fibrotic activity was found. CONCLUSIONS [18F]ML-10 PET/CT enabled monitoring the progression of rat pulmonary fibrosis, whereas [18F]FDG PET/CT could not. Implications for noninvasive diagnosis of pulmonary fibrosis, assessment of fibrotic activity, and evaluation of antifibrotic therapy are expected.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Hui Ma
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Shu Su
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Aixia Sun
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Jing Zhao
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Zhanwen Zhang
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Xianhong Xiang
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Ganghua Tang
- Department of Medical Imaging and Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
61
|
Anathy V, Lahue KG, Chapman DG, Chia SB, Casey DT, Aboushousha R, van der Velden JLJ, Elko E, Hoffman SM, McMillan DH, Jones JT, Nolin JD, Abdalla S, Schneider R, Seward DJ, Roberson EC, Liptak MD, Cousins ME, Butnor KJ, Taatjes DJ, Budd RC, Irvin CG, Ho YS, Hakem R, Brown KK, Matsui R, Bachschmid MM, Gomez JL, Kaminski N, van der Vliet A, Janssen-Heininger YMW. Reducing protein oxidation reverses lung fibrosis. Nat Med 2018; 24:1128-1135. [PMID: 29988126 PMCID: PMC6204256 DOI: 10.1038/s41591-018-0090-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death1-3. Oxidative stress is believed to be critical in this disease pathogenesis4-6, although the exact mechanisms remain enigmatic. Protein S-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)7. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.
Collapse
Affiliation(s)
- Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Karolyn G Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - David G Chapman
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Dylan T Casey
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Jos L J van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - David H McMillan
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Jane T Jones
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - James D Nolin
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Sarah Abdalla
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Schneider
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | | | - Matthew D Liptak
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Morgan E Cousins
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Kelly J Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Ralph C Budd
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Razq Hakem
- Department of Medical Biophysics and Immunology, University of Toronto, and the Ontario Cancer Institute/University Health Network, Toronto, Ontario, Canada
| | - Kevin K Brown
- Department of Medicine, Pulmonary, Critical Care and Sleep Section, National Jewish Health and the University of Colorado, Denver, CO, USA
| | - Reiko Matsui
- Department of Medicine, Boston University, Boston, MA, USA
| | | | - Jose L Gomez
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
62
|
Astilbin ameliorates pulmonary fibrosis via blockade of Hedgehog signaling pathway. Pulm Pharmacol Ther 2018; 50:19-27. [DOI: 10.1016/j.pupt.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 01/30/2023]
|
63
|
Abstract
PURPOSE OF REVIEW The palliative care needs of people with interstitial lung disease (ILD) have recently been highlighted by the National Institute for Health and Care Excellence. All people with progressive ILD should receive best supportive care to improve symptom control and quality of life and where possible this should be evidence based. RECENT FINDINGS Deaths from ILD are increasing and deaths in hospital are more common compared to home. People with ILD experience a wide range of symptoms including breathlessness and cough. People living with ILD often suffer unmet physical and psychological needs throughout the disease journey. Few appropriately validated outcome measures exist for ILD which has hampered research on the longitudinal experience of symptoms and quality of life and the evaluation of interventions. Recent recommendations from the National Institute of Clinical Excellence promote the use of a new palliative care needs assessment tool. Use of a tool in busy respiratory clinics may help to highlight those requiring specialist input. SUMMARY Further research into the role of opioids, oxygen and neuromodulatory agents in symptom management are needed. In addition, exploration of breathlessness and case conference interventions in transitioning patients from the hospital to community settings is a priority. Further work is needed to identify a core set of validated ILD-specific patient-reported outcome measures for the robust evaluation of interventions.
Collapse
|
64
|
Habiel DM, Espindola MS, Coelho AL, Hogaboam CM. Modeling Idiopathic Pulmonary Fibrosis in Humanized Severe Combined Immunodeficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:891-903. [PMID: 29378172 PMCID: PMC5954978 DOI: 10.1016/j.ajpath.2017.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease of unknown etiopathogenesis with limited therapeutic options. IPF is characterized by an abundance of fibroblasts and loss of epithelial progenitors, which cumulates in unrelenting fibrotic lung remodeling and loss of normal oxygenation. IPF has been challenging to model in rodents; nonetheless, mouse models of lung fibrosis provide clues as to the natural progression of lung injury and remodeling, but many have not been useful in predicting efficacy of therapeutics in clinical IPF. We provide a detailed methodologic description of various iterations of humanized mouse models, initiated by the i.v. injection of cells from IPF lung biopsy or explants specimens into severe combined immunodeficiency (SCID)/beige or nonobese diabetic SCID γ mice. Unlike cells from normal lung samples, IPF cells promote persistent, nonresolving lung remodeling in SCID mice. Finally, we provide examples and discuss potential advantages and pitfalls of human-specific targeting approaches in a humanized SCID model of pulmonary fibrosis.
Collapse
Affiliation(s)
- David M Habiel
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Milena S Espindola
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ana L Coelho
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
65
|
Russo RC, Savino B, Mirolo M, Buracchi C, Germano G, Anselmo A, Zammataro L, Pasqualini F, Mantovani A, Locati M, Teixeira MM. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2 + and CCR5 + IFNγ-producing γδT cells in mice. Am J Physiol Lung Cell Mol Physiol 2018; 314:L1010-L1025. [PMID: 29469612 DOI: 10.1152/ajplung.00233.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize, and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases the levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. The purpose of the study was to investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras, and antibody-mediated leukocyte depletion. ACKR2 was upregulated acutely in response to bleomycin and normalized over time. ACKR2-/- mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (nonhematopoietic) cells but not on leukocytes. ACKR2-/- mice exhibited decreased expression of tissue-remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2-/- mice had early increased levels of CCL5, CCL12, CCL17, and IFNγ and an increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17-lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2-/- and CCR5-/- mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2-/- mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells, tuning the Th17 response that mediated pulmonary fibrosis triggered by bleomycin instillation.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Benedetta Savino
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan , Italy
| | | | | | | | | | | | | | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan , Italy
| | - Mauro M Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
66
|
TRAIL-Dependent Resolution of Pulmonary Fibrosis. Mediators Inflamm 2018; 2018:7934362. [PMID: 29670467 PMCID: PMC5833466 DOI: 10.1155/2018/7934362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of interstitial lung disease characterized by the persistence of activated myofibroblasts resulting in excessive deposition of extracellular matrix proteins and profound tissue remodeling. In the present study, the expression of tumor necrosis factor- (TNF-) related apoptosis-inducing ligand (TRAIL) was key to the resolution of bleomycin-induced pulmonary fibrosis. Both in vivo and in vitro studies demonstrated that Gr-1+TRAIL+ bone marrow-derived myeloid cells blocked the activation of lung myofibroblasts. Although soluble TRAIL was increased in plasma from IPF patients, the presence of TRAIL+ myeloid cells was markedly reduced in IPF lung biopsies, and primary lung fibroblasts from this patient group expressed little of the TRAIL receptor-2 (DR5) when compared with appropriate normal samples. IL-13 was a potent inhibitor of DR5 expression in normal fibroblasts. Together, these results identified TRAIL+ myeloid cells as a critical mechanism in the resolution of pulmonary fibrosis, and strategies directed at promoting its function might have therapeutic potential in IPF.
Collapse
|
67
|
Li X, Yan X, Wang Y, Wang J, Zhou F, Wang H, Xie W, Kong H. NLRP3 inflammasome inhibition attenuates silica-induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells. Exp Cell Res 2018; 362:489-497. [DOI: 10.1016/j.yexcr.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
|
68
|
Huang Z, Li H, Zhang Q, Lu F, Hong M, Zhang Z, Guo X, Zhu Y, Li S, Liu H. Discovery of Indolinone-Based Multikinase Inhibitors as Potential Therapeutics for Idiopathic Pulmonary Fibrosis. ACS Med Chem Lett 2017; 8:1142-1147. [PMID: 29152045 DOI: 10.1021/acsmedchemlett.7b00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and deadly disease for which treatment options are limited. The recent approval of antifibrosis agent nintedanib represents one of the first therapeutic approaches for the treatment of IPF. Here, we report novel indolinone-based multikinase inhibitors that target angiogenesis and fibrosis pathways and may serve as potential therapeutics for IPF. KBP-7018 is a novel, tyrosine kinase-selective inhibitor with potent effects on three fibrotic kinases (c-KIT, PDGFR, and RET). The pharmacokinetics (PK) properties of KBP-7018 were favorable in mice, rats, and dogs. In a bleomycin (BLM)-induced mouse pulmonary fibrosis model, 10, 30, and 100 mg/kg daily doses (q.d.) of KBP-7018 improved the 28-day survival rate in a dose-dependent manner. The improved efficacy of KBP-7018 compared to nintedanib provided a certain level of chemical validation for the involvement of PDGFR, c-KIT, and RET in IPF. Thus, KBP-7018 represents a novel multikinase inhibitor with differentiated activity, highly enhanced selectivity, and acceptable PK profiles that will enter phase I clinical trials.
Collapse
Affiliation(s)
- Zhenhua Huang
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Heran Li
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Qian Zhang
- KBP Biosciences, 401, Building 2, Jinan Pharm Valley, North Section of Gangxing Three
Road, Jinan, Shandong, 250101, P. R. China
| | - Fangzheng Lu
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Mei Hong
- KBP Biosciences, 401, Building 2, Jinan Pharm Valley, North Section of Gangxing Three
Road, Jinan, Shandong, 250101, P. R. China
| | - Zhigang Zhang
- KBP Biosciences, 401, Building 2, Jinan Pharm Valley, North Section of Gangxing Three
Road, Jinan, Shandong, 250101, P. R. China
| | - Xiaocui Guo
- KBP Biosciences, 401, Building 2, Jinan Pharm Valley, North Section of Gangxing Three
Road, Jinan, Shandong, 250101, P. R. China
| | - Yuanju Zhu
- KBP Biosciences, 401, Building 2, Jinan Pharm Valley, North Section of Gangxing Three
Road, Jinan, Shandong, 250101, P. R. China
| | - Sanming Li
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Hongzhuo Liu
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
69
|
Ghavami S, Yeganeh B, Zeki AA, Shojaei S, Kenyon NJ, Ott S, Samali A, Patterson J, Alizadeh J, Moghadam AR, Dixon IMC, Unruh H, Knight DA, Post M, Klonisch T, Halayko AJ. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β 1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 314:L493-L504. [PMID: 29074489 DOI: 10.1152/ajplung.00372.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease in adults with limited treatment options. Autophagy and the unfolded protein response (UPR), fundamental processes induced by cell stress, are dysregulated in lung fibroblasts and epithelial cells from humans with IPF. Human primary cultured lung parenchymal and airway fibroblasts from non-IPF and IPF donors were stimulated with transforming growth factor-β1 (TGF-β1) with or without inhibitors of autophagy or UPR (IRE1 inhibitor). Using immunoblotting, we monitored temporal changes in abundance of protein markers of autophagy (LC3βII and Atg5-12), UPR (BIP, IRE1α, and cleaved XBP1), and fibrosis (collagen 1α2 and fibronectin). Using fluorescent immunohistochemistry, we profiled autophagy (LC3βII) and UPR (BIP and XBP1) markers in human non-IPF and IPF lung tissue. TGF-β1-induced collagen 1α2 and fibronectin protein production was significantly higher in IPF lung fibroblasts compared with lung and airway fibroblasts from non-IPF donors. TGF-β1 induced the accumulation of LC3βII in parallel with collagen 1α2 and fibronectin, but autophagy marker content was significantly lower in lung fibroblasts from IPF subjects. TGF-β1-induced collagen and fibronectin biosynthesis was significantly reduced by inhibiting autophagy flux in fibroblasts from the lungs of non-IPF and IPF donors. Conversely, only in lung fibroblasts from IPF donors did TGF-β1 induce UPR markers. Treatment with an IRE1 inhibitor decreased TGF-β1-induced collagen 1α2 and fibronectin biosynthesis in IPF lung fibroblasts but not those from non-IPF donors. The IRE1 arm of the UPR response is uniquely induced by TGF-β1 in lung fibroblasts from human IPF donors and is required for excessive biosynthesis of collagen and fibronectin in these cells.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Manitoba, Canada
| | - Behzad Yeganeh
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Manitoba, Canada.,Department of Physiology and Experimental Medicine, University of Toronto , Toronto , Canada.,Hospital for Sick Children Research Institute , Toronto , Canada
| | - Amir A Zeki
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California , Davis, California
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| | - Nicholas J Kenyon
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California , Davis, California
| | - Sean Ott
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California , Davis, California
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland , Galway , Ireland
| | | | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Manitoba, Canada
| | - Adel Rezaei Moghadam
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Manitoba, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, University of Manitoba, Manitoba, Canada.,St. Boniface Research Centre , Winnipeg , Canada
| | - Helmut Unruh
- Department of Internal Medicine, University of Manitoba, Manitoba, Canada
| | - Darryl A Knight
- School of Biomedical Science and Pharmacy, University of Newcastle , Newcastle , Australia
| | - Martin Post
- Department of Physiology and Experimental Medicine, University of Toronto , Toronto , Canada.,Hospital for Sick Children Research Institute , Toronto , Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| | - Andrew J Halayko
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Manitoba, Canada.,St. Boniface Research Centre , Winnipeg , Canada
| |
Collapse
|
70
|
Jin L, Zeng W, Zhang F, Zhang C, Liang W. Naringenin Ameliorates Acute Inflammation by Regulating Intracellular Cytokine Degradation. THE JOURNAL OF IMMUNOLOGY 2017; 199:3466-3477. [DOI: 10.4049/jimmunol.1602016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
|
71
|
Interaction network of coexpressed mRNA, miRNA, and lncRNA activated by TGF‑β1 regulates EMT in human pulmonary epithelial cell. Mol Med Rep 2017; 16:8045-8054. [PMID: 28983614 PMCID: PMC5779888 DOI: 10.3892/mmr.2017.7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/05/2022] Open
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play increasingly important roles in pathological processes involved in disease development. However, whether mRNAs interact with miRNAs and lncRNAs to form an interacting regulatory network in diseases remains unknown. In this study, the interaction of coexpressed mRNAs, miRNAs and lncRNAs during tumor growth factor-β1-activated (TGF-β1) epithelial-mesenchymal transition (EMT) was systematically analyzed in human alveolar epithelial cells. For EMT regulation, 24 mRNAs, 11 miRNAs and 33 lncRNAs were coexpressed, and interacted with one another. The interaction among coexpressed mRNAs, miRNAs and lncRNAs were further analyzed, and the results showed the lack of competing endogenous RNAs (ceRNAs) among them. The mutual regulation may be correlated with other modes, such as histone modification and transcription factor recruitment. However, the possibility of ceRNA existence cannot be ignored because of the generally low abundance of lncRNAs and frequent promiscuity of protein-RNA interactions. Thus, conclusions need further experimental identification and validation. In this context, disrupting many altered disease pathways remains one of the challenges in obtaining effective pathway-based therapy. The reason being that one specific mRNA, miRNA or lncRNA may target multiple genes that are potentially implicated in a disease. Nevertheless, the results of the present study provide basic mechanistic information, possible biomarkers and novel treatment strategies for diseases, particularly pulmonary tumor and fibrosis.
Collapse
|
72
|
Greiffo FR, Eickelberg O, Fernandez IE. Systems medicine advances in interstitial lung disease. Eur Respir Rev 2017; 26:26/145/170021. [PMID: 28954764 DOI: 10.1183/16000617.0021-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
Fibrotic lung diseases involve subject-environment interactions, together with dysregulated homeostatic processes, impaired DNA repair and distorted immune functions. Systems medicine-based approaches are used to analyse diseases in a holistic manner, by integrating systems biology platforms along with clinical parameters, for the purpose of understanding disease origin, progression, exacerbation and remission.Interstitial lung diseases (ILDs) refer to a heterogeneous group of complex fibrotic diseases. The increase of systems medicine-based approaches in the understanding of ILDs provides exceptional advantages by improving diagnostics, unravelling phenotypical differences, and stratifying patient populations by predictable outcomes and personalised treatments. This review discusses the state-of-the-art contributions of systems medicine-based approaches in ILDs over the past 5 years.
Collapse
Affiliation(s)
- Flavia R Greiffo
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität, University Hospital Grosshadern and Helmholtz Zentrum München and Member of the German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität, University Hospital Grosshadern and Helmholtz Zentrum München and Member of the German Center for Lung Research, Munich, Germany.,Division of Respiratory Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA
| | - Isis E Fernandez
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität, University Hospital Grosshadern and Helmholtz Zentrum München and Member of the German Center for Lung Research, Munich, Germany
| |
Collapse
|
73
|
Yamazaki R, Kasuya Y, Fujita T, Umezawa H, Yanagihara M, Nakamura H, Yoshino I, Tatsumi K, Murayama T. Antifibrotic effects of cyclosporine A on TGF‐β1–treated lung fibroblasts and lungs from bleomycin‐treated mice: role of hypoxia‐inducible factor‐1α. FASEB J 2017; 31:3359-3371. [DOI: 10.1096/fj.201601357r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Risa Yamazaki
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular PharmacologyChiba University Chiba Japan
- Department of Biomedical ScienceChiba University Chiba Japan
| | - Tetsuo Fujita
- Department of Biochemistry and Molecular PharmacologyChiba University Chiba Japan
- Department of RespirologyChiba University Chiba Japan
| | - Hiroki Umezawa
- Department of Biochemistry and Molecular PharmacologyChiba University Chiba Japan
- Department of Biomedical ScienceChiba University Chiba Japan
- Department of RespirologyChiba University Chiba Japan
| | - Madoka Yanagihara
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| | - Ichiro Yoshino
- Department of General Thoracic SurgeryGraduate School of MedicineChiba University Chiba Japan
| | | | - Toshihiko Murayama
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba University Chiba Japan
| |
Collapse
|
74
|
Chen C, Yun XJ, Liu LZ, Guo H, Liu LF, Chen XL. Exogenous nitric oxide enhances the prophylactic effect of aminoguanidine, a preferred iNOS inhibitor, on bleomycin-induced fibrosis in the lung: Implications for the direct roles of the NO molecule in vivo. Nitric Oxide 2017; 70:31-41. [PMID: 28757441 DOI: 10.1016/j.niox.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Inducible nitric oxide synthase (iNOS) aggravates and endothelial nitric oxide synthase (eNOS) ameliorates fibrosis in the lung. Our previous study demonstrated that aminoguanidine (AG), a preferred iNOS inhibitor, prevents bleomycin-induced injury and fibrosis in the lung. The diethylenetriamine nitric oxide adduct (DETA/NO) is a slow-release NO donor. Here, to clarify the exact role of the nitric oxide (NO) molecule in the pathogenesis of pulmonary fibrosis in vivo, we observed the effects of inhalation of aerosolized DETA/NO on fibrosis in the lungs of bleomycin-exposed rats with AG treatment, including the effects on the myofibroblast number, collagen deposition, peroxynitrite anion (ONOO-) formation, and injury in the lung. DESIGN AND METHODS Rats received a single intratracheal instillation of bleomycin or normal saline (NS) on day 0, followed by a daily intraperitoneal injection of AG or NS from day 1 to day 13. Each group was additionally given a daily inhalation of DETA/NO or placebo from day 1 to day 13. On day 14, half of the rats in each group was euthanized, and plasma nitrite and nitrate (NOx), myofibroblasts, type I collagen, ONOO- and injury in the lung were estimated by the Griess reaction, western blotting, immunohistochemical staining, sirius red staining, and hematoxylin and eosin (HE) staining, respectively. On day 28, the other half of the rats in each group was euthanized, and the total collagen of the lung was evaluated by hydroxyproline assay. RESULTS ① At the day 14 time point, AG reduced the plasma NOx level in bleomycin rats, while this drug had no significant effect on sham rats. Inhalation of aerosolized DETA/NO increased the plasma NOx level of bleomycin + AG rats, sham rats and sham + AG rats. However, due to large areas of airspace obliteration in the lungs of bleomycin rats, DETA/NO inhalation had no significant effect on the plasma NOx level in these rats. ② At the day 14 time point, AG reduced ONOO- formation (marked by nitrotyrosine, NT), injury, myofibroblast number, and type I collagen deposition in the lungs of bleomycin rats, while this drug had no significant impact on the above parameters in the lungs of sham rats. Interestingly, DETA/NO inhalation enhanced the preventive effects afforded by AG on myofibroblast number and type I collagen deposition, but had no significant impact on ONOO- and injury in lung. ③ At the day 28 time point, because rats were not exposed to DETA/NO after day 13, there was no significant difference of the plasma NOx level in sham rats, sham + AG rats, bleomycin rats, and bleomycin + AG rats between DETA/NO inhalation and placebo inhalation. Interestingly, rats administered both DETA/NO and AG still showed a reduction in total collagen of the entire lung compared to rats administered AG alone at this time point. CONCLUSIONS Exogenous NO enhances the prophylactic effect afforded by AG on the myofibroblast number and collagen deposition in the lungs of bleomycin-treated rats in vivo. These results suggest that NO has a direct antifibrotic effect in lungs, except for the formation of ONOO- in the development of pulmonary fibrosis in vivo.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China; Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei, 061014, PR China
| | - Xiao-Jing Yun
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Li-Ze Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Hong Guo
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Lian-Feng Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Xiao-Ling Chen
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
75
|
Huang Y, Zhang W, Yu F, Gao F. The Cellular and Molecular Mechanism of Radiation-Induced Lung Injury. Med Sci Monit 2017; 23:3446-3450. [PMID: 28710886 PMCID: PMC5523971 DOI: 10.12659/msm.902353] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lung is one of several moderately radiosensitive organs. Radiation-induced lung injury (RILI), including acute radiation pneumonitis and chronic radiation-induced pulmonary fibrosis, occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. Clinical symptoms of RILI include dry cough, shortness of breath, chest pain, fever, and even severe respiratory failure and death. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions which ultimately leads to large fibroblast accumulation, proliferation, and differentiation, resulting in excessive extracellular matrix deposits, causing pulmonary fibrosis. The progress that has been made in recent years in the understanding of cellular and molecular mechanisms of RILI is summarized in this review.
Collapse
Affiliation(s)
- Yijuan Huang
- Department of Radiology, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China (mainland)
| | - Weiqiang Zhang
- Department of Radiology, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China (mainland)
| | - Fangrong Yu
- Department of Radiology, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China (mainland)
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
76
|
Habiel DM, Hogaboam CM. Heterogeneity of Fibroblasts and Myofibroblasts in Pulmonary Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017; 5:101-110. [PMID: 29082111 PMCID: PMC5654579 DOI: 10.1007/s40139-017-0134-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Idiopathic Pulmonary Fibrosis (IPF) is the most common form of interstitial lung diseases of unknown eathiopathogenesis, mean survival of 3-5 years and limited therapeutics. Characterized by a loss of alveolar type II epithelial cells and aberrant activation of stromal cells, considerable effort was undertaken to characterize the origin and activation mechanisms of fibroblasts and myofibroblasts in IPF lungs. In this review, the origin and contribution of fibroblast and myofibroblasts in lung fibrosis will be summarized. RECENT FINDINGS Lineage tracing experiments suggested that interstitial lung fibroblasts and lipofibroblasts, pericytes and mesothelial cells differentiate into myofibroblasts. However, epithelial and bone marrow derived cells may give rise to collagen expressing fibroblasts but do not differentiate into myofibroblasts. SUMMARY There is great heterogeneity in fibroblasts and myofibroblasts in fibrotic lungs. Further, there is evidence for the expansion of pericyte derived myofibroblasts and loss of lipofibroblasts and lipofibroblast derived myofibroblasts in IPF.
Collapse
Affiliation(s)
- David M. Habiel
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Cory M. Hogaboam
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
77
|
Zheng X, Qi C, Zhang S, Fang Y, Ning W. TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 313:L240-L251. [PMID: 28495857 DOI: 10.1152/ajplung.00523.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor (TGF)-β1 has long been regarded as a central mediator of tissue fibrosis. Follistatin-like 1 (Fstl1) is a crucial profibrotic glycoprotein that is upregulated in fibrotic lung tissues, and it promotes fibrogenesis via facilitating TGF-β signaling. Here we examined the signaling pathway by which TGF-β1 upregulates Fstl1 expression in mouse pulmonary fibroblasts. TGF-β1 regulated Fstl1 expression at both the transcriptional and translational levels. Although TGF-β1 rapidly activated the Smad, MAPK, and Akt pathways in lung fibroblasts, only Smad2/3 inhibition eliminated TGF-β1-induced Fstl1 expression. Analysis of the luciferase reporter activity identified a functional c-Jun transcription site in the Fstl1 promoter. Our results suggested a critical role for the Smad3-c-Jun pathway in the regulation of Fstl1 expression by TGF-β1 during fibrogenesis.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Si Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinshan Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
78
|
Zhang S, Liu H, Liu Y, Zhang J, Li H, Liu W, Cao G, Xv P, Zhang J, Lv C, Song X. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2017; 18:ijms18030633. [PMID: 28294974 PMCID: PMC5372646 DOI: 10.3390/ijms18030633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/16/2023] Open
Abstract
Several recent studies have indicated that miR-30a plays critical roles in various biological processes and diseases. However, the mechanism of miR-30a participation in idiopathic pulmonary fibrosis (IPF) regulation is ambiguous. Our previous study demonstrated that miR-30a may function as a novel therapeutic target for lung fibrosis by blocking mitochondrial fission, which is dependent on dynamin-related protein1 (Drp-1). However, the regulatory mechanism between miR-30a and Drp-1 is yet to be investigated. Additionally, whether miR-30a can act as a potential therapeutic has not been verified in vivo. In this study, the miR-30a expression in IPF patients was evaluated. Computational analysis and a dual-luciferase reporter assay system were used to identify the target gene of miR-30a, and cell transfection was utilized to confirm this relationship. Ten–eleven translocation 1 (TET1) was validated as a direct target of miR-30a, and miR-30a mimic and inhibitor transfection significantly reduced and increased the TET1 protein expression, respectively. Further experimentation verified that the TET1 siRNA interference could inhibit Drp-1 promoter hydroxymethylation. Finally, miR-30a agomir was designed and applied to identify and validate the therapeutic effect of miR-30a in vivo. Our study demonstrated that miR-30a could inhibit TET1 expression through base pairing with complementary sites in the 3′untranslated region to regulate Drp-1 promoter hydroxymethylation. Furthermore, miR-30a could act as a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
- Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Taishan Medical University, Taishan 271016, China.
| | - Huizhu Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yuxia Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jie Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Weili Liu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Guohong Cao
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Pan Xv
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
79
|
Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X, Wu Z, Zhang C, Xu Z, Tang Y, Zou S, Liu M, Li J, Zeng M, Lin P, Cheng F, Huang J. Drug Repurposing of Histone Deacetylase Inhibitors That Alleviate Neutrophilic Inflammation in Acute Lung Injury and Idiopathic Pulmonary Fibrosis via Inhibiting Leukotriene A4 Hydrolase and Blocking LTB4 Biosynthesis. J Med Chem 2017; 60:1817-1828. [PMID: 28218840 DOI: 10.1021/acs.jmedchem.6b01507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are both serious public health problems with high incidence and mortality rate in adults, and with few drugs available for the efficient treatment in clinic. In this study, we identified that two known histone deacetylase (HDAC) inhibitors, suberanilohydroxamic acid (SAHA, 1) and its analogue 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]benzamide (2), are effective inhibitors of Leukotriene A4 hydrolase (LTA4H), a key enzyme in the biosynthesis of leukotriene B4 (LTB4), across a panel of 18 HDAC inhibitors, using enzymatic assay, thermofluor assay, and X-ray crystallographic investigation. Importantly, both 1 and 2 markedly diminish early neutrophilic inflammation in mouse models of ALI and IPF under a clinical safety dose. Detailed mechanisms of down-regulation of proinflammatory cytokines by 1 or 2 were determined in vivo. Collectively, 1 and 2 would provide promising agents with well-known clinical safety for potential treatment in patients with ALI and IPF via pharmacologically inhibiting LAT4H and blocking LTB4 biosynthesis.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ping Ouyang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ningning Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Zhongyu Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University , Shanghai 200011, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Minghua Zeng
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry & Chemical Engineering, Guangxi Normal University , Guilin 541004, China
| | - Ping Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China.,Center for Complex Networks Research, Northeastern University , Boston, Massachusetts 02115, United States.,Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
80
|
Novel form of miR-29b suppresses bleomycin-induced pulmonary fibrosis. PLoS One 2017; 12:e0171957. [PMID: 28234907 PMCID: PMC5325218 DOI: 10.1371/journal.pone.0171957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/28/2017] [Indexed: 01/12/2023] Open
Abstract
MicroRNA 29b (miR-29b) replacement therapy is effective for suppressing fibrosis in a mouse model. However, to develop clinical applications for miRNA mimics, the side effects of nucleic acid drugs have to be addressed. In this study, we focused on miRNA mimics in order to develop therapies for idiopathic pulmonary fibrosis. We developed a single-stranded RNA, termed “miR-29b Psh-match,” that has a unique structure to avoid problems associated with the therapeutic uses of miRNAs. A comparison of miR-29b Psh-match and double-stranded one, termed “miR-29b mimic” indicated that the single-stranded form was significantly effective towards fibrosis according to both in vivo and in vitro experiments. This novel form of miR-29b may become the foundation for developing an effective therapeutic drug for pulmonary fibrosis.
Collapse
|
81
|
Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017; 18:105-124. [PMID: 26876889 PMCID: PMC5221424 DOI: 10.1093/bib/bbv118] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/27/2015] [Indexed: 01/01/2023] Open
Abstract
Monitoring and modeling biomedical, health care and wellness data from individuals and converging data on a population scale have tremendous potential to improve understanding of the transition to the healthy state of human physiology to disease setting. Wellness monitoring devices and companion software applications capable of generating alerts and sharing data with health care providers or social networks are now available. The accessibility and clinical utility of such data for disease or wellness research are currently limited. Designing methods for streaming data capture, real-time data aggregation, machine learning, predictive analytics and visualization solutions to integrate wellness or health monitoring data elements with the electronic medical records (EMRs) maintained by health care providers permits better utilization. Integration of population-scale biomedical, health care and wellness data would help to stratify patients for active health management and to understand clinically asymptomatic patients and underlying illness trajectories. In this article, we discuss various health-monitoring devices, their ability to capture the unique state of health represented in a patient and their application in individualized diagnostics, prognosis, clinical or wellness intervention. We also discuss examples of translational bioinformatics approaches to integrating patient-generated data with existing EMRs, personal health records, patient portals and clinical data repositories. Briefly, translational bioinformatics methods, tools and resources are at the center of these advances in implementing real-time biomedical and health care analytics in the clinical setting. Furthermore, these advances are poised to play a significant role in clinical decision-making and implementation of data-driven medicine and wellness care.
Collapse
Affiliation(s)
| | - Marcus A Badgeley
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Riccardo Miotto
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin S Glicksberg
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph W Morgan
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joel T Dudley
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Health Evidence and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
82
|
Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype. PLoS One 2016; 11:e0164438. [PMID: 27792742 PMCID: PMC5085087 DOI: 10.1371/journal.pone.0164438] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.
Collapse
|
83
|
Jung SH, Sung DB, Park CH, Kim WS. Copper-Catalyzed N-Arylation of 2-Pyridones Employing Diaryliodonium Salts at Room Temperature. J Org Chem 2016; 81:7717-24. [PMID: 27484240 DOI: 10.1021/acs.joc.6b01415] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new and mild synthetic approach for the N-arylation of 2-pyridones with diaryliodonium salts has been developed. Most reactions proceed readily at room temperature in the presence of 10 mol % of copper chloride. As a result, a wide range of N-arylpyridine-2-ones were synthesized in yields of 23% to 99%. With this method, an antifibrotic drug, Pirfenidone, was successfully synthesized in 99% yield within 30 min at room temperature.
Collapse
Affiliation(s)
- Seo-Hee Jung
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, South Korea
| | - Dan-Bi Sung
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, South Korea
| | - Cho-Hee Park
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, South Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, South Korea
| |
Collapse
|
84
|
Lucarini L, Pini A, Rosa AC, Lanzi C, Durante M, Chazot PL, Krief S, Schreeb A, Stark H, Masini E. Role of histamine H4 receptor ligands in bleomycin-induced pulmonary fibrosis. Pharmacol Res 2016; 111:740-748. [PMID: 27475884 DOI: 10.1016/j.phrs.2016.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis of lung tissue is a disease where a chronic inflammatory process determines a pathological remodelling of lung parenchyma. The animal model obtained by intra-tracheal administration of bleomycin in C57BL/6 mice is one of the most validated murine model. Bleomycin stimulates oxidative stress and the production of pro-inflammatory mediators. Histamine H4R have recently been implicated in inflammation and immune diseases. This study was focused to investigate the effects of H4R ligands in the modulation of inflammation and in the reduction of lung fibrosis in C57BL/6 mice treated with bleomycin. C57BL/6 mice were treated with vehicle, JNJ7777120 (JNJ, selective H4R antagonist) or ST-1006 (partial H4R agonist), ST-994 (H4R neutral antagonist) and ST-1012 (inverse H4R agonist) at equimolar doses, released by micro-osmotic pumps for 21days. Airway resistance to inflation was assayed and lung samples were processed to measure malondialdehyde (TBARS); 8-hydroxy-2'-deoxyguanosine (8OHdG); myeloperoxidase (MPO); COX-2 expression and activity as markers of oxidative stress and inflammation. Fibrosis and airway remodelling were evaluated throughout transforming growth factor-β (TGF-β), percentage of positive Goblet cells, smooth muscle layer thickness determination. Our results indicated that JNJ, ST-994 and ST-1012 decreased inflammation and oxidative stress markers, i.e. the number of infiltrating leukocytes evaluated as lung tissue MPO, COX-2 expression and activity, TBARS and 8OHdG production. They also reduced the level of TGF-β, a pro-fibrotic cytokine, collagen deposition, thickness of smooth muscle layer, Goblet cells hyperplasia; resulting in a decrease of airway functional impairment. The results here reported clearly demonstrated that H4R ligands have a beneficial effect in a model of lung fibrosis in the mouse, thus indicating that H4R antagonists or inverse agonists could be a novel therapeutic strategy for lung inflammatory diseases.
Collapse
Affiliation(s)
- Laura Lucarini
- Departments of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy
| | - Alessandro Pini
- Departments of Experimental and Clinical Medicine, Section of Histology, University of Florence, Florence, Italy
| | | | - Cecilia Lanzi
- Departments of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy
| | - Mariaconcetta Durante
- Departments of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy
| | - Paul Louis Chazot
- School of Biological & Biomedical Sciences, Durham University, Durham, UK
| | - Stéphane Krief
- Bioproject BIOTECH, 4, rue du Chesnay Beauregard 35760 Saint-Grégoire, France
| | - Annemarie Schreeb
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Holger Stark
- Departments of Medicinal Chemistry, University of Dusseldorf, Dusseldorf, Germany
| | - Emanuela Masini
- Departments of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy.
| |
Collapse
|
85
|
Xu J, Zheng J, Song P, Zhou Y, Guan S. IL-33/ST2 pathway in a bleomycin-induced pulmonary fibrosis model. Mol Med Rep 2016; 14:1704-8. [DOI: 10.3892/mmr.2016.5446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
|
86
|
Vercauteren IM, Verleden SE, McDonough JE, Vandermeulen E, Ruttens D, Lammertyn EJ, Bellon H, De Dycker E, Dooms C, Yserbyt J, Verleden GM, Vanaudenaerde BM, Wuyts WA. CYFRA 21.1 in bronchoalveolar lavage of idiopathic pulmonary fibrosis patients. Exp Lung Res 2016; 41:459-65. [PMID: 26381718 DOI: 10.3109/01902148.2015.1073407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of interstitial lung diseases, however, clinically relevant biomarkers of diagnosis or prognosis are lacking. In this study, we investigated the levels of a fragment of Cytokeratin 19 (CYFRA 21.1) in bronchoalveolar lavage (BAL) of IPF patients at time of diagnosis. We further evaluated associations between CYFRA 21.1, pulmonary function evolution, mortality, and BAL cell count. MATERIALS AND METHODS Using the Lumipulse® G1200, CYFRA 21.1 was measured in BAL samples of 81 IPF patients and 9 controls. Based upon the median detected level (1.2 ng/mL) of CYFRA 21.1 in IPF patients, they were subdivided into an IPF CYFRA 21.1 low group (≤ 1.2 ng/mL) and IPF CYFRA 21.1 high group (> 1.2 ng/mL). RESULTS The CYFRA 21.1 levels were significantly higher in BAL of IPF patients compared to controls (P = .0015).Worse survival was observed, but no changes in pulmonary function, for IPF patients with high CYFRA 21.1 levels versus patients with low CYFRA 21.1 levels [P = .030, HR: 0.41, (0.18-0.92)[. The CYFRA 21.1 level correlated with both neutrophils (%: R = 0.60, P < .0001; #: R = 0.47, P < .0001) and eosinophils (%: R = 0.38, P = .0005; #: R = 0.30, P < .0072). CONCLUSIONS CYFRA 21.1 is increased in BAL of IPF patients. IPF patients with a high CYFRA 21.1 concentration have a worse survival. CYFRA 21.1 levels correlate with eosinophils and neutrophils. Further studies are warranted in using CYFRA 21.1 as a biomarker for IPF prognosis.
Collapse
Affiliation(s)
- Inge M Vercauteren
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - Stijn E Verleden
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - John E McDonough
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - Elly Vandermeulen
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - David Ruttens
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - Elise J Lammertyn
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - Hannelore Bellon
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - Els De Dycker
- b Department of Pulmonology , University Hospitals Leuven , Leuven , Belgium
| | - Christophe Dooms
- b Department of Pulmonology , University Hospitals Leuven , Leuven , Belgium
| | - Jonas Yserbyt
- b Department of Pulmonology , University Hospitals Leuven , Leuven , Belgium
| | - Geert M Verleden
- b Department of Pulmonology , University Hospitals Leuven , Leuven , Belgium
| | - Bart M Vanaudenaerde
- a Laboratory for Pulmonology, Department of Clinical and Experimental Medicine, KU Leuven , University of Leuven , Leuven , Belgium
| | - Wim A Wuyts
- b Department of Pulmonology , University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
87
|
Lin C, von der Thüsen J, Isermann B, Weiler H, van der Poll T, Borensztajn K, Spek CA. High endogenous activated protein C levels attenuates bleomycin-induced pulmonary fibrosis. J Cell Mol Med 2016; 20:2029-2035. [PMID: 27295971 PMCID: PMC5082406 DOI: 10.1111/jcmm.12891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023] Open
Abstract
Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression remains elusive. We assess the importance of the endogenous anticoagulant protein C pathway on disease progression during bleomycin‐induced pulmonary fibrosis. Wild‐type mice and mice with high endogenous activated protein C APC levels (APChigh) were subjected to bleomycin‐induced pulmonary fibrosis. Fibrosis was assesses by hydroxyproline and histochemical analysis. Macrophage recruitment was assessed immunohistochemically. In vitro, macrophage migration was analysed by transwell migration assays. Fourteen days after bleomycin instillation, APChigh mice developed pulmonary fibrosis to a similar degree as wild‐type mice. Interestingly, Aschcroft scores as well as lung hydroxyproline levels were significantly lower in APChigh mice than in wild‐type mice on day 28. The reduction in fibrosis in APChigh mice was accompanied by reduced macrophage numbers in their lungs and subsequent in vitro experiments showed that APC inhibits thrombin‐dependent macrophage migration. Our data suggest that high endogenous APC levels inhibit the progression of bleomycin‐induced pulmonary fibrosis and that APC modifies pulmonary fibrosis by limiting thrombin‐dependent macrophage recruitment.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Berend Isermann
- Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Hartmut Weiler
- Department of Physiology, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,Département Hospitalo-universtaire FIRE (Fibrosis Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Chris A Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
88
|
Jung KI, Park CK. Pirfenidone inhibits fibrosis in foreign body reaction after glaucoma drainage device implantation. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1477-88. [PMID: 27143855 PMCID: PMC4841429 DOI: 10.2147/dddt.s99957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The aim of this study was to investigate the antiscarring effects of pirfenidone on foreign body reaction in a rabbit model of glaucoma drainage implant surgery. Methods Adult New Zealand White rabbits had glaucoma drainage device implantation using Model FP8 Ahmed glaucoma valves. One eye was randomly assigned to receive postoperative intrableb injection of pirfenidone followed by topical treatment. The other eye underwent the same procedure but without the addition of pirfenidone. Histochemical staining and immunohistochemistry for blebs were performed. Results The degree of cellularity was smaller in the pirfenidone group than in the control group at 2 weeks post operation (P=0.005). A few foreign body giant cells were detected in the inner border of the capsule, and their numbers were similar in the control and pirfenidone groups (P>0.05). Using Masson’s trichrome stain, the inner collagen-rich layer was found to be thinner in the pirfenidone group than the control group at 4 weeks (P=0.031) and 8 weeks (P=0.022) post operation. The percentage of proliferating cell nuclear antigen-positive cells was lower in the pirfenidone group than in the control group at 2 weeks post operation (total bleb, P=0.022; inner bleb, P=0.036). Pirfenidone treatment decreased the immunoreactivity of connective tissue growth factor at 2 weeks post operation (total bleb, P=0.029; inner bleb, P=0.018). The height and area of α-smooth muscle actin expression were lower in the pirfenidone group than the control group at 2 weeks, 4 weeks, and 8 weeks post operation (all P<0.05). Conclusion Postoperative intrableb injection of pirfenidone followed by topical administration reduced fibrosis following glaucoma drainage device implantation. These findings suggest that pirfenidone may function as an antiscarring treatment in foreign body reaction after tube-shunt surgery.
Collapse
Affiliation(s)
- Kyoung In Jung
- Department of Ophthalmology and Visual Science, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kee Park
- Department of Ophthalmology and Visual Science, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
89
|
Tetrahydropalmatine attenuates irradiation induced lung injuries in rats. Life Sci 2016; 153:74-81. [DOI: 10.1016/j.lfs.2016.03.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 01/15/2023]
|
90
|
Pinheiro L, Blake K, Januskiene J, Yue QY, Arlett P. Geographical variation in reporting Interstitial Lung Disease as an adverse drug reaction: findings from an European Medicines Agency analysis of reports in EudraVigilance. Pharmacoepidemiol Drug Saf 2016; 25:705-12. [PMID: 27004571 DOI: 10.1002/pds.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE Clinically, interstitial lung disease (ILD) is a heterogeneous group of over 150 respiratory disorders. In the context of its signal evaluation work, the European Medicines Agency's (EMA) Pharmacovigilance Risk Assessment Committee (PRAC) has seen geographic clustering of case reports of ILD from Japan. To explore this further, EudraVigilance (EV), the EMA's database of adverse drug reactions (ADRs), was analysed. The results have been used to inform on implications for pharmacovigilance including signal detection and evaluation activities. METHODS EV was queried for reports of respiratory ADRs coded using MedDRA for the period 1994-2014 for all medicinal products. Descriptive statistics and non-parametric (chi-square) independence tests were produced to compare reporting of ILD from Japan versus the rest of the world. RESULTS As of 31 December 2014, there were 26 551 case reports of ILD in EV of which 17 526 (66%) originated in Japan. The reporting rate of ILD for Japan has been consistently higher over the period. The odds that a case report from Japan in EV refers to ILD is OR = 20.7, 95% CI 20.2, 21.3 (p < 0.001), compared to OR = 0.60, 95% CI 0.54, 0.67 (p < 0.001) for pulmonary fibrosis. CONCLUSIONS A geographic imbalance between Japan and the rest of the world in reporting respiratory ADRs as ILD is confirmed. Consequently, the PRAC has developed approaches to address this in relation to signals of ILD it assesses to allow for more targeted risk minimisation including updates to the product information in the EU setting. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Luis Pinheiro
- European Medicines Agency, Inspections and Human Medicines Pharmacovigilance Division, London, United Kingdom of Great Britain and Northern Ireland
| | - Kevin Blake
- European Medicines Agency, Inspections and Human Medicines Pharmacovigilance Division, London, United Kingdom of Great Britain and Northern Ireland
| | - Justina Januskiene
- European Medicines Agency, Inspections and Human Medicines Pharmacovigilance Division, London, United Kingdom of Great Britain and Northern Ireland
| | - Qun-Ying Yue
- Läkemedelsverket (Medical Product Agency Sweden), Pharmacovigilance, Uppsala, Sweden
| | - Peter Arlett
- European Medicines Agency, Inspections and Human Medicines Pharmacovigilance Division, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
91
|
Fernandez IE, Amarie OV, Mutze K, Königshoff M, Yildirim AÖ, Eickelberg O. Systematic phenotyping and correlation of biomarkers with lung function and histology in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 310:L919-27. [PMID: 26993522 DOI: 10.1152/ajplung.00183.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/15/2016] [Indexed: 11/22/2022] Open
Abstract
To date, phenotyping and disease course prediction in idiopathic pulmonary fibrosis (IPF) primarily relies on lung function measures. Blood biomarkers were recently proposed for diagnostic and outcome prediction in IPF, yet their correlation with lung function and histology remains unclear. Here, we comprehensively assessed biomarkers in liquid biopsies and correlated their abundance with lung function and histology during the onset, progression, and resolution of lung fibrosis, with the aim to more precisely evaluate disease progression in the preclinical model of bleomycin-induced pulmonary fibrosis in vivo. Importantly, the strongest correlation of lung function with histological extent of fibrosis was observed at day 14, whereas lung function was unchanged at days 28 and 56, even when histological assessment showed marked fibrotic lesions. Although matrix metalloproteinase-7 (MMP-7), MMP-9, and PAI-1 were significantly elevated in broncheoalveolar lavage of fibrotic mice, only soluble ICAM-1 (sICAM-1) was elevated in the peripheral blood of fibrotic mice and was strongly correlated with the extent of fibrosis. Importantly, tissue-bound ICAM-1 was also elevated in lung homogenates, with prominent staining in hyperplastic type II alveolar epithelial and endothelial cells. In summary, we show that lung function decline is not a prerequisite for histologically evident fibrosis, particularly during the onset or resolution thereof. Plasma levels of sICAM-1 strongly correlate with the extent of lung fibrosis, and may thus be considered for the assessment of intraindividual therapeutic studies in preclinical studies of pulmonary fibrosis.
Collapse
Affiliation(s)
- Isis E Fernandez
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Oana V Amarie
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
92
|
Passing on the medicinal chemistry baton: training undergraduates to be industry-ready through research projects between the University of Nottingham and GlaxoSmithKline. Drug Discov Today 2016; 21:880-7. [PMID: 26852693 DOI: 10.1016/j.drudis.2016.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/04/2016] [Accepted: 01/28/2016] [Indexed: 01/09/2023]
Abstract
In this article we describe a radically different industry-academia collaboration between the School of Chemistry, University of Nottingham, and GlaxoSmithKline (GSK), aiming to train students in research and give them an insight into medicinal chemistry as practiced in industry. The project concerns the discovery of potent and selective αvβ6 integrin antagonists to treat idiopathic pulmonary fibrosis; the synthetic chemistry is performed by a group of ten final-year undergraduates and the biological and physicochemical screening data are generated by GSK. The project planning, organisation and operation are discussed, together with some of the challenges and rewards of working with undergraduates.
Collapse
|
93
|
Muramatsu Y, Sugino K, Ishida F, Tatebe J, Morita T, Homma S. Effect of inhaled N-acetylcysteine monotherapy on lung function and redox balance in idiopathic pulmonary fibrosis. Respir Investig 2015; 54:170-8. [PMID: 27108012 DOI: 10.1016/j.resinv.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND An oxidant-antioxidant imbalance is considered to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Therefore, administration of antioxidants, such as N-acetylcysteine (NAC), may represent a potential treatment option for IPF patients. METHODS The aim of this study was to evaluate the effect of inhaled NAC monotherapy on lung function and redox balance in patients with IPF. A retrospective observational study was done, involving 22 patients with untreated early IPF (19 men; mean [±S.D.] age, 71.8 [±6.3]y). At baseline and at 6 and 12 months after initiating inhaled NAC monotherapy, we assessed forced vital capacity (FVC) and measured the levels of total glutathione, oxidized glutathione (GSSG), and the ratio of reduced to oxidized glutathione in whole blood (hereafter referred to as the ratio), and of 8-hydroxy-2'-deoxyguanosine in urine. To evaluate response to treatment, we defined disease progression as a decrease in FVC of ≥5% from baseline and stable disease as a decrease in FVC of <5%, over a period of 6 months. RESULTS Change in FVC in the stable group at 6 and 12 months were 95±170mL and -70±120mL, while those in the progressive group at 6 and 12 months were -210±80mL, -320±350mL, respectively. The serial mean change in GSSG from baseline decreased as the ratio of reduced to oxidized glutathione increased in patients with stable disease, while it increased as this ratio decreased in patients with progressive disease. Receiver operating characteristic curve analysis revealed that a baseline GSSG level of ≥1.579μM was optimal for identifying treatment responders. CONCLUSION Inhaled NAC monotherapy was associated with improved redox imbalance in patients with early IPF.
Collapse
Affiliation(s)
- Yoko Muramatsu
- Department of Respiratory Medicine, Toho University School of Medicine (Omori), Omori-nishi 6-11-1, Ota-ku, Tokyo 143-8541, Japan.
| | - Keishi Sugino
- Department of Respiratory Medicine, Toho University School of Medicine (Omori), Omori-nishi 6-11-1, Ota-ku, Tokyo 143-8541, Japan.
| | - Fumiaki Ishida
- Department of Respiratory Medicine, Toho University School of Medicine (Omori), Omori-nishi 6-11-1, Ota-ku, Tokyo 143-8541, Japan.
| | - Junko Tatebe
- Department of Clinical Laboratory Medicine, Toho University School of Medicine (Omori), Omori-nishi 6-11-1, Ota-ku, Tokyo 143-8541, Japan.
| | - Toshisuke Morita
- Department of Clinical Laboratory Medicine, Toho University School of Medicine (Omori), Omori-nishi 6-11-1, Ota-ku, Tokyo 143-8541, Japan.
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University School of Medicine (Omori), Omori-nishi 6-11-1, Ota-ku, Tokyo 143-8541, Japan.
| |
Collapse
|
94
|
Abstract
Purpose of review There remains a dire need for therapies that impact the clinical course of patients with idiopathic pulmonary fibrosis (IPF). Indeed, there is a surge of interest in IPF therapeutics, with many candidate agents in various stages of development. Optimal design and implementation of the appropriate prospective clinical trials are essential to demonstrate clinical efficacy of promising drugs for the treatment of IPF. A key element in the success of such clinical trials is the choice of the best endpoint(s) to match the design of the study. Recent findings Although the results of many IPF clinical trials have been disappointing, these trials have provided valuable insights into the epidemiology and natural history of the disease and have sparked debate into the best clinical trial designs and endpoints. Summary This review will discuss the various clinical trial endpoints that have been used or proposed with a focus on their potential utility, as well as possible pitfalls that investigators should consider in the design of such studies. Video abstract http://links.lww.com/COPM/A13
Collapse
|
95
|
|
96
|
Maher TM, Whyte MKB, Hoyles RK, Parfrey H, Ochiai Y, Mathieson N, Turnbull A, Williamson N, Bennett BM. Development of a Consensus Statement for the Definition, Diagnosis, and Treatment of Acute Exacerbations of Idiopathic Pulmonary Fibrosis Using the Delphi Technique. Adv Ther 2015; 32:929-43. [PMID: 26498943 PMCID: PMC4635174 DOI: 10.1007/s12325-015-0249-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There is a lack of agreed and established guidelines for the treatment of acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF). This reflects, in part, the limited evidence-base underpinning the management of AE-IPF. In the absence of high-quality evidence, the aim of this research was to develop a clinician-led consensus statement for the definition, diagnosis and treatment of AE-IPF. METHODS A literature review was conducted to obtain published material on the definition and treatment of AE-IPF. The results of this review were circulated to an online panel of clinicians for review. Statements were then shared with ten expert respiratory clinicians who regularly treat patients with IPF. A Delphi technique was then used to develop a consensus statement for the definition, diagnosis and treatment of AE-IPF. During the first round of review, clinicians rated the clarity of each statement, the extent to which the statement should be included and provided comments. In two subsequent rounds of review, clinicians were provided with the group median inclusion rating for each statement, and any revised wording of statements to aid clarity. Clinicians were asked to repeat the clarity and inclusion ratings for the revised statements. RESULTS The literature review, online panel discussion, and face-to-face meeting generated 65 statements covering the definition, diagnosis, and management of AE-IPF. Following three rounds of blind review, 90% of clinicians agreed 39 final statements. These final statements included a definition of AE-IPF, approach to diagnosis, and treatment options, specifically: supportive measures, use of anti-microbials, immunosuppressants, anti-coagulants, anti-fibrotic therapy, escalation, transplant management, and long-term management including discharge planning. CONCLUSION This clinician-led consensus statement establishes the 'best practice' for the management and treatment of AE-IPF based on current knowledge, evidence, and available treatments.
Collapse
Affiliation(s)
- Toby M Maher
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK.
| | - Moira K B Whyte
- The University of Edinburgh Medical School, The Queen's Medical Research Institute, Edinburgh, UK
| | | | - Helen Parfrey
- Papworth Hospital, NHS Foundation Trust, Papworth Everard, Cambridge, UK
| | - Yuuki Ochiai
- Boehringer Ingelheim Ltd, Bracknell, Berkshire, UK
| | | | | | | | | |
Collapse
|
97
|
Fregonese L, Eichler I. The future of the development of medicines in idiopathic pulmonary fibrosis. BMC Med 2015; 13:239. [PMID: 26399608 PMCID: PMC4581513 DOI: 10.1186/s12916-015-0480-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023] Open
Abstract
The development of treatments for idiopathic pulmonary fibrosis (IPF) has been often disappointing. Building on authorized treatments that can benchmark the validity of treatment effect measures, the time has come to standardize endpoints and achieve consensus on their use for different clinical questions and specific IPF phenotypes. In order to facilitate the development of new medicines for IPF it is crucial that the knowledge of the disease and lessons learnt from past trials are taken forward to create international trial networks with involvement of patients, including biobanks and clinical data collection through a multinational registry. Interaction with regulators may be useful to align the initiatives of academia and pharmaceutical companies with the bodies ultimately responsible for licensing new products. Interaction can occur through the use of qualification programs for biomarkers and endpoints, and participation in innovative regulatory pathways and initiatives. Finally, the experience of IPF should be used to benefit even rarer interstitial lung diseases for which no treatment is available, including pediatric interstitial lung diseases. This commentary provides a perspective on the hurdles slowing the development and regulatory approval of medicines for IPF, and encourages close cooperation between investigators and drug regulators.
Collapse
Affiliation(s)
- Laura Fregonese
- Orphan Medicines Office, European Medicines Agency, 30 Churchill Place, Canary Wharf, E14 5EU, London, UK.
| | - Irmgard Eichler
- Paediatric Medicines Office, European Medicines Agency, London, UK
| |
Collapse
|
98
|
Kobayashi T, Tanaka K, Fujita T, Umezawa H, Amano H, Yoshioka K, Naito Y, Hatano M, Kimura S, Tatsumi K, Kasuya Y. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respir Res 2015; 16:99. [PMID: 26289430 PMCID: PMC4546032 DOI: 10.1186/s12931-015-0261-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023] Open
Abstract
Background Various signals are known to participate in the pathogenesis of lung fibrosis. Our aim was to determine which signal is predominantly mobilized in the early inflammatory phase and thereafter modulates the development of lung fibrosis. Methods Mice received a single dose of 3 mg/kg body weight of bleomycin (BLM) and were sacrificed at designated days post-instillation (dpi). Lung homogenates and sections from mice in the early inflammatory phase were subjected to phospho-protein array analysis and immunofluorescence studies, respectively. Bronchoalveolar lavage fluid (BALF) from mice was subjected to an enzyme-linked immunosorbent assay (EIA) for interleukin (IL)-6 and evaluation of infiltrated cell populations. The effects of endogenous and exogenous IL-6 on the BLM-induced apoptotic signal in A549 cells and type 2 pneumocytes were elucidated. In addition, the effect of IL-6-neutralizing antibody on BLM-induced lung injury was evaluated. Results Phospho-protein array revealed that BLM induced phosphorylation of molecules downstream of the IL-6 receptor such as Stat3 and Akt in the lung at 3 dpi. At 3 dpi, immunofluorescence studies showed that signals of phospho-Stat3 and -Akt were localized in type 2 pneumocytes, and that BLM-induced IL-6-like immunoreactivity was predominantly observed in type 2 pneumocytes. Activation of caspases in BLM-treated A549 cells and type 2 pneumocytes was augmented by application of IL-6-neutralizing antibody, a PI3K inhibitor or a Stat3 inhibitor. EIA revealed that BLM-induced IL-6 in BALF was biphasic, with the first increase from 0.5 to 3 dpi followed by the second increase from 8 to 10 dpi. Blockade of the first increase of IL-6 by IL-6-neutralizing antibody enhanced apoptosis of type 2 pneumocytes and neutrophilic infiltration and markedly accelerated fibrosis in the lung. In contrast, blockade of the second increase of IL-6 by IL-6-neutralizing antibody ameliorated lung fibrosis. Conclusions The present study demonstrated that IL-6 could play a bidirectional role in the pathogenesis of lung fibrosis. In particular, upregulation of IL-6 at the early inflammatory stage of BLM-injured lung has antifibrotic activity through regulating the cell fate of type 2 pneumocytes in an autocrine/paracrine manner. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0261-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kensuke Tanaka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Tetsuo Fujita
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiroki Umezawa
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiroyuki Amano
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yusuke Naito
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Sadao Kimura
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
99
|
Lin C, von der Thüsen J, Daalhuisen J, ten Brink M, Crestani B, van der Poll T, Borensztajn K, Spek CA. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis. Mol Med 2015; 21:576-83. [PMID: 26147947 DOI: 10.2119/molmed.2015.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2 deficiency persistently reduces bleomycin-induced pulmonary fibrosis or merely delays disease progression and whether pharmacological PAR-2 inhibition limits experimental pulmonary fibrosis. Bleomycin was instilled intranasally into wild-type or PAR-2-deficient mice in the presence/absence of a specific PAR-2 antagonist (P2pal-18S). Pulmonary fibrosis was consistently reduced in PAR-2-deficient mice throughout the fibrotic phase, as evident from reduced Ashcroft scores (29%) and hydroxyproline levels (26%) at d 28. Moreover, P2pal-18S inhibited PAR-2-induced profibrotic responses in both murine and primary human pulmonary fibroblasts (p < 0.05). Once daily treatment with P2pal-18S reduced the severity and extent of fibrotic lesions in lungs of bleomycin-treated wild-type mice but did not further reduce fibrosis in PAR-2-deficient mice. Importantly, P2pal-18S treatment starting even 7 d after the onset of fibrosis limits pulmonary fibrosis as effectively as when treatment was started together with bleomycin instillation. Overall, PAR-2 contributes to the progression of pulmonary fibrosis, and targeting PAR-2 may be a promising therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joost Daalhuisen
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marieke ten Brink
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Reference Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
100
|
Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J, Choi Y, Lynch DA, Steele MP, Flaherty KR, Brown KK, Farah H, Bukstein MJ, Pardo A, Selman M, Wolters PJ, Nathan SD, Colby TV, Myers JL, Katzenstein ALA, Raghu G, Kennedy GC. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. THE LANCET RESPIRATORY MEDICINE 2015; 3:473-82. [DOI: 10.1016/s2213-2600(15)00140-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022]
|